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Introduzione

Il principale oggetto di studio della teoria degli insiemi è il concetto di infinito,
che viene analizzato con gli strumenti della logica matematica; questo studio si
fonda sull’analisi del concetto di cardinalità. Cantor definisce la cardinalità di
un insieme come la classe di equivalenza formata dagli insiemi in biezione con
esso.

Si può notare che questa definizione è una naturale astrazione del concetto di
numero. Infatti nel caso finito, questa è la corretta formalizzazione della nostra
intuizione del concetto di numero naturale.

Dato un insieme X, |X| indica la sua cardinalità e denotiamo con le lettere
greche le classi di equivalenza indotte dalla relazione di biezione. Esiste una
naturale relazione d’ordine fra cardinalità: |X| ≤ |Y | sse esiste una iniezione di
X in Y , mentre |X| < |Y | sse |X| ≤ |Y | e non esiste nessuna biezione da |Y | a
|X|.

Uno dei primi risultati della teoria mostra che lo spazio quoziente indotto
dalla relazione di biezione coincide con quello indotto dalla relazione ≤ tra car-
dinalità. Esso va sotto il nome di teorema di Schroeder-Bernstein: |X| = |Y |
sse |X| ≤ |Y | e |Y | ≤ |X|. Inoltre, Zermelo ha dimostrato che, assumendo la
possibilità di dare un buon ordine ad ogni insieme, per ogni X, Y , |X| ≤| Y |
oppure |Y | ≤ |X|; in questo modo si mostra che i cardinali seguono un un buon
ordine lineare che estende quello classico dei numeri naturali. Un altro risultato
molto importante è il teorema di Cantor: per ogni insieme |X|, |P(X)| > |X|.
Questo teorema mostra come il concetto di cardinale infinito non sia banale.

In analogia con l’aritmetica dei numeri naturali è possibile definire le oper-
azioni di somma, prodotto ed elevazione a potenza anche per i numeri cardinali.
Dati due cardinali κ e λ la somma viene definita come la cardinalità dell’unione
disgiunta dei due insiemi: |κ $ λ|; il prodotto come la cardinalità del prodotto
cartesiano: |κ × λ|; l’elevazione a potenza come la cardinalità dell’insieme di
tutte le funzioni dal primo al secondo: |κλ|.

Notiamo che, per quanto riguarda gli insiemi di cardinalità finita, le oper-
azioni appena introdotte coincidono con le operazioni dell’aritmetica elementare;
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infatti dati due insiemi X ed Y rispettivamente di n ed m elementi, n + m =
|X $ Y |, n · m = |X × Y | ed infine nm = |XY |. Quindi l’aritmetica cardinale
può essere vista come una naturale generalizzazione dell’aritmetica elementare.
Essa però, nel caso infinito, ha proprietà differenti, poiché deve tenere conto
di proprietà specifiche degli insiemi infiniti, come ad esempio la possibilità di
essere in biezione con un sottoinsieme proprio. Per questo motivo non è difficile
dimostrare che, dati due cardinali infiniti κ e λ,

κ + λ = κ · λ = max{κ, λ}.

Se da un lato le operazioni di somma e prodotto non creano difficoltà,
dall’altro i problemi legati al calcolo della potenza cardinale sono tra i più com-
plicati e profondi dell’intera teoria degli insiemi.

Uno dei primi problemi di aritmetica cardinale che attirò l’interesse di Cantor
fu quello della cardinalità del continuo: se nel teorema di Cantor poniamo X = N
otteniamo che

|R| = 2|N| = |P(N)| > |N|.

Cantor congetturò che il valore di 2|N| fosse il cardinale immediatamente
successivo a |N| = ℵ0, cioè ℵ1. Tuttavia in più di cento anni di sforzi non si è
ancora riusciti a dare una soluzione soddisfacente e definitiva a questo problema.

