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We present two results which shed some more light on the deep connection between ZFA and the standard ZF
set theory: First of all we refine a result of Forti and Honsell (see [5]) in order to prove that the universe of
ZFA can also be obtained (without appealing to choice) as the least fixed point of a continuous operator and
not only as the greatest fixed point of the powerset operator. Next we show that it is possible to define a new
absolute Gödel operation in addition to the standard ones in order to obtain the ”constructible” model of ZFA
as the least fixed point of the continuous operator of Gödel closure with respect to the standard and the new
Gödel operations.
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1 Introduction

In the following we will conform to the notation of [1] and [3], which we will also use as reference texts; ZF−

stands for the usual ZF set theory where Foundation is dropped, and ZFA stands for ZF where Foundation is
replaced by the following axiom1) :

Definition 1

(X1) Every binary relation R on a set A has a unique collapse on a transitive set.

In ZF the following theorem is provable (see [5, Theorem 3]):

Theorem 2 Let 〈M, EM 〉 and 〈N, EN 〉 be models of ZFA. If MWF is isomorphic to NWF, then M is iso-
morphic to N , where MWF resp. NWF is the universe of well founded sets for the structure 〈M, EM 〉 resp.
〈N, EN 〉.

The theorem above suggests the possibility to extend to the non well founded universe of ZFA all the inner
model theory developed so far for the usual ZF universe. In fact we will show:

1. The results of [5] are strong enough to define a cumulative hierarchy for ZFA, in particular it is possible to
define a generalized power set operation P ∗ such that the universe V of ZFA is the union of sets Vα for α ranging
over the class Ord of ordinals and

V0 = ∅, for all α ∈ Ord, Vα+1 = P ∗(Vα) ∪ Vα, for all limits γ, Vγ =
⋃

α<γ Vα.

2. It is fairly easy to uncover the basic properties of class models of ZFA and to define the “constructible”
model JX1 of ZFA, a model which has all the desirable features that L has for the well-founded universe, for
example (a) if 〈M,∈〉 � ZFA, then JX1 ⊆ M , (b) there is a definable well-ordering of JX1 , (c) JX1 ∩ WF = L.

The results above can be easily established due to the fact that many notions absolute for WF are absolute also
in the universe of X1, among them the notion of ordinal and the “stability” of definitions by transfinite induction
over ordinals.

∗ e-mail: viale@dm.unito.it
1) We are not assuming that Choice is an axiom of ZFA, in contrast with Aczel’s notation. Axiom X1 is in the literature also denoted

by AFA (see [1]).
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2 The cumulative hierarchy of ZFA

Definition 3 For any set A we define the generalized powerset operation P ∗(A) by

P ∗(A) = {X : ∈|TC(X) is bisimilar to R for some R ⊆ TC(A)2}.
Remark 4 For any set A, P (A) ⊂ P ∗(A).

P r o o f. If X ⊂ A, then TC(X) ⊂ TC(A) so that ∈|TC(X)=∈∩TC(X)2 ⊂ TC(A)2, and the thesis
follows.

Remark 5 For every set A, P ∗(A) is a set.

P r o o f. Given R ⊆ TC(A)2, let XR = {X : ∈|TC(X) is bisimilar to R}. It doesn’t take long (using axioms
Replacement, Power Set, Separation and X1) to see that XR is a set definable from the parameter R. Moreover,
P ∗(A) =

⋃
R⊆A2 XR. So P ∗(A) is a set.

Definition 6 In the universe of ZFA we define the Vα hierarchy as follows:

V0 = ∅, for all α ∈ Ord, Vα+1 = Vα ∪ P ∗(Vα), for all limits γ, Vγ =
⋃

α<γ Vα.

The cumulative hierarchy defined above behave as expected, i. e.,

Lemma 7 V =
⋃

α∈ORD Vα.

P r o o f. It is just a reelaboration of the proof of [5, Theorem 2]. However we sketch it for the sake of
completeness.

It is easy to check by induction over ORD that for all α, Πα ⊆ Vα, where Πα is the α-th element in the usual
hierarchy of well founded sets.

