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Abstract. Schanuel’s conjecture states that the transcendence degree over Q of
the 2n-tuple (λ1, . . . , λn, e

λ1 , . . . , eλn) is at least n for all λ1, . . . , λn ∈ C which are
linearly independent over Q; if true it would settle a great number of elementary
open problems in number theory, among which the transcendence of e over π.

Wilkie [11], and Kirby [4, Theorem 1.2] have proved that there exists a small-
est countable algebraically and exponentially closed subfield K of C such that
Schanuel’s conjecture holds relative to K (i.e. modulo the trivial counterexam-
ples, Q can be replaced by K in the statement of Schanuel’s conjecture). We prove
a slightly weaker result (i.e. that there exists such a countable field K without
specifying that there is a smallest such) using the forcing method and Shoenfield’s
absoluteness theorem.

This result suggests that forcing can be a useful tool to prove theorems (rather
than independence results) and to tackle problems in domains which are appar-
ently quite far apart from set theory.
MSC: 03C60-03E57-11U99

A brief introduction

We want to give an example of how we might use forcing to study a variety of
expansions of the complex (or real) numbers enriched by arbitrary Borel predicates,
still maintaining certain “tameness” properties of the theory of these expansions.
We clarify what we intend by “tameness” as follows: in contrast with what happens
for example with o-minimality in the case of real closed fields, we do not have to
bother much with the complexity of the predicate P we wish to add to the real
numbers (we can allow P to be an arbitrary Borel predicate), but we pay a price
reducing significantly the variety of elementary superstructures (M,PM) for which
we are able to lift P to PM so that (R, P ) ≺ (M,PM) and for which we are able
to use the forcing method to say something significant on the first order theory of
(M,PM). Nonetheless the family of superstructures M for which this is possible is
still a large class, as we can combine (Woodin and) Shoenfield’s absoluteness for the
theory of projective sets of reals with a duality theorem relating certain spaces of
functions to forcing constructions, to obtain the following1:

Theorem 1 (V. and Vaccaro [10]). Let X be an extremally disconnected (i.e. such
that the closure of open sets is open) compact Hausdorff space.

Let C+(X) be the space of continuous functions f : X → S2 = C∪{∞} such that
the preimage of ∞ is nowhere dense (S2 is the one point compactification of C).

For any p ∈ X, let C+(X)/p be the ring of germs in p of functions in C+(X).
Given any Borel predicate R on Cn, define a predicate RX/p ⊆ (C+(X)/p)n by

1Theorem 1 generalizes results obtained by Jech [3] and Ozawa [8], we refer to [10] for further
details on the relations between Theorem 1 and their works.

1



2 MATTEO VIALE

the rule RX/p([f1], . . . [fn]) holds if there is an open neighboorhood U of p such that
R(f1(x), . . . , fn(x)) holds for a comeager2 set of x ∈ U . Then3

(C, R) ≺Σ2 (C+(X)/p,RX/p).

Moreover if we assume the existence of class many Woodin cardinals we get that

(C, R) ≺ (C+(X)/p,RX/p).

It turns out that the above spaces of functions are intrinsically intertwined with
the forcing method: they provide an equivalent description of the forcing names for
complex numbers for the notion of forcing given by the non-empty clopen subsets
of X. Moreover these spaces are universal among the spaces of the form C+(Y )
with Y compact Hausdorff, in the sense that for any such Y there is an isometric
∗-homomorphism of the unital C∗-algebra C(Y ) into a a C∗-algebra of the form
C(X) with X compact and extremely disconnected; this homomorphism extends
to a ∗-monomorphism of the ring C+(Y ) into the ring C+(X) (we refer the reader
to [9, Chapter 4] for more details).

Playing with the choice of the compact space X and of the Borel predicate R
we can cook up spaces in which it is possible to compute the solution of certain
projective statements. Using the elementarity of these structures with respect to
the standard complex numbers, we can conclude that the solution we computed in
these expansions is the correct solution. This is exactly what we plan to do in the
following for a weakening of the well known Schanuel’s conjecture.

1. Main result

For a vector ~v = (v1, . . . , vn) and a function E we let ~v(c) = (v1(c), . . . , vn(c)) if
each vi is a function and c is in the domain. E(~v) = (E(v1), . . . , E(vn)) if each vi
is in the domain of E. We also feel free (unless we feel this can generate misun-
derstandings) to confuse a vector ~v = (v1, . . . , vn) with the finite set of its elements
{v1, . . . , vn}.

Definition 1.1. Given fields K ⊆ F of characteristic 0 and an integral domain
Z ⊆ K, let Z̄ denote the field of fractions of Z. Fix {λ1, . . . , λn} ⊆ F . Then:

• LdimZ̄(λ1, . . . , λn) denotes the Z̄-linear dimension of the Z̄-subspace V of F
spanned by {λ1, . . . , λn}.
• LdimZ̄(λ1, . . . , λn/K) is the Z̄-codimension of K in the Z̄-vector space K+V .
• TrdgK(λ1, . . . , λn) is the transcendence degree overK of the ringK[λ1, . . . , λn] ⊂
F , i.e. the largest size of a subset A of {λ1, . . . , λn} such that no polynomial
with coefficients in K and |A|-many variables vanishes on the elements of
the subset.
• Let E : F → F ∗ be an homomorphism of the additive group (F,+) on the

multiplicative group (F ∗, ·). Let

Z(F,E) = {a ∈ F : ∀xE(x) = 1→ E(ax) = 1}.
Then Z(F,E) ⊆ F is a ring.

2A ⊆ X is meager if it is the union of countably many nowhere dense sets. A is comeager in U if
U \A is meager.
3Hidden in the conclusion of the theorem is the statement that RX/p is a well defined relation for
each p ∈ X.
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• Assume Z(F,E) ⊆ K ⊆ F , and let Z̄ denote the field of fractions of Z(F,E).
The Ax character of the pair (E,K) is the function:

ACE,K(~λ) = TrdgK(~λ,E(~λ))− LdimZ̄(~λ/K).

1.1. Exponential fields. We introduce axioms suitable to formulate our results
on the exponential function relative to some algebraically closed field K. Since
we will have to interplay between boolean valued semantics and standard Tarski
semantics, and there are subtle points in the evaluation of function symbols in
boolean valued models we do not want to address in the present paper, we overcome
this problem assuming from now on that we are working always with relational first
order languages. In particular when formally representing a function on a structure
as the extension of a definable set, we will always assume that the formula defining
the function does not contain any function symbol.

Definition 1.2. Consider a relational language for algebraically closed fields aug-
mented by predicate symbols for an exponential map E, and for a special sub-field
K.

(F,K,E, ·,+, 0, 1)

is a model of TWSP(K) if it satisfies4:

(1) AC FIELD: F is an algebraically closed field of characteristic 0.
(2) EXP FIELD: The exponential map E : F → F ∗ is a surjective homo-

morphism of the additive group (F,+) on the multiplicative group (F ∗, ·)
with

ker(E) = ω · Z(F,E) = {ω · λ : λ ∈ Z(F,E)}

for some ω ∈ F transcendental over Z(F,E) ( [5, Axioms 2′a, 2′b, Section
1.2]).

(3) (K,E)-SP (Schanuel property for (K,E)): K ⊆ F is a field containing
Z(F,E) and ACE,K : F<ω → N cannot get negative values and is 0 only on
tuples contained in K.

(Q, exp)-SP is a strengthening of Schanuel’s conjecture: Assume (Q, exp)-SP

holds and λ1, . . . , λn = ~λ are Q-linearly independent. Then either λ1, . . . , λn−1 are
Q-linearly independent modulo Q or λ2, . . . , λn are Q-linearly independent mod-
ulo Q: Otherwise there are s, r ∈ Q and s1, . . . , sn−1, r2, . . . , rn ∈ Q such that
s =

∑
i=1,...,n−1 siλi and r =

∑
i=2,...,n riλi. Then

s · r =
∑

i=1,...,n−1

r · siλi =
∑

i=2,...,n

s · riλi.