Dal problema del continuo agli assiomi di forcing

All’inizio dello scorso secolo il problema del continuo assunse la forma oggi nota
come CH (Continuum Hypothesis):

2ℵ0 = |P(N)| = |R| = ℵ1

e la sua ovvia generalizzazione GCH (General Continuum Hypothesis):

∀α ∈ On 2ℵα = ℵα+1.

Fino agli anni Sessanta e dopo che ZFC si affermò come adeguata formal-
izzazione della teoria degli insiemi, i più importanti avanzamenti della teoria
si ebbero nel tentativo di dimostrare o refutare CH. Dopo che, nel ‘31, Gödel
dimostrò il Teorema di incompletezza si cominciò ad intuire che la soluzione
potesse essere diversa da quella sperata. Infatti nel ‘39 Gödel mostrò che
Con(ZFC) ⇒ Con(ZFC + CH) e nel ‘63 Cohen ([3]) mostrò che Con(ZFC) ⇒
Con(ZFC + ¬CH). In questo modo Cohen rius̀ı a dimostrare l’indipendenza di
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CH da ZFC; inoltre dotò la teoria degli insiemi di uno strumento molto potente
per le dimostrazioni di indipendenza: il forcing.

Di conseguenza, negli anni Sessanta, la teoria degli insiemi cambiò radical-
mente. Molti dei problemi rimasti aperti fino a quel momento furono dimostrati
indipendenti da ZFC. Inoltre raffinamenti e generalizzazioni del metodo del forc-
ing mostrarono come il principale ambito della teoria fosse costituito da problemi
indecidibili. Questa caratteristica differenzia profondamente la teoria degli in-
siemi da altre teorie, ugualmente incomplete come la teoria dei numeri, ma che
vivono in mondi e si occupano di problemi sufficientemente “semplici” da con-
siderare il fenomeno dell’indipendenza più una curiosità che una delle difficoltà
centrali.

Questi risultati di indipendenza oltre all’esistenza di questioni indecidibili
ma, come CH, sufficientemente elementari da far sperare nella possibilità di
una loro completa soluzione, portarono gli insiemisti a cercare nuovi principi
che potessero decidere ciò che con i soli strumenti di ZFC non poteva essere
dimostrato.

I primi assiomi che vennero considerati furono quelli dei grandi cardinali.
Essi postulano l’esistenza di cardinali infiniti con determinate proprietà combi-
natoriche. Questi insiemi sono sufficientemente grandi da garantire l’esistenza
di un modello transitivo di ZFC; pertanto la loro esistenza non è dimostrabile
in ZFC, per via del teorema di incompletezza di Gödel1.

Questa direzione si inser̀ı nel solco di quello che viene comunemente chiamato
il programma di Gödel, per come fu enunciato da Gödel in [6].

These axioms show clearly, not only that the axiomatic system of
set theory as known today is incomplete, but also that it can be
supplemented without arbitrariness by new axioms which are only
the natural continuation of the series of those set.2

Ciò che preconizzava Gödel era la possibilità che, per esempio, l’esistenza dei
grandi cardinali permettesse di risolvere problemi semplici relativi ad i numeri
reali (come CH). Infatti grazie alle loro proprietà combinatoriche, i grandi cardi-
nali furono utili per la soluzione di problemi fino ad allora indecidibili. Tuttavia
ben presto ci si accorse che per quanto riguardava la soluzione di CH questi
nuovi assiomi non erano sufficienti.

Il “concetto di insieme” a cui si riferisce Gödel è il concetto iterativo di
insieme. Questo si basa sull’idea che si possa iterare in maniera indefinita

1Per una trattazione esauriente degli assiomi dei grandi cardinali si veda [11] e [12]
2Questi assiomi mostrano con chiarezza non solo che il sistema assiomatico della teoria degli

insiemi come usato oggi è incompleto, ma anche che esso può essere integrato in modo non
arbitrario mediante nuovi assiomi che si limitino a chiarire il concetto di insieme.
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l’operazione di insieme di : cioè quella che porta a considerare come insieme una
qualunque collezione non contraddittoria di oggetti già definiti in precedenza.
Fu il tentativo di estendere questa operazione a spingere per un’estensione “verso
l’alto” della gerarchia degli insiemi. Per esempio l’esistenza di un cardinale inac-
cessibile corrisponde a considerare come insieme la collezione di tutti gli insiemi
che è possibile creare grazie agli strumenti offerti dagli assiomi di ZFC.