Claim For any set X , TC(X) is the collapse of some relation RX on a well founded set AX .

In fact, if the claim is true and AX ⊆ Πα, then TC(X) is the transitive collapse of RX ⊆ Πα ⊆ V 2
α , and so

X ∈ Vα+1 ⊆ ⋃
α∈ORD Vα, and the thesis follows.

We will prove the claim. First of all we can suppose w. l. o. g. that X is a transitive set. So given the set X let
Gα : X −→ WF be the following sequence of functions with well founded values:

· G0 is the constant function with value ∅;

· for all x ∈ X and for all α, if α = β + 1, then Gα(x) = {Gβ(y) : y ∈ x};

· if x ∈ X and α is a limit, then Gα(x) is the sequence Gx of length α such that Gx(γ) = Gγ(x) for
all γ ∈ α.

Then define the following sequence of sets and relations:
· Xα is the image of Gα;

· for x, y ∈ Xα, xRαy iff there exist w, z such that Gα(w) = x, Gα(z) = y and w ∈ z.
Once the definition are understood one can easily prove by induction that for all α, Xα is a well founded set:

Define for each α the equivalence relation ≡α on X setting x ≡α y if Gα(x) = Gα(y). Observe that if α > β,
≡α⊂≡β and define ≡ to be

⋂
α∈ORD ≡α. Since ≡ is a set, there must be an α such that ≡ is ≡α. Consider the

set X/ ≡ of equivalence classes [x] for x ∈ X , and on this set define the relation [x] ∈∗ [y] iff there exists x′ ≡ x
and y′ ≡ y such that x′ ∈ y′. By the definitions, if α is the least ordinal such that ≡ is ≡α, then the structure
〈X/ ≡,∈∗〉 is isomorphic to the structure 〈Xα, Rα〉. Moreover with some effort it is possible to prove that ∈∗ is
bisimilar to ∈|X : the bisimilarity associates to any equivalence class [x] of X/ ≡ all its elements2).

By the above arguments Rα is bisimilar to ∈|X .

We notice that the cumulative hierarchy of ZFA allows to obtain the universe of ZFA as the least fixed point
of the continuous operator P ∗. The usual characterization of ZFA is instead that of being the greatest fixed point
of the powerset operator P .

2) In fact, it is possible to prove that ≡ is the equality relation (see [5] for more details).
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This suggests the idea that in ZFA it might be possible that for a wide class of continuous operators Φ, the
greatest fixed point XΦ of Φ is also the least fixed point of some operator Φ∗ which is obtained from Φ appealing
to a “uniform” procedure.

3 Absolute notions, transitive models and the constructible universe of ZFA

We will now examine in more detail the elementary properties of standard models of ZFA. We will show that
the inner model theory developed for the usual ZF theory can be extended with almost no effort also to ZFA. In
particular we first examine notions which are absolute for transitive structures 〈M,∈〉 in ZFA, then state sufficient
conditions for a transitive class in ZF− to be a model of ZF− and finally we define the constructible model JX1

and state and prove its main properties.

In general it is easy to see that all Σ0-formulas ϕ(x1, . . . , xn) with free variables among x1, . . . , xn are
absolute for transitive structures 〈M,∈〉, i. e., where M is either a transitive class or a transitive set. This is due
to the fact that restricted quantifiers behave the same way whenever M ⊆ N and both are transitive. For example
the following notions and operations are absolute for such structures in ZF−:

· R is a function, a relation, an ordered pair,

· dom(R) (domain of R), ran(R) (range of R), ext(R) (extension of R, ext(R) = dom(R) ∪ ran(R)), etc.

· X =
⋃

Y ,

· X is transitive, X is strictly ordered by ∈, . . . .

In particular all Gödel operations defined in [3, p. 93]) are absolute for transitive models of ZF− 3). However the
notions of von Neumann ordinal4) and even of finite ordinal are not absolute in ZF−. For this reason the operation
of Gödel closure (see [3, p. 96]) may not be absolute for transitive structure in ZF− (contrary to what happens in
ZF) because it is defined by induction over natural numbers. This however does not happen if we assume X1:

Lemma 8 In ZFA the notion of von Neumann ordinal is absolute for transitive structures. In particular
ωM = ω, and the notion of finite ordinal is absolute for transitive structures.