4The axioms we introduce are mostly taken from [5, Section 1.2], specifically axiom (2) corre-
sponds to axioms 2′a and 2′b of [5, Section 1.2], we do not insist on the axiom 2′c, while axiom
(3) is a variation of the axiom 3′ of [5, Section 1.2]. In order to be fully consistent with their
axiomatization the Ax character in axiom (3) should be replaced by the “predimension” function

∆(~λ) = TrdgZ(F,E)(
~λ,E(~λ)/K)−LdimZ(F,E)(~λ/K). Nonetheless the fields K ⊆ F we will look at

are such that Z(F,E) ∪ ker(E) ⊆ K and it can be checked that for these fields ∆(~λ) ≥ ACE,K(~λ).
In our analysis we will focus on the properties of the function ACE,K .
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This shows that ~λ is not a vector of Q-linearly independent numbers. Assume now
that λ1, . . . , λn−1 are Q-linearly independent modulo Q. By (Q, exp)-SP we get that

TrdgQ(~λ, e
~λ) ≥

≥ TrdgQ(λ1, . . . , λn−1, e
λ1 , . . . , eλn−1) =

= ACQ,exp(λ1, . . . , λn−1) + LdimQ(λ1, . . . , λn−1/Q) >

> LdimQ(λ1, . . . , λn−1/Q) = n− 1,

and we are done.
An exponential field is a pair (F,E) satisfying the field axioms and axiom (2).
Zilber [12] showed that there is a natural axiom system TZilber expanding TWSP(Q)

and axiomatizable in the logic Lω1,ω(Q) (where Q stands for the quantifier for un-
countably many elements) such that for each uncountable cardinal κ there is exactly
one field B and one exponential function E : B→ B∗ with ker(E) = ω · Z for some
ω ∈ B transcendental over Q and such that (B,Q, E,+, 0, 1) is a standard model of
TZilber. Roughly TZilber extends TWSP(Q) requiring that Axiom (3) is replaced by the
full Schanuel’s conjecture5 stating that

TrdgQ(~λ,E(~λ)) ≥ LdimQ(~λ) for all ~λ.

Furthermore TZilber requires two other sorts of axioms requiring the existence of
generic points for certain kind of irreducible varieties (the so called normal or rotund
varieties) and specifying further properties of these generic points (see MR2102856
(2006a:03051) for a short account of the axiom system). However in the present
paper we are not interested in this other part of Zilber’s axiomatization of the
theory of exponential fields. Zilber conjectures that (C,Q, ex,+, ·) is a model of
TZilber.

We give a proof based on forcing and generic absoluteness of the following theorem:

Theorem 1.3 (Kirby [4], Wilkie [11]). There exists a countable (algebraically and
exponentially closed) field K0 ⊆ C such that (C, K0, e

x,+, ·) is a model of TWSP(K0).

Essentially what we have to prove is the following:

There exists a countable (algebraically and exponentially closed) field
K0 ⊆ C such that

ACK0,exp(~λ) ≥ 0

for all ~λ ∈ C<N (where exp(λ) = eλ), with equality holding only if
~λ ⊆ K0.

The proof is articulated in three steps and runs as follows:

(1) The above statement is expressible by the lightface Σ1
2-formula

WSP ≡ ∃f ∈ CN(ran(f) = K0 is a field ∧∀~λ ∈ C<N TrdgK0
(~λ, e

~λ) ≥ LdimQ(~λ/K0)),

5Whenever a field K ⊆ C is closed with respect to the graph of the exponential function, the formal
analogue of Schanuel’s conjecture obtained replacing all occurrences of Q by K in its statement is

false (i.e. the statement asserting that TrdgK(~λ, e
~λ) ≥ LdimK(~λ) for all ~λ). A counterexample is

given by TrdgK(1, e) = 0 < 1 = LdimK(1). The content of Theorem 1.3 below is that in essence
this is the unique relevant countexample for certain subfields K of C. This is the reason why we
chose to formulate Schanuel’s property for fields K in the form of axiom 3.

http://www.ams.org/mathscinet/search/publdoc.html?r=1&pg1=CNO&s1=2102856&loc=fromrevtext
http://www.ams.org/mathscinet/search/publdoc.html?r=1&pg1=CNO&s1=2102856&loc=fromrevtext
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since it is a rather straightforward calculation to check that the formulae

φ(f) ≡ (f ∈ CN ∧ ran(f) = K0 is a field )

and

WSP(~λ, f) ≡ φ(f) ∧ (~λ ∈ C<N ∧ TrdgK0
(~λ, e

~λ) ≥ LdimQ(~λ/K0))

are Borel statements definable over the parameters f, ~λ which require only to
quantify over the countable sets f , N, Q. It is a classical result of set theory
(known as Shoenfield’s absoluteness) that any Σ1

2-property known to hold in
some forcing extension is actually true. So in order to establish the theorem
it is enough to prove the above formula consistent by means of forcing i.e.
to prove that JWSPKB = 1B in the boolean valued model for set theory V B

for some complete boolean algebra B.
(2) The second step relies on the following observation: whenever B is any com-

plete boolean algebra and V is the universe of sets (i.e. the standard model
of ZFC), the family of B-names for complex numbers in the boolean valued

model V B (which we denote by Ċ) “corresponds” to the space of continuous
functions

C+(St(B)) = {f : St(B)→ S2 : f is continuous and f−1[{∞}] is nowhere dense},
where S2 = C∪{∞} is the one point compactification of C with the euclidean
topology, and St(B) is the space of ultrafilters on St(B) (equivalently of ring
homomorphisms of the boolean ring B onto the ring Z2). More precisely
there is a natural embedding of the structure C+(St(B)) into the boolean
valued model V B which identifies C+(St(B)) with

Ċ = {τ ∈ V B : Jτ is a complex numberKB = 1B}.
Various facets of this identification are common knowledge for the set theory
scholars, and this isomorphism has been proved in full details by Jech [3] and
Ozawa [8] for C+(St(B)). An account of this correspondence which is closer
to the approach taken in the current papers and is more general than what
is outlined in Jech’s and Ozawa’s works can be found in [10].

The reader should be aware that these spaces of functions may not be ex-
otic: for example if MALG is the complete boolean algebra given by Lebesgue-
measurable sets modulo Lebesgue null sets, C(St(MALG)) is isometric to
L∞(R) via the Gelfand-transform of the C∗-algebra L∞(R) and consequently
St(MALG) is homeomorphic to the space of characters of L∞(R) endowed
with the weak-∗ topology inherited from the dual of L∞(R).

What is more important to us is that for all complete boolean algebras
B and for all G ∈ St(B) the space of germs given by C+(St(B))/G is an
algebraically closed field to which any “natural” (i.e. for example Borel)
relation defined on Cn can be extended: for example the exponential func-
tion can be extended to C+(St(B))/G by the map [f ]G 7→ [ef ]G. Moreover
we can identify C inside C+(St(B))/G as the subfield given by germs of
constant functions. We invite the reader to skim through [10] to get a thor-
ough presentation of the properties of the spaces C+(St(B)) seen as B-valued
extensions of the complex numbers.

In this paper we are also interested in canonical subfields of C+(St(B))/G
which give the correct lift to C+(St(B))/G of Q,C, these are respectively:
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• The field Č/G given by germs of locally constant functions, i.e. functions
f in C+(St(B)) such that⋃

{f−1[{λ}] : λ ∈ C, f−1[{λ}] is clopen}

is an open dense subset of St(B).
• The subfield Q̌/G (respectively the subring Ž/G) of Č/G given by germs

of locally constant functions with range contained in Q (respectively in
Z).

These rings corresponds in the forcing terminology of set theory respectively:
to the B-names for complex numbers of the ground model, to the B-names for
rational numbers of the ground model, to the B-names for integer numbers
of the ground model. This characterization will play an important role in
our proof.

The second step of our proof will show that if G ∈ St(B) and B is a
complete boolean algebra, the structure

(C+(St(B))/G, Č/G, [f ]G/[g]G 7→ [ef/g]G, . . . , [0]G, [1]G)

is a model of TWSP(Č/G) for any G ∈ St(B).
The key arguments in this second step do not require any specific training

in set theory and needs just a certain amount of familiarity with first order
logic, the basic properties of algebraic varieties, and with the combinatorics
of forcing as expressed in terms of complete atomless boolean algebras. In
particular there is no need to be acquainted with forcing or set theory to
follow the proof of the above results (such a familiarity will nonetheless be
of great help to follow the arguments).

The basic ideas for the proof are the following:

(A) For any [~f ]G = ([f1]G, . . . , [fn]G) ∈ (C+(St(B))/G)n, the variety

V (ĪG(~f, e
~f ), Č/G)

given by the 0-set of polynomials in Č/G[~x, ~y] vanishing at [~f, e
~f ]G in

(C+(St(B))/G)2n has dimension equal to the transcendence degree of

the tuple [~f, e
~f ]G over Č/G. To compute the Ax Character for [~f ]G over

Č/G it is enough to study the algebraic dimension of this variety in
(Č/G)2n.

(B) For a dense open set of G, the ideal ĪG(~f, e
~f ) is generated by poly-

nomials p1, . . . , pk with complex coefficients, consequently the algebraic

dimension of V (ĪG(~f, e
~f ), Č/G)) is equal to the algebraic dimension of

the complex variety V (p1, . . . , pk,C) given by points in C2n on which all
the pj vanish.