Una delle giustificazioni teoriche che portarono ad accettare gli assiomi dei
grandi cardinali fu dunque quella di massimizzare il dominio di applicazione
dell’operazione di insieme di ; da qui il tentativo di estendenderla oltre l’universo
degli insiemi che gli assiomi di ZFC riescono a trattare. Nelle parole di Gödel
([6])

Only a maximum property would seem to harmonize with the con-
cept of set.3

Dal momento che gli assiomi dei grandi cardinali hanno un potere di con-
sistenza maggiore di ZFC i criteri che hanno portato ad accettarli, come quello
della massimalità, non hanno carattere esclusivamente matematico.

Un buona ragione per credere nella naturalezza degli assiomi dei grandi car-
dinali è il loro stretto e profondo legame con l’Assioma di Determinatezza (AD).
Infatti l’uno giustifica l’altro e insieme completano la teoria di L(R), nella di-
rezione attesa.

Un altro aspetto per il quale i grandi cardinali si sono rivelati molto utili e
che depone a favore del loro carattere non arbitrario è il fatto che essi formino
un ordine lineare nell’ estensione dell’universo. Questo fatto, pur non avendo
una certezza dimostrativa, è tuttavia dotato di una solidità empirica.

Dal momento che però molti problemi, tra cui CH, non sono risolti dagli as-
siomi dei grandi cardinali, dagli anni Ottanta in poi si è allora cercato di trovare
nuovi principi, diversi dagli assiomi dei grandi cardinali, che potessero decidere
anche la cardinalità del continuo. Quello che il forcing aveva apportato alla
teoria era un metodo generale per costruire nuovi modelli di ZFC. Il concetto
di massimalità poteva allora essere declinato non solo nel senso di una maggior
libertà nell’iterazione dell’operazione insieme di, ma anche in quello di una sat-
urazione dell’universo insiemistico rispetto agli oggetti che venivano ad esistere
nei modelli costruiti per mezzo del forcing. Fu questa la strada che portò alla
definizione degli assiomi di forcing.

Storicamente il primo assioma di forcing fu l’Assioma di Martin (MA), che
fu isolato nel tentativo di iterare il metodo del forcing; in un secondo momento
si tentò di generalizzare MA. Dopo che furono isolate alcune utili classi di ordini

3Solo una proprietà di massimo sembrerebbe essere in armonia con il concetto di insieme.
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parziali (in particolare quelle che permettono di non collassare ω1 nell’estensione
generica), agli inizi degli anni Ottanta Baumgartner ([2]) e Shelah introdussero
il Proper Forcing Axiom (PFA) e verso la fine del decennio Foreman, Magidor e
Shelah ([5]) isolarono il Martin’s Maximum (MM).

Gli assiomi di forcing generalizzano il teorema di Categoria di Baire4 affer-
mando che, per una più ampia classe di spazi topologici, l’intersezione di una
quantità più che numerabile di aperti densi è non vuota. Essi hanno delle im-
mediate ricadute sull’aritmetica cardinale: infatti implicano il fallimento di CH.
Infatti supponendo che CH valga è possibile esibire un’enumerazione dei reali in
tipo d’ordine ω1: R = {rα : α ∈ ω1}. Ora però se definiamo, per ogni α ∈ ω1,
Dα = {h ∈ R : h )= rα}, Dα è un aperto denso di R per ogni α ∈ ω1 e ogni
numero reale che appartiene all’intersezione di tutti questi insiemi è un reale che
non appartiene all’enumerazione. Contraddizione.