P r o o f. Let α∗ be a set such that for some transitive structure M , 〈M,∈〉 � “α∗ is an ordinal” and such
that in the universe α∗ is not well founded. Let α be the supremum of all the initial segments of α∗ which
are really well ordered in the universe. Since being strictly ordered by ∈ is an absolute property, ∈|α∗ is
a strict linear order whose well ordered initial segment is isomorphic to ∈|α. Let Ωα∗ = α ∪ {Ωα∗}, then
Ωα∗ is a transitive collapse of ∈|α∗ . By X1 this is the unique transitive collapse of ∈|α∗ , so α∗ = Ωα∗ . However
the latter is not strictly ordered by ∈, and since this is an absolute notion,

〈M,∈〉 � “α∗ is not strictly ordered by ∈”,

and this is a contradiction.

Now we can easily prove that functions defined by induction over ordinals from absolute operations are abso-
lute for transitive models of ZFA.

We can then define the Gödel’s operations and the operation of Gödel closure.

Definition 9 The following are Gödel operations:
· All Gödel operations introduced in [3, p. 96] and the operation ext(R) that for a relation R produces the

extension of R5).

· The operation F defined in the following way: If R is a binary relation and a ∈ ext(R), then F (a, R) = x
iff x is the set assigned to a in the transitive collapse of R6).

Remark 10 ext(R) is absolute for transitive classes since ext(R) = dom(R) ∪ ran(R).

3) Also ext(R) is an absolute operation for transitive models of ZF−.
4) α is a von Neumann ordinal if it is strictly ordered by ∈ and it is well founded.
5) In fact, ext(R) is introduced for the sake of simplicity, and is not essential.
6) The essential difference between F and the other Gödel‘s operations is (as we will see below) that F is not absolute for all transitive

classes but only for transitive classes that are “closed” enough; in fact F is a ∆1-operation in ZFA.
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Lemma 11 The new operation F is absolute for transitive M that are models of ZFA.7)

P r o o f. The key point is that the concept “B is a bisimilarity between the relations R and R′” is very simple
and can be expressed by the Σ0-formula8):

Bis(B, R, R′) ≡df “B is a relation”∧dom(B) = ext(R) ∧ ran(B) = ext(R′)
∧ (∀t, s) (tBs → tB+s),

where tB+s is an abbreviation for the Σ0-formula9):

∀wRt ∃qR′s wBq ∧ ∀qR′s ∃wRt wBq.

x = F (a, R) can be expressed by the Σ1-formula:

∃B (Bis(B, (∈∩dom(B)), R) ∧ xBa),

i. e. the formula states that B is a bisimilarity between the ∈ relation restricted to the transitive set dom(B) and
the relation R, and moreover that xBa.

Claim For any R there exists a unique BR such that Bis(BR, (∈ ∩dom(BR)), R), moreover BR has an
absolute definition with respect to R. BR is the function which collapses ext(R) to the transitive set dom(BR)
as prescribed by R.

If the claim holds and R ∈ M is a relation, then F (a, R) belongs to M , since x = F (a, R) can be expressed
as x = BR(a) and since BR is a function with an absolute definition with respect to R, we have BR ∈ M and
also x ∈ TC(BR) ⊆ M .

In ZFA it is easy to prove that for any R, BR exists and is unique due to axiom X1. We show that BR has an
absolute definition with respect to R.

Given any M transitive model of ZFA let BM
R be the unique set in M such that

M � Bis(BM
R , (∈∩dom(BM

R )), R);

BM
R exists and is in M , since M is a model of ZFA. Since Bis(x, y, z) is an absolute formula, we have

Bis(BM
R , (∈ ∩dom(BM

R )), R), so BM
R is also the unique set in the universe which is the collapse of R. This

establishes the claim.