(C) Let [~f ]G = ([f1]G, . . . , [fn]G) be given by nowhere locally constant func-
tions which are Q̌/G-linearly independent modulo Č/G, by (B) above

the transcendence degree of the 2n-tuple [~f, e
~f ]G over Č/G is equal to

the transcendence degree of the same 2n-tuple over C (seen as a subfield
of C+(St(B))/G).

(D) For an n-tuple [~f ]G as above we can show that the transcendence degree

over C of the 2n-tuple [~f, e
~f ]G is at least n + 1 as follows: we can find

φ1, . . . , φn analytic functions from ∆ = {z ∈ C : |z| < 1} to C linearly
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independent over Q modulo C with the following property: Let [φ] de-
note the germ of φ at 0. Then the map [φi] 7→ [fi]G, [eφi ] 7→ [efi ]G
extends to an isomorphism of the corresponding finitely generated sub-
fields. The desired conclusion follows, since the field of germs at 0 of
analytic functions from some open neighborhood U of 0 to C is a field
to which Ax’s theorem on Schanuel’s property for functions fields apply
(i.e. Theorem 2.1 below).

(3) The third step of our paper combines steps (1) and (2) as follows: We
choose a boolean algebra B such that in the boolean valued model V B,q
Č is countable

y
B

= 1B (for example we can choose B to be the boolean

algebra of regular open subsets of CN where C is endowed with the discrete
topology). In particular in V B we will have that

r
Č is countable as witnessed by ḟ ∧WSP(ḟ , Ċ)

z

B
= 1B,

i.e. JWSPKB = 1B holds in V B. By the results of step (1), we thus get that
WSP holds in V concluding the proof of Theorem 1.3.

We will not expand any further on step (1), the core of the paper concerns the
proof of the results in step (2), we add some more comments in the last part regarding
step (3). We try (as much as possible) to make the arguments in step (2) accessible
to persons which are not acquainted with the forcing techniques and more generally
with logic. For this reason we shall limit the use of techniques which are specific of
set theory just to the last step.

2. Step (2)

2.1. Results from complex analysis and algebraic geometry. We need just
classical results in the field and we use as a general reference text [7], though some of
the results we need may not be covered in that textbook. We will use the following
definitions and theorems:

(1) Ax’s theorem on Schanuel’s property. The following corollary of Ax’s
theorem [1, Theorem 3]:

Theorem 2.1. Assume (F,E) is an exponential field which is algebraically
closed. Let D : F → F be a derivation (i.e. D(f + g) = D(f) + D(g) and
D(fg) = D(f)g + fD(g) for all f, g ∈ F ) such that D(E(f)) = D(f) ·E(f)
for all f ∈ F .

Then for all ~f = (f1, . . . , fn) ∈ F n which are Q-linearly independent mod-
ulo ker(D) we have that

Trdgker(D)(f1, . . . , fn, E(f1), . . . , E(fn)) ≥ n+ 1.

(2) The field of fractions OΩ of germs at 0 of analytic functions (i.e. defined
on some open neighborhood U ⊆ C of 0 by a convergent power series) f :

U → C with differential D([f ]/[g]) = [f ′g−g′f ]
[g2]

satisfies the assumptions of

Ax’s theorem with ker(D) = C (identifying C as the subfield of OΩ given by
germs of constant functions).

(3) Algebraic dimension of affine irreducible algebraic varieties. Any
ideal I ⊆ K[x1, . . . , xm] with K a field is finitely generated.
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Given L a field containing all the coefficients of a set of generators p1, . . . , pm
for I, we let IL denote the ideal generated by p1, . . . , pm in L[x1, . . . , xm].
• Any irreducible affine algebraic variety inKn withK algebraically closed

field is of the form

V (I,K) =
{
~λ ∈ Kn : p(~λ) = 0 ∀p(~x) ∈ I

}
with I a finitely generated prime ideal in K[x1, . . . , xn].
• Given an ideal I ⊆ K[x1, . . . , xn], and L ⊆ K field containing all the

coefficients of the polynomials in a set of generators for I,
~λ ∈ V (I,K) is an L-generic point for V (I,K) if any poly-
nomial in L[x1, . . . , xn] is in IL if and only if it vanishes on
~λ.

• The algebraic dimension of the irreducible variety V (I,K) can be com-
puted as follows: fix some countable field L ⊆ K finitely generated and

containing the coefficients of a set of generators for I. Fix ~λ ∈ V (I,K)

an L-generic point (~λ exists since L is countable, by a simple Baire’s
category argument). The algebraic dimension of V (I,K) is the number

TrdgL(~λ) and depends neither on the choice of L nor on that of K in the
following sense: Assume L1 ⊆ K1 are any other fields (L1 need not be
countable) such that L1 contains the coefficients of a set of generators

for I and K1 is algebraically closed, and ~λ1 ∈ Kn
1 is an L1-generic point

for IL1 , then TrdgL(~λ) = TrdgL1
(~λ1).

(4) A quasi-affine variety is the intersection of an affine variety with a Zariski-
open set. The set of regular (or smooth) points of an irreducible quasi-affine
variety on Cn is an open non-empty Zariski subset of the variety, and any
generic point of the variety is smooth (recall that for a 0-set of a finite family
of differentiable functions defined on U ⊆ Cn, ~a ∈ U is a smooth point for
this 0-set if the rank of the Jacobian of the finite set of functions defining U
attains its maximum in ~a).

(5) Relations between algebraic affine varieties and analytic manifolds.
Any quasi-affine and smooth irreducible variety contained in Cn (i.e. a
Zariski open set of an irreducible algebraic variety in Cn contained in the
non-singular points of the variety) is also an analytic manifold and its alge-
braic dimension is equal to its dimension as an analytic manifold (i.e. the
unique n such that some open neighborhood of the manifold is homeomorphic
to Cn).

(6) Analytic implicit function theorem. Assume U is the zero-set of a
finite family of analytic functions defined on some open subset of Ck in the
Euclidean topology. Let ~a ∈ U be a smooth point of U . Then for some
unique n, there is an analytic, open (in the Euclidean topology on U) map
φ : Cn → U with ~a in the target of φ.

(7) Analytic paths inside an analytic manifold of positive dimension.
Let V ⊆ Ck be the injective image of an analytic map φ : Cn → Ck. Then
any family of m distinct points {q0, . . . , qm−1} in V can be connected by an

analytic path i.e. an analytic map ~φ : ∆ → V such that {q0, . . . , qm−1} ⊆
ran(~φ), ~φ(0) = q0.We sketch a proof since we are not able to give a proper
reference other than wikipedia:Polynomial-interpolation: Let φ : Cn → D

https://en.wikipedia.org/wiki/Polynomial_interpolation
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be analytic and injective. Let φ(~xj) = qj for all j = 0, . . . ,m − 1. Let ~xj =

(xj0, . . . , x
j
n−1) By the interpolation theorem, we can find unique polynomials

pl(x) ∈ C[x] of degree m such that pl(
j
m

) = xjl for all l = 0, . . . , n − 1 and
j = 0, . . . ,m − 1. Then ψ : ∆ → V mapping a 7→ φ(p0(a), . . . pn−1(a)) is
analytic and maps j

m
to qj for all j = 0, . . . ,m− 1.

2.2. Forcing on C+(St(B)). We refer the reader to [9, Chapters 2, 3, 4] for a
detailed account on the material presented here.

Given a topological space (X, τ), an open set A ∈ τ is regular open if A =
Int (Cl (A)), where for any B ⊆ X, Int (B) is the largest open set contained in B
and Cl (B) the smallest closed set containing B. We define Reg (A) = Int (Cl (A)).
Recall that the algebra of regular open sets of a topological space (X, τ) consists of
those A ⊆ X such that A = Reg (A) and is always a complete boolean algebra with
operations:

•
∨
{Ai : i ∈ I} = Reg (

⋃
{Ai : i ∈ I}),

• ¬A = Int (X \ Ai),
• A ∧B = A ∩B.

• A topological space (X, τ) is 0-dimensional if its clopen sets form a base for
τ .
• A compact topological space (X, τ) is extremally (extremely) disconnected

if its algebra of clopen sets CLOP(X) is equal to its algebra of regular open
sets RO(X).

For a boolean algebra B we let St(B) be the Stone space of its ultrafilters with
topology generated by the clopen sets

Nb = {G ∈ St(B) : b ∈ G}.

We remark the following:

• St(B) is a compact 0-dimensional Haussdorf space and any 0-dimensional
compact space (X, τ) is isomorphic to St(CLOP(X)),
• A compact Hausdorff space (X, τ) is extremely disconnected if and only if

its algebra of clopen sets is a complete boolean algebra. In particular St(B)
is extremely disconnected if and only if B = CLOP(St(B)) is complete.