Gli assiomi di forcing si possono quindi presentare nel seguente modo:

FA(A, κ) è vero per una data classe A di spazi topologici, se X ∈ A
e per ogni F famiglia di cardinalità al più κ di sottoinsiemi aperti
densi di X, si ha che

⋂
F )= ∅.

A differenza degli assiomi dei grandi cardinali, i più potenti assiomi di forcing
decidono la cardinalità del continuo e mostrano che 2ℵ0 = ℵ2. In questa tesi
considereremo gli assiomi PFA: FA(PProper,ℵ1), MM: FA(PSSP ,ℵ1) e numerose
loro varianti; dove PProper e PSSP sono classi di spazi topologici che definiremo
in seguito.

Perché accettare nuovi assiomi

La forza di consistenza dei più forti assiomi di forcing è, per quanto finora
dimostrato, all’incirca quella di un cardinale supercompatto, uno dei maggiori
grandi cardinali conosciuti; di essi tuttavia non si è ancora riusciti a creare un
modello interno e vi è quindi una minore sicurezza nell’accettarne l’esistenza.

D’altra parte, a favore degli assiomi di forcing, vi è l’evidenza empirica,
sostanziata dal lavoro di Woodin, che essi producano una teoria completa delle
struttura Hℵ2 , ovvero la collezione degli insiemi di cardinalità ereditariamente
inferiore ad ℵ2. Inoltre in più occasioni si è visto che se grazie ad un assioma
di forcing è possibile costruire dei controesempi ad un certo enunciato, questi
possono essere già dimostrati in ZFC5. Il seguente, dovuto a Todorčević, è un

4Esso afferma che l’intersezione di una famiglia numerabile di aperti densi di R è non vuota
5Un esempio è il caso dei (κ, λ∗)-gap. In ZFC è possibile dimostrare che esistono solo dei

(ω1, ω
∗
1)-gap oppure dei (b, ω∗)-gap; assumendo OCA, che è una conseguenza di PFA, questi

sono gli unici gaps che possono esistere
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teorema ispirato da OCA, una conseguenza di PFA.

Theorem 0.0.1. Sia X ⊆ R un insieme Σ1
1 e K ⊆ [R]2 = {(x, y) : x > y} un

sottoinsieme aperto, allora vale una delle due alternative:

• ∃P ⊆ X perfetto omogeneo per K (i.e. [P ]2 ⊆ K),

• X è ricoperto da una quantità numerabile di insiemi omogenei per [R]2\K.

Questo teorema può essere visto come una generalizzazione a due dimensioni,
per gli insiemi Σ1

1, della proprietà dell’insieme perfetto; basta considerare K = R,
per ottenere come corollario del teorema la proprietà dell’insieme perfetto per
insiemi analitici.

Questi risultati sono buoni argomenti per credere nella verità degli assiomi di
forcing, tuttavia, dal momento che essi hanno un potere di consistenza maggiore
di ZFC, sono fondamentalmente di altra natura le ragioni per accettarli. Bagaria
in [1] ne ha elencate quattro: Consistency, Maximality, Fairness, Success. Essi
sono i criteri che dovrebbero guidare la ricerca di nuovi assiomi.

Prima di analizzare questi principi vi è una precisazione da fare. Stando
alla definizione di assioma, esso dovrebbe essere un enunciato che trae la sua
legittimità dall’autoevidenza della sua verità. Questo presuppone un rapporto
intuitivo con gli enti matematici che porta, senza giustificazioni ed argomen-
tazioni, ad accettare una proposizione come assioma sulla base della pura in-
tuizione. Se questo è largamente accettato per l’assiomatica classica, certo non
lo è più in questo contesto dove l’intuizione deve essere ammaestrata dall’uso
e dalla familiarità con oggetti che spesso hanno proprietà e caratteristiche con-
trointuitive. Ad esempio gli assiomi di forcing non hanno nulla del carattere
intuitivo della maggior parte degli assiomi di ZFC. Questo è dovuto non solo
ai concetti cui fanno riferimento, che non sono basilari