Definition 12 For any set X , CL(X) =
⋃

n∈ω Wn, where

W0 = X and Wn+1 = Wn ∪ {G(x, y) : x, y ∈ Wn and G is a Gödel operation}.
Clearly CL(X) is an absolute operation for all transitive classes definable in ZFA that are closed under the

Gödel operations, since it is a function defined using absolute operations and induction over natural numbers.

Now we can define the constructible Jensen hierarchy over ZFA:

Definition 13 JX1 =
⋃

α∈ORD Jα, where

J0 = ∅, for all α ∈ Ord, Jα+1 = CL(Jα ∪ {Jα ∩ WF} ∪ {Jα}), for all limits γ, Jγ =
⋃

α<γ Jα.

We notice that the hierarchy cannot be trivial because using induction over ordinals one can easily prove that
Jα ∩ WF contains the usual Lα in WF. So JX1 contains L and this means that J is a proper class, while every
Jα is a set10).

Finally we introduce some auxiliary notions in order to prove that JX1 is the least transitive model of ZFA and
that it has a definable well ordering of its elements.

7) In fact, it is enough that M is transitive and believe to be closed under F and some of the other Gödel’s operations.
8) All the quantifiers in the formula below range over the extensions of the relations R and R′.
9) All quantifiers are ranging on the extension of the relations R and R′.
10) It is not hard to see that JX1 is the least fixed point of the continuous operator CL.
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Definition 14 M is an almost universal class if every set X ⊆ M is contained in some Y ∈ M .

Theorem 15 Let ZF− + CP stands for ZF− enriched with the Collection Principle Schema11). In ZF− + CP
it holds: if M is a transitive, almost universal, Gödel closed class, then M is a model of ZF−.

P r o o f. The proof is standard and can be found in [3, pp. 92 – 99]. Some attention must be drawn to the
fact that the theorem in [3] is proved under the assumption that Foundation holds; this is not a serious problem
because this assumption is needed only in order to prove the Collection Principle, while we are assuming CP in
the hypothesis.

Theorem 16 In ZFA the Collection Principle holds.

P r o o f. This is trivial, because we can apply Scott’s trick appealing to the Vα hierarchy 12).

Theorem 17 JX1 is an almost universal, transitive, Gödel closed class.

P r o o f. The proof goes trough with minor modifications in the same way it goes for L in the well founded
case.

(a) JX1 is almost universal because we have a notion of rank for elements of JX1 : �(x) is the least α such that
x ∈ Jα+1. For any set X contained in JX1 , X ⊆ Jα for any α bigger than sup{�(x) : x ∈ X} and by definition
Jα ∈ Jα+1 ⊆ JX1 .

(b) JX1 is transitive because it is the union of transitive sets. In fact, if X is transitive, then CL(X) is
transitive, because CL(X) =

⋃
n∈ω Wn and one can easily prove by a suitably chosen induction on the Gödel

operations that for all i, if x ∈ Wi, then x ⊆ CL(X). We show the case relative to F , the others are simpler: Let
y ∈ F (a, R) ∈ Wi, and let i be the least one such that F (a, R) ∈ Wi, we must show that y ∈ CL(X).

· If i = 0, W0 = X is transitive and contained in CL(X), so there is nothing to prove.

· If i > 0, there is a b ∈ ext(R) such that bRa and y = F (b, R) (i. e. y is assigned to b in the transitive collapse
of R); by the choice of i, R ∈ Wi−1; this implies ext(R) ∈ Wi, and by the inductive hypothesis on ext13) we
can suppose that ext(R) ⊆ CL(X), so b ∈ ext(R) implies b ∈ Wj for some j, and so y = F (b, R) ∈ Wj+1.

Since J0 is transitive, we can prove by induction on α that every Jα is transitive.

(c) Jα is Gödel closed by definition.

By the above theorems JX1 is a model of ZF−. It is immediate to prove that JX1 is also a model of X1, so
that JX1 is a model of ZFA. Moreover exactly as in the case of L the Jensen hierarchy suggests a natural way to
define a global absolute well-ordering of JX1 , so that JX1 is also a model of Global Choice.
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