An antichain on a boolean algebra B is a subset A such that a ∧ b = 0B for all
a, b ∈ A, B+ = B \ {0B} is the family of positive elements of B and a dense subset
of B+ is a subset D such that for all b ∈ B+ there is a ∈ D such that a ≤B b. In a
complete boolean algebra B any dense subset D of B+ contains an antichain A such
that

∨
A =

∨
D = 1B.

Another key observation on Stone spaces of complete boolean algebras we often
need is the following:

Fact 2.2. Assume B is a complete atomless boolean algebra, then on its Stone space
St(B):

• N∨
B A

= Cl
(⋃

a∈ANa

)
for all A ⊆ B.

• N∨
B A

=
⋃
a∈ANa for all finite sets A ⊆ B.

• For any infinite antichain A ⊆ B+,
⋃
a∈ANa is properly contained in N∨

B A

as a dense open subset.
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Given a compact extremely disconnected topological space X, we let C+(X) be
the space of continuous functions

f : X → S2 = C ∪ {∞}
(where S2 is seen as the one point compactification of C) with the property that
f−1[{∞}] is a closed nowhere dense subset of X. In this manner we can endow
C+(X) of the structure of a commutative ring of functions with involution letting the
operations be defined pointwise on all points whose image is in C and be undefined
on the preimage of ∞. More precisely f + g is the unique continuous function

h : X → S2

such that h(x) = f(x) + g(x) whenever this makes sense (it makes sense on an
open dense subset of X, since the preimage of the point at infinity under f, g is
closed nowhere dense) and is extended by continuity on the points on which f(x) +
g(x) is undefined: since X is extremely disconnected and compact, any h which is
continuous on a dense open subset of X admits a unique continuous extension to
the whole of X by the rule h(p) = a, where a is the unique element of⋂

{U : U is closed and p ∈ Int
(
f−1[U ]

)
}.

Thus f + g ∈ C+(X) if f, g ∈ C+(X). Similarly we define the other operations. We
take the convention that constant functions are always denoted by their constant
value, and that 0 = 1/∞.

Definition 2.3. Let G be an ultrafilter on B. For f, g ∈ C+(St(B)) let [f ]G = [h]G
iff for some a ∈ G, f � Na = g � Na.
C+(St(B))/G is the quotient ring of C+(St(B)) by G given by the equivalence

classes [f ]G for f ∈ C+(St(B)).

In the sequel given a vector ~f = (f1, . . . , fn) ∈ C+(St(B))n, b ∈ B, G ∈ St(B):

• [~f ]G is a shorthand for ([f1]G, . . . , [fn]G),

• ~f(G) is a shorthand for (f1(G), . . . , fn(G)),

• ~f � Nb is a shorthand for (f1 � Nb, . . . , fn � Nb),

• For g : C→ C, g(~f) is a shorthand for (g ◦ f1, . . . , g ◦ fn).

We also define the following family of rings indexed by positive elements of a
complete boolean algebra:

Definition 2.4. Let B be a complete boolean algebra and b ∈ B+.

• Čc ⊆ C+(Nc) is the ring of functions f ∈ C+(Nc) which are locally constant
i.e. such that ⋃{

f−1[{λ}] : f−1[{λ}] is clopen
}

is open dense in Nc. Č stands for Č1B .
• Let K be a structure among Q,Z,N, we define Ǩc to be the family of func-

tions f ∈ Čc such that ran f ⊆ K. Ǩ stands for Ǩ1B .

As a warm-up for the sequel we can already prove the following:

Fact 2.5. Assume B is a complete boolean algebra. Then:

(1) (C+(St(B))/G, [f ]G 7→ [ef ]G) and (Č/G, [f ]G 7→ [ef ]G) are exponential fields
with kernel 2π · (Ž/G) for all G ∈ St(B).
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(2) Q̌/G is a field for all G ∈ St(B).

Proof. Left to the reader. For what concerns the field structure of C+(St(B))/G, it
is not hard to check that for a non-zero [f ]G ∈ C+(St(B))/G, we can find some Nb

with b ∈ G so that g ∈ C+(Nb) and g · (f � Nb) = 1 in C+(Nb). We can then extend
g arbitrarily to a continuous function in C+(St(B)) out of Nb. The rest is similar or
easier. �

Germs of continuous functions on Stone spaces and forcing. We need to consider
C+(St(B)) as a B-boolean valued model. This is done as follows:

Definition 2.6. We identify a cba B with the complete boolean algebra of clopen
(regular open) sets of St(B). The equality relation on C+(St(B)) is the map

=:C+(St(B))2 → B

(f, g) 7→ Reg ({H : f(H) = g(H)})

We denote = (f, g) by Jf = gK.
This equality boolean relation satisfies:

Jf = gK ∧ Jh = gK ≤ Jf = hK

and

Jf = gK = Jg = fK

for all f, g, h.
A forcing relation on C+(St(B)) is a map

R : C+(St(B))n → B

such that

R(f1, . . . , fn) ∧ Jfi = hK ≤ R(f1, . . . , fi−1, h, fi+1, . . . , fn)

for all f1, . . . , fn, h.
Let R1, . . . , Rm be forcing relations on C+(St(B)) with Ri : C+(St(B))ni → B.

Consider the language {R1, . . . , Rn} with Ri relation of arity ni. We define for φ, ψ
formulae of this language:

•
r
Ri(~f)

z
= Ri(~f) for all i ≤ n,

• Jφ ∧ ψK = JφK ∧ JψK,
• Jφ ∨ ψK = JφK ∨ JψK,
• J¬φK = ¬ JφK,
• r

∃xφ(x, ~f)
z

=
∨
{
r
φ(g, ~f)

z
: g ∈ C+(St(B))}.

Given G ultrafilter on B we make C+(St(B))/G a Tarski structure for the language
{R1, . . . , Rn} letting

C+(St(B))/G |= Ri/G([~f ]G)

if and only if Ri(~f) ∈ G.

We have the following Theorems:
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Lemma 2.7 (Mixing Lemma). Assume B is a complete boolean algebra and A ⊆ B
is an antichain. Then for all family {fa : a ∈ A} ⊆ C+(St(B)), there exists f ∈
C+(St(B)) such that

a ≤ Jf = faK
for all a ∈ A.

Proof. Sketch: Let f ∈ C+(St(B)) be the unique function such that f � N(¬
∨
A) = 0

and f � Na = fa � Na for all a ∈ A. Check that f is well defined and works. �

Lemma 2.8 (Fullness Lemma). Let R1, . . . , Rn be forcing relations on C+(St(B))<ω.

Then for all formulae φ(x, ~y) in the language {R1, . . . , Rn} and all ~f ∈ C+(St(B))n

there exists g ∈ C+(St(B)) such that
r
∃xφ(x, ~f)

z
=

r
φ(g, ~f)

z
.

Proof. Sketch: Find A maximal antichain among the b such that
r
φ(gb, ~f)

z
≥ b > 0B

for some gb. Now apply the Mixing Lemma to patch together all the ga for a ∈ A
in a g. Check that r

∃xφ(x, ~f)
z

=
r
φ(g, ~f)

z
.

�

Theorem 2.9 (Cohen’s forcing Theorem). Let R1, . . . , Rn be forcing relations on

C+(St(B)). Then for all ~f ∈ C+(St(B))n and all formulae φ(~x) in the language
{R1, . . . , Rn}:

(1) C+(St(B))/G |= φ([~f ]G) if and only if
r
φ(~f)

z
∈ G,

(2) for all a ∈ B the following are equivalent:
(a) Jφ(f1, . . . , fn)K ≥ a,

(b) C+(St(B))/G |= φ([~f ]G) for all G ∈ Na,

(c) C+(St(B))/G |= φ([~f ]G) for densely many G ∈ Na.

Proof. Sketch: Proceed by induction on the complexity of φ using the Mixing Lemma
and the Fullness Lemma to handle the quantificator’s cases. �

2.3. TWSP(Č/G) holds in C+(St(B))/G.

Theorem 2.10. Assume B is a cba and G ∈ St(B). Then

ACČ/G,exp /G
([~f ]G) ≥ 0

for all [~f ]G ∈ (C+(St(B))/G)n (where exp /G([f ]G) = [ef ]G), with equality holding

only if [~f ]G ⊆ (Č/G)n.

Before embarking on the proof of the above Theorem, let us show how the forcing
theorem simplifies our task and let us also outline some caveat.

For any b ∈ B we can consider C+(Nb) both as a ring of functions in the usual
sense, or as a boolean valued model on the boolean algebra B � b in which we
consider the sum and product operations as forcing relations, imposing for example
for the sum:

Jf + g = hK = Reg ({H ∈ Nb : f(H) + g(H) = h(H)})
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and similarly for the other field operations. By the forcing theorem, we will get
that JφK = 1B for all field axioms φ expressed in the language with ternary relation
symbols to code the operations, since each C+(St(B))/G is a field for all G ∈ St(B).
Notice in sharp contrast that C+(St(B)) is not a field when we consider it as an
algebraic ring. This outlines a serious distinction between the theory of C+(St(B))
seen as a boolean valued model and its theory seen as an algebraic ring.

Moreover in the sequel we do not work simply with the boolean valued model
C+(St(B)) in the language for fields. We will consider it as a boolean valued model
in the language with predicate symbols for the relations and operations Č, exp,+, ·,
we will also add a predicate symbol for the ring Q̌ (Ž) given by the locally con-
stant Q-valued (Z-valued) functions and for the forcing relations expressing Ž-linear
independence over Č and the Č-transcendence degree forcing relation.

Definition 2.11. Let B be a complete boolean algebra. For all c ∈ B:

• Čc ⊆ C+(Nc) is the ring of functions which are locally constant and Č stands
for Č1B .
• Let K be a structure among Q,Z,N, we define Ǩc to be the family of func-

tions given by f ∈ Čc such that ran f ⊆ K and Ǩ stands for Ǩ1B .

Given ~f = (f1, . . . , fn) ∈ C+(St(B))n and c ∈ B, let:

• JTrdgČ(~f) = mK =

=
∨
B

{b ∈ B : ∀G ∈ Nb(TrdgČ/G([~f ]G) = m)},

• JLdimQ̌(~f/Č) = mK =

=
∨
B

{b ∈ B : ∀G ∈ Nb(LdimQ̌/G([~f ]G/Č/G) = m)}.

Fact 2.12. The above relations are forcing relation for C+(St(B)).

Proof. Left to the reader. �

On the face of the definitions we get that

JLdimQ̌(~f/Č) = mK =
∨
B

{b ∈ B : ∀G ∈ Nb LdimQ̌/G([~f ]G/Č/G) = m}

entails that
LdimQ̌/H([~f ]H/Č/H) = m

only on an open dense subset of

H ∈ NJLdimQ̌(~f/Č)=mK.

Similarly for the boolean predicate JTrdgČ(~f) = mK.
First of all we observe that for these two boolean predicates this open dense subset

is the whole of NJLdimČ(~f)=mK (NJTrdgČ(~f)=mK):

Fact 2.13. Let B be a complete boolean algebra and ~f = (f1, . . . , fn) ∈ C+(St(B))n.
Then for all G ∈ St(B):

(1) JTrdgČ(~f) = mK ∈ G if and only if

TrdgČ/G([~f ]G) = m.
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(2) JLdimQ̌(~f/Č) = mK ∈ G if and only if

LdimQ̌/G([~f ]G/(Č/G)) = m.

Proof. The proof is a standard application of the forcing method. To get the reader
acquainted with what we shall be doing in the remainder we give some of its parts.

Let ~f = (f0, . . . , fn) be a tuple of C+(St(B))-functions.
Assume that

TrdgČ/G([~f ]G) < m.

Then there is a polynomial p(x0, . . . , xm−1) in Č/G[x0, . . . , xm−1] such that

p([~f ]G) = [0]G.

By the forcing theorem we get that Jp(~f) = 0K ∈ G. Let

p(~x) =
∑
α

fα~x
α,

where α ranges over the appropriate multiindexes and each fα ∈ C+(St(B)). Then

we also get that (fα � Nb) ∈ Čb for all α for some b ∈ G refining Jp(~f) = 0K.
This gives that TrdgČ/H ([~f ]H) < m as witnessed by∑

α

([fα]H)~xα

for all H ∈ Nb.
On the other hand, assume towards a contradiction that d = JTrdgČ(~f) = mK ∈ G.

This means that for an open dense subset A of Nd we have that TrdgČ/H ([~f ]H) = m.
Since G ∈ Nd ∩ Nb, and A is dense in Nd, we also get that A ∩ Nb is non-empty.
Any H in A ∩Nb witnesses that

m = TrdgČ/H ([~f ]H) < m,

a contradiction.
The converse direction for Trdg and the proof for the other predicate are left to

the reader. �

We leave to the reader to check that:

∀G ∈ Nb TrdgČ/G([~f ]G) = m

if and only if

∀c ≤ bTrdgČc
(~f � Nc) = m,

and also that:

∀G ∈ Nb LdimQ̌/G([~f ]G/Č/G) = m

if and only if

∀c ≤ bLdimČc
(~f � Nc) = m,
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2.3.1. Key Lemmas. Let b ∈ B, and ~f = (f1, . . . , fn) be a tuple of C+(St(B))-
functions.

• Ib(~f) is the ideal in C[~x] given by polynomials p(~x) with coefficients in C
such that

p(~f(H)) = 0 for all H ∈ Nb.

• IG(~f) is the ideal in C[~x] of polynomials p(~x) with coefficients in C such that

p([~f ]G) = 0.

• Īb(~f) is the ideal in Čb[~x] given by polynomials p(~x) with coefficients in Čb

such that
p(~f � Nb) = 0.

• ĪG(~f) is the ideal in Č/G[~x] of polynomials p(~x) with coefficients in Čb for
some b ∈ G such that

[p]G([~f ]G) = 0.

If no confusion can arise we let Ib denote Ib(~f) and similarly for all the other ideals
defined above.

Notice the following:

• Ib ⊆ IG for all G ∈ Nb,
• Ib ⊆ Īb,
• IG ⊆ ĪG for all G ∈ Nb,
• [p]G ∈ ĪG for all p ∈ Īb and for all G ∈ Nb, where

[p]G =
∑
α

[fα]Gx
α if p =

∑
α

fαx
α.

Fact 2.14. V (IG,C) and V (ĪG, Č/G) are irreducible algebraic varieties.

Proof. Assume p(~x)q(~x) ∈ IG(~f). Then [p ◦ ~f ]G[q ◦ ~f ]G = 0 in C+(St(B))/G. Since

the latter is a field we get that [p◦ ~f ]G or [q ◦ ~f ]G must be 0, which yields the desired
conclusion. The proof for V (ĪG, Č/G) is identical. �

Lemma 2.15. Assume B is a complete boolean algebra. For each b ∈ B+ and
~f = (f1, . . . , fn) tuple of C+(St(B))-functions, there exists c ≤B b in B+ such that
for all G ∈ Nc:

• Ic(~f) = IG(~f),

• [~f ]G is a generic point for V (IG(~f), C+(St(B))/G).

Proof. Assume the first conclusion of the Lemma fails for b and ~f . Let b0 = b and

I0 = Ib(~f) and build by induction a strictly increasing chain of ideals In on C and
a decreasing chain of elements bn >B 0B as follows:

Given In = Ibn(~f), find —if possible— some p(~x) ∈ C[~x] which is not in In and

vanishes on [~f ]G for some G ∈ Nbn . Then

p([~f ]G) = [0]G

if and only if

Jp(~f) = 0K ∈ G.
If we can proceed for all n,

{In : n ∈ N}
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is a stricly increasing chain of ideals on the Noetherian ring C[x1, . . . , xn]. This is

impossible, so we can find bn = c such that IG(~f) = Ic(~f) for any G ∈ Nc.

We are left to prove that [~f ]G ∈ (C+(St(B))/G)n is a generic point for V (Ic(~f), C+(St(B))/G)
for any G ∈ Nc. This is immediate for all G ∈ Nc, since:

p([~f ]G) = 0 iff p(~x) ∈ IG(~f) = Ic(~f).

The proof of the Lemma is completed. �

Lemma 2.16. Assume B is a complete boolean algebra. Let ~f = (f1, . . . , fn) be a

tuple of C+(St(B))-functions, and c ∈ B be such that Ic(~f) = IG(~f) for all G ∈ Nc.

Then Id(~f) is a set of generators for Īd(~f � Nd) in Čd[~x] for all d ≤B c and IG(~f) is

a set of generators for ĪG(~f) for all G ∈ Nc. In particular

V (IG(~f), C+(St(B))/G) = V (ĪG(~f), C+(St(B))/G)

for all G ∈ Nc.

Proof. Let p1, . . . , pk ∈ C[~x] be a set of generators for Ic(~f). We claim that p1, . . . , pk
is also a set of generators for Īc(~f) in Čc[~x]: Pick some p ∈ Čc[~x] such that p ∈ Īc(~f).
Since the coefficients of p are locally constant functions defined on Nc, we can find
a maximal antichain {dj : j ∈ J} such that each dj refines c and is such that

p � Ndj =
∑
α

fα � Ndjx
α ∈ C[~x].

This gives that

p � Ndj(
~f) ∈ Idj(~f) = Ic(~f)

for all j ∈ J . Find thus q1
j , . . . q

k
j ∈ C[~x] such that

p � Ndj =
∑

l=1,...,k

qljpl.

Define for each l = 1, . . . , k ql ∈ C+(Nc) by the requirement that

ql � Ndj = qlj

for all j ∈ J .
Then ql ∈ Čc[~x] for all l = 1, . . . , k and

p =
∑

l=1,...,k

ql · pl ∈ Īc(~f).

Since p ∈ Ic(~f) was chosen arbitrarily, we conclude that p1, . . . , pk are a set of

generators for Īc(~f) in Čc[~x]. This proves the first part of the Lemma.

For the second part observe that p1, . . . , pk are a set of generators for IG(~f) for
all G ∈ Nc.

Now pick [p]G ∈ ĪG(~f) for G ∈ Nc. Then for some d ≤B c in G p � Nd ∈ Īd(~f). But

since c ≥B d it is immediate to check that p1, . . . , pk are generators also for Īd(~f).
We conclude that p � Nd can be obtained as a linear combination of p1, . . . , pk with
coefficients in Čd[~x]. Thus this occurs as well for [p]G taking the germs of these
coefficients in C+(St(B))/G. The proof of the Lemma is completed. �
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Lemma 2.17. Let b ∈ B and ~f = (f1, . . . , fn) be a tuple of C+(St(B))-functions.
Assume that

JLdimQ̌(f1, . . . , fn/Č) = nK ≥B b

(i.e. [f1]H , . . . , [fn]H are Q̌/H-linearly independent modulo Č/H for all H ∈ Nb).
Then there exists an ultrafilter G ∈ Nb such that

TrdgČ/G([~f ]G, [e
~f ]G) ≥ n+ 1.

Clearly the proof of this Lemma concludes the proof of Theorem 2.10 since it
shows that the statement

ACQ̌/H ,exp /H
([~f ]H) > 0

holds for a dense set of H for any fixed ~f ∈ (C+(St(B))<N such that [~f ]H is not

contained in Č/H . In particular we get that for all ~f ∈ (C+(St(B))n and for all
n ∈ N

JACQ̌,exp(~f) ≥ 0KB = 1B

and

JACQ̌,exp(~f) = 0KB = J~f ⊆ ČnKB.

Using the observations regarding the properties of the forcing predicates JLdimQ̌(~f/Č)KB
and JTrdgČ(~f)KB, and once again the forcing theorem, we get that

ACQ̌/H,exp /H
([~f ]H) > 0

holds for all H and for any fixed ~f ∈ (C+(St(B))<N not contained in (Č/H)<N,
which is the desired conclusion.

We now prove the Lemma:

Proof. First of all we choose c ≤ b such that

Ic(~f, e
~f ) = IG(~f, e

~f )

for all G ∈ Nc, which is possible by Lemma 2.15. We let I = Ic = IG in what
follows, and p1, . . . , pm ∈ C[~x, ~y] be a set of generators of minimal size for I. Then
ĪG is also generated by p1, . . . , pm.

Now we have that for all algebraically closed fields K containing all the coeffi-
cients of p1, . . . , pm, the algebraic dimension of V (I,K) is the same and is given by

TrdgL(~λ) with ~λ ∈ K2n an L-generic point and L a field containing all the coefficients
of p1, . . . , pm.

This gives that the dimension of V (ĪG, C
+(St(B))/G) as a variety over (C+(St(B))/G)2n

is equal to the transcendence degree of ([~f, e
~f ]G) over C as well as over Č/G, since

—by Lemma 2.16— the latter is a generic point of the variety

V (I, C+(St(B))/G) = V (ĪG, C
+(St(B))/G)

for any G ∈ Nc for the field Č/G.
So in order to prove the Lemma we can also study the algebraic dimension of

V (I, C+(St(B))/G) as a subvariety of (C+(St(B))/G)2n and prove that it is at least
n+ 1 for some G ∈ Nc.

To prove this we argue as follows:
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(1) First of all we use classical arguments rooted in the equality of the notion of
algebraic dimension of an irreducible smooth quasi-affine variety contained
in C2n and of the notion of topological (or analytic) dimension of the same
variety seen as an analytic manifold, to argue that the analytic dimension
of V (I,C) (which is equal to its algebraic dimension, and thus also to the
algebraic dimension of V (I, C+(St(B))/G)) is positive.

(2) Next we argue that we can find n distinct analytic paths with the same origin
inside V (I,C) which are Q-linearly independent modulo C to conclude that
that the algebraic dimension of V (I, C+(St(B))/G) is at least n+1 by means
of Ax’s theorem 2.1.

Let

Expn = {(~λ, e~λ) : λ ∈ Cn}.
Remark that V (I,C) ∩ Expn is the zero-set of the finite set of analytic functions

{p1, . . . , pm, y1 − ex1 , . . . , yn − exn} ,

where p1, . . . , pm ∈ C[~x, ~y] is a set of generators for I. Consider the Jacobian J :

C2n → C(n+m)2
of this finite set of functions and the map

φ :Nc → n+m+ 1

G 7→ rank(J(~f(G), e
~f(G))).

φ is continuous with range on a discrete space, so it must be constant on a clopen
non-empty subset of Nc. By refining furher c if necessary, we can assume that φ is

constant on Nc with value k. Pick G ∈ Nc. Then rank(J(~f(G), e
~f(G))) = k entails

that on an open neighborhood UG ⊆ C2n of (~f(G), e
~f(G)), rank(J(~f(G), e

~f(G))) = k.
This gives that for any G ∈ Nc the analytic dimension of V (I,C) ∩ Expn around

(~f(G), e
~f(G)) is k since the rank of the Jacobian of the functions

{p1, . . . , pm, y1 − ex1 , . . . , yn − exn}

of which V (I,C) ∩ Expn is the 0-set attains its maximum k on all points of UG ∩
V (I,C) ∩ Expn. Therefore (~f(G), e

~f(G)) is a smooth point of V (I,C) ∩ Expn for all
G ∈ Nc.

Fix now some G ∈ Nc. By the implicit function theorem applied to the point

(~f(G), e
~f(G)) ∈ V (I,C) ∩ Expn, there is an open (in the euclidean topology on

V (I,C)) analytic map from some Ck to V (I,C)∩Expn ⊆ C2n which is an homeomor-

phism with its target and has (~f(G), e
~f(G)) in its range. Let V ′ ⊆ V (I,C)∩Expn be

the target of this map. Then V ′ is an open subset of V (I,C)∩Expn in the euclidean
topology.

Claim 1. dim(V ′) > 0.

Proof. Assume dimV ′ = 0. Then we get that V ′ is the homeomorphic image of C0,
which is a space consisting of a single point. Thus V ′ consists of a single point and
is an open subset of a connected component of the analytic manifold V (I,C)∩Expn
in the euclidean topology on V (I,C)∩Expn. This gives that V ′ is a clopen subset of
this connected component in this topology, and thus must be equal to this connected
component of V (I,C) ∩ Expn.
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Hence we can find an open neighboorhood B ⊆ C2n in the Euclidean topology on
C2n, such that

B ∩ V (I,C) ∩ Expn = V ′ = {(~f(G), e
~f(G))}.

This gives that (~f(H), e
~f(H)) = (~f(G), e

~f(G)) for all H such that (~f(H), e
~f(H)) ∈

B ∩ V (I,C). However

I = IH(~f, e
~f ) = IG(~f, e

~f ) = Ic(~f, e
~f )

for all H ∈ Nc. In particular p(~f(H), e
~f(H)) = 0 for all p ∈ I and all H ∈ Nc, i.e

(~f(H), e
~f(H)) ∈ V (I,C) for all H ∈ Nc. Hence (~f(H), e

~f(H)) = (~f(G), e
~f(G)) for all

H ∈ Nc with (~f(H), e
~f(H)) ∈ B. We conclude that ~f is constant with value ~f(G)

on an open subset of Nc, contradicting our assumptions that ~f is nowhere locally
constant on Nb ⊇ Nc. �

By the Claim we get that for any G ∈ Nc, the algebraic dimension of V (I,C)

around (~f(G), e
~f(G)) is positive since V (I,C) contains the analytic variety of positive

dimension V ′.
We now come to the heart of the proof of this Lemma:

Claim 2. For some G ∈ Nc

TrdgC([f1]G, . . . , [fn]G, [e
f1 ]G, . . . , [e

fn ]G) ≥ n+ 1.

Proof. Let c1 ≤ c be such that (~f(H), e
~f(H)) ∈ V ′ for all H ∈ Nc1 . Our assumptions

give that

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ V ′

for all H ∈ Nc1 and that V ′ is a connected analytic manifold of positive dimension.
Let CΩ(V ′) denote the vector valued paths φ : ∆ → C2n which are analytic and

with range contained in V ′ ⊆ C2n.
We will use the following standard fact (Observation 7 on analytic manifolds):

Fact 2.18. For any distinct H1, . . . , Hk with ~f(Hi) 6= ~f(Hj) for all 0 < i 6= j ≤ k
in Nc1 there is a path in CΩ(V ′) passing through

(f1(Hj), . . . , fn(Hj), e
f1(Hj), . . . , efn(Hj))

for all 0 < j ≤ k.

For each H ∈ Nc1 consider the family PathH of CΩ(V ′)-paths

~φ : ∆→ V ′ ⊆ C2n

with
~φ(0) = (f1(H), . . . , fn(H), ef1(H), . . . , efn(H))

Let H be the family of hypersurfaces (relative to the analytic manifold given by
Expn ⊆ C2n) given by points (~x, ~y) ∈ Expn satisfying∑

i=1,...,n

mixi = a;
∏

i=1,...,n

ymi
i = ea

for some a ∈ C and some vector (m1, . . . ,mn) ∈ Nn.
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Subclaim 1. For all G ∈ Nc1 the set DG of H ∈ Nc1 such that any CΩ(V ′)-path in
PathG passing through

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H))

is contained in some hypersurface in H is nowhere dense.

Proof. Assume not for some G. Let d ∈ B be such that D = DG ∩ Nd is dense in
Nd.

By our assumptions, any CΩ(V ′)-path contained in V ′ starting in the point

(f1(G), . . . , fn(G), ef1(G), . . . , efn(G))

and passing through

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H))

for some H ∈ D is contained in an hypersurface in H. Since V ′ is connected, for
any G1, . . . , Gk ∈ D there is a CΩ(V ′)-path in PathG passing through

(f1(Gj), . . . , fn(Gj), e
f1(Gj), . . . , efn(Gj)).

By our assumptions this path is contained in some hypersurface of the form∑
i=1,...,n

mixi = a;
∏

i=1,...,n

ymi
i = ea

belonging to H. Now select for as long as it is possible for each 0 ≤ j ≤ n some
Gj ∈ D so that G0 = G and for all j < n

(f1(Gj+1), . . . , fn(Gj+1), ef1(Gj+1), . . . , efn(Gj+1)).

does not belong to the unique j-dimensional hypersurface Ej determined as follows:
Let Aj be the unique j-dimensional hyperplane in Cn passing for the points

(f1(Gk), . . . , fn(Gk))

with k ≤ j. Let Ej consists of the points of the form (~λ, e
~λ) with ~λ ∈ Aj. Ej is an

hypersuperface contained in some element of H for each 0 ≤ j < n. To proceed in
the construction notice that Ej is a closed subset of C2n for all j < n, thus

Uj = {H ∈ Nd : (f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ Ej}
is a closed subset of Nd. So either the latter set is equal to Nd, or its complement has
open and non-empty intersection with Nd, in which case we can find Gj+1 ∈ DG \Uj
since DG is dense in Nd. Continue this way for all 0 ≤ j ≤ n for which this is
possible until j = n, if possible.

We show that this j cannot exist, reaching a contradiction.

• If we stop at stage j < n, this occurs only if for all H ∈ DG \ {G0, . . . , Gj}

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ Ej.
However Ej ⊆ M for some hypersurface M ∈ H. This M is therefore the
0-set of equations of the form∑

i=1,...,n

mixi = a,
∏

i=1,...,n

ymi
i = ea.

In particular we get that for a dense set of H ∈ Nd

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ Ej.
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Since belonging to Ej is a closed property of C2n, and the map H 7→
(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) is continuous on Nd, we get that for
all H ∈ Nd

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ Ej.

Then in C+(Nd) ∑
i=1,...,n

mifi � Nd = a,

This contradicts the Q-linear independence modulo C of the vector f1 �
Nd, . . . , fn � Nd on Nd for a d ≤ b, which was an assumption of the Lemma.
• Otherwise we can continue up to stage j = n. This gives that

{(f1(Gk), . . . , fn(Gk)) : 0 ≤ k ≤ n}

are points in Cn in general position, i.e. they are not contained in any
proper affine subspace of Cn. Since (f1(Gk), . . . , fn(Gk), e

f1(Gk), . . . , efn(Gk))
are all in V ′ for all k ≤ n, and V ′ is an analytic variety homeomorphic to
Ck (with k > 0) via an analytic map, there is a CΩ(V ′)-path (φ1, . . . , φ2n)

connecting all of these points and starting in (~f(G0), e
~f(G0)). Now observe

that ~φ = (φ1, . . . , φn) is an analytic path passing through n + 1-points in
Cn in general position. Thus it cannot be contained in any hyperplane of

Cn. In particular (~φ, e
~φ) ∈ PathG cannot be contained in any hypersurface

belonging to H, which is a contradiction.

The subclaim is proved. �

By the above subclaim, we can fix G ∈ Nc1 and find H ∈ Nc1 \ DG (since this
latter set contains a dense open subset of Nc1). Then we can pick an analytic path

(~φ, e
~φ) in PathG passing through (~f(H), e

~f(H)) and not contained in any hyperplane
in H.

Consider finally the field of fractions of germs [f ] of analytic functions f : U → C
for some U ⊆ C open neighborhood of 0. around the point 0, where [f ] = [g] are
equivalent germs if f and g agree on U for some open U ⊆ ∆. This is a differential
field OΩ with differential

D : OΩ → OΩ

mapping

[f ]/[g]→ [f ′g − g′f ]/[g2]

and ker(D) = C given by the germs of constant functions.

Since we chose ~φ sot that (~φ, e
~φ) is not contained in E for any hypersurface

E ∈ H, we get that [~φ] is a vector of elements of the differential field OΩ which are
Q-linearly independent modulo C, so that the hypothesis of Ax’s theorem apply to
these elements. By Ax’s result 2.1, we get that

TrdgC([~φ, e
~φ]) ≥ n+ 1.

Now let

J = {p ∈ C[~x, ~y] : p([~φ, e
~φ]) = 0},
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we get that I = INc1
⊆ J since (~φ, e

~φ) has range contained in V (I,C). In particular

TrdgČ/G([~f ]G, [e
~f ]G) = dim(V (I, C+(St(B))/G)) =

= dim(V (I,C) ≥ dim(V (J,C)) = TrdgC([~φ, e
~φ]) ≥ n+ 1.

This concludes the proof of the Claim and of the Lemma6. �

The proof of the Lemma is completed. �

3. Step (3)

From now on we shall assume the reader has some familiarity with the boolean
valued model approach to forcing in set theory. Standard references for the material
of this section can be [2] or [6], and a detailed account of the results we sketch here
can be found in [9]. We briefly sketch the general picture of the forcing theory in
the next subsection.

3.1. A brief outline of forcing over the standard model of set theory. Recall
that for (V,∈) the standard model of ZFC for the first order language {∈,=} and B
a complete boolean algebra in V we can define (by transfinite recursion) the class
of B-names V B given by τ ∈ V if τ is a function with domain contained in V B and
range contained in B. We can also define forcing relations

∈B:(V B)2 → B

(τ, σ) 7→ Jτ ∈ σK

=B:(V B)2 → B

(τ, σ) 7→ Jτ = σK

such that (V B,∈B,=B) is a full B-valued model for the language of set theory and
JφK = 1B for all axioms φ of ZFC.

Letting

[τ ]G = {σ : Jτ = σK ∈ G}
and

[τ ]G ∈ [σ]G if and only if Jτ ∈ σK ∈ G
We also have that

Jφ(τ1, . . . , τn)K ∈ G if and only if V B/G |= φ([τ1]G, . . . , [τn]G)

for all formulae φ(x1, . . . , xn) in this language and all G ∈ St(B).
Finally we recall that G is V -generic for a cba B if G ∩D is nonempty for all D

dense subset of B+ and that for such a G and all τ ∈ V B we can define:

τG = {σG : τ(σ) ∈ G}
and let

V [G] = {τG : τ ∈ V B}.
With this choice of G we have that the map [τ ]G 7→ τG define an isomorphism of

(V B/G,∈G) with (V [G],∈).

6With some extra work one can check that J = I for an open dense set of H ∈ Nc1 .
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Moreover any element u ∈ V has a canonical name ǔ ∈ V B such that ǔG = u
whenever G is V -generic for B.

It s well known that V -generic filters cannot exist for an atomless complete boolean
algebra, nonetheless there is a wide spectrum of solutions to overcome this issue,
and work under the assumption that for any such B, V -generic filters can be found.

3.2. The relation between C+(St(B)) and V B. We have the following theorem
linking the boolean valued model C+(St(B)) to the set theoretic boolean valued
model V B (see [9, Theorem 4.3.5]):

Theorem 3.1. Let B be a cba, b ∈ B, and {Un : n ∈ ω} be a countable base for
the euclidean topology on C. Given f ∈ C+(Nb) for some b ∈ B, let τf ∈ V B be a
B-name for the unique object in V B satisfying in V B:

Jτf ∈ UnK = Reg
(
f−1[Un]

)
.

Given R a forcing relation on C+(Nb)
n let R̄ ∈ V B be a B-name for a n-ary relation

on the n-tuples of complex numbers Cn as computed in V B such that

q
R̄(τf1 , . . . , τfn)

yV B

= R(f1, . . . , fn).

Then the assignment f 7→ τf , R 7→ R̄ is an embedding of the boolean valued models
C+(St(B)) and C+(Nb) for b ∈ B in the boolean valued model V B such that:

• the equality forcing relation on C+(St(B)) is mapped to the equality relation
on V B;
• for all τ ∈ V B such that

Jτ is a complex number KV
B

= b,

there exists f ∈ C+(Nb) such that

Jτ = τfK
V B

= b;

• for all forcing relations R on C+(St(B))n and all f1, . . . , fn ∈ C+(St(B))

q
R̄(τf1 , . . . , τfn)

yV B

= R(f1, . . . , fn).

3.3. Shoenfield’s absoluteness. We say that A ⊆ Cm is a Σ1
2-property if there is

a Borel predicate R ⊆ C<ω and ~a ∈ C<ω such that A(~a) holds if and only if

∃x∀yR(x, y,~a).

Given a Borel predicate R ⊆ Cn and a complete boolean algebra B, we let

RB :C+(St(B))n → B

(f1, . . . , fn) 7→ Reg ({H : R(f1(H), . . . , fn(H))})

and

R̄B :(V B)n → B

(τ1, . . . , τn) 7→
∧

j=1,...,n

Jτj is a complex numberK ∧RB(fτ1 , . . . , fτn)
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Theorem 3.2 (Shoenfield’s absoluteness). Assume A is a Σ1
2-property defined by

the Borel predicate R as ∃y∀xR(x, y,~a). Then A(a1, . . . , an) holds in V for complex
numbers a1, . . . , an if and only if

q
∃x∀yR̄B(x, y, ǎ1, . . . , ǎn)

y
B

= 1B

for some complete boolean algebra B.

3.4. WSP holds for C relative to a countable subfield. We can now prove
Theorem 1.3: Shoenfield’s absoluteness gives a simple proof of the following:

Corollary 3.3. C+(St(B))/G is an algebraically closed field for any G ∈ St(B) and
for any complete boolean algebra B.

Proof. The graph of the multiplication and of the addition are Borel relations on C3,
and the field axioms and the algebraic closure axioms are expressible as Σ2-properties
of these operations. �

Now let B be the complete boolean algebra of regular sets in CN where C is
endowed with the discrete topology. In V [G] there is a new bijection f of CV = C
with N given by f(n) = a if and only if

{g ∈ CN : g(n) = a}
is in G. Moreover

V [G] |= φ((τ1)G, . . . , (τn)G) if and only if Jφ(τ1, . . . , τn)K ∈ G.
Now we observe that the following holds in V [G] if G is V -generic for B:

• C+(St(B),C)/G is isomorphic to the complex numbers of V [G] via the map

[f ]G = (τf )G

• eV [G] is the unique analytic function on the field

CV [G] = {τG : Jτ is a complex numberK ∈ G}
whose power series expansion is∑

n=0,∞

xn/n!.

Moreover eV [G] is the graph of [f ]G 7→ [ef ]G modulo the isomorphism of
C+(St(B),C)/G with CV [G],
• C ∩ V = CV = ČG is identified with Č/G modulo the above isomorphism

and NV [G] ∩ V = NV = NV [G] = ŇG are the natural numbers both in V and
in V [G].

• The Key Lemmas for ~f give that

TrdgCV ([~f ]G, e
[~f ]G) ≥ n

whenever [~f ]G is a family of Q-linearly independent vectors modulo CV ,
since the boolean value of this statement is 1B (notice that such vectors are
identified to complex numbers of V [G] \ V , since the complex numbers of V
are represented by the locally constant functions).
• V [G] models that CV is a countable exponentially and algebraically closed

subfield of CV [G] and the latter is the field of complex numbers in V [G].

In particular V [G] models that:
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There exists CV , countable algebraically and exponentially closed sub-

field of CV [G], such that for all ~f ∈ (CV [G])n

TrdgCV ([~f ]G, e
[~f ]G) ≥ LdimQ(~f/CV ),

with equality holding only if ~f ⊆ CV .

This is a Σ1
2-statement in no parameters and a few (lightface definable) Borel pred-

icates which holds in

(CV [G],CV ,NV , eV [G],TrdgCV ,LdimCV ).

By Shoenfield’s absoluteness it holds in V , since all of the above predicates are Borel.
More precisely the forcing theorem gives that V B models the above statement

with boolean value 1B and Shoenfield’s absoluteness shows that it also holds in V .

Acknowledgements. The author acknowledges support from the PRIN2012 Grant
“Logic, Models and Sets” (2012LZEBFL), and the Junior PI San Paolo grant 2012
NPOI (TO-Call1-2012-0076). This research was completed whilst the author was
a visiting fellow at the Isaac Newton Institute for Mathematical Sciences in the
programme “Mathematical, Foundational and Computational Aspects of the Higher
Infinite” (HIF) funded by EPSRC grant EP/K032208/1.

I thank Vincenzo Mantova for bringing my attention to this topic and for giving
me the highlights of the most fascinating results regarding the application of model
theoretic techniques in the study of Schanuel’s conjecture, and Andrea Vaccaro for
spotting some errors in previous drafts of this manuscript. I also thank the referee
of this paper for his careful examination and many useful comments, and I greatly
appreciate the referee and the editors fairness for being able to supersede their initial
skepticism on the content of the present article.

References

1. James Ax, On Schanuel’s conjectures, Ann. of Math. (2) 93 (1971), 252–268. MR 0277482 (43
#3215)

2. Thomas Jech, Set theory, Spring Monographs in Mathematics, Springer, 2003, 3rd edition.
3. Thomas J. Jech, Abstract theory of abelian operator algebras: an application of forcing, Trans.

Amer. Math. Soc. 289 (1985), no. 1, 133–162. MR 779056
4. Jonathan Kirby, Exponential algebraicity in exponential fields, Bull. Lond. Math. Soc. 42

(2010), no. 5, 879–890. MR 2721747 (2011k:03070)
5. Jonathan Kirby and Boris Zilber, Exponentially closed fields and the conjecture on intersections

with tori, Ann. Pure Appl. Logic 165 (2014), no. 11, 1680–1706. MR 3244665
6. Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102,

North-Holland Publishing Co., Amsterdam-New York, 1980, An introduction to independence
proofs. MR 597342 (82f:03001)

7. David Mumford, Algebraic geometry. I, Classics in Mathematics, Springer-Verlag, Berlin, 1995,
Complex projective varieties, Reprint of the 1976 edition. MR 1344216 (96d:14001)

8. Masanao Ozawa, A classification of type I AW ∗-algebras and Boolean valued analysis, J. Math.
Soc. Japan 36 (1984), no. 4, 589–608. MR 759416

9. Andrea Vaccaro, C ∗-algebras and B-names for complex numbers, Thesis for the master degree
in mathematics, University of Pisa, September 2015.

10. Andrea Vaccaro and Matteo Viale, Generic absoluteness and boolean names for elements of a
polish space, (2016), To appear in Bollettino Unione Matematica Italiana.

11. A. J. Wilkie, Some local definability theory for holomorphic functions, Model theory with
applications to algebra and analysis. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 349,
Cambridge Univ. Press, Cambridge, 2008, pp. 197–213. MR 2441380 (2009m:03045)



26 MATTEO VIALE

12. B. Zilber, Pseudo-exponentiation on algebraically closed fields of characteristic zero, Ann. Pure
Appl. Logic 132 (2005), no. 1, 67–95. MR 2102856 (2006a:03051)


	A brief introduction
	1. Main result
	1.1. Exponential fields

	2. Step (2)
	2.1. Results from complex analysis and algebraic geometry
	2.2. Forcing on C+(`39`42`"613A``45`47`"603ASt(B))
	2.3. TWSP(/G) holds in C+(`39`42`"613A``45`47`"603ASt(B))/G

	3. Step (3)
	3.1. A brief outline of forcing over the standard model of set theory
	3.2. The relation between C+(`39`42`"613A``45`47`"603ASt(B)) and VB
	3.3. Shoenfield's absoluteness
	3.4. WSP holds for C relative to a countable subfield.
	Acknowledgements

	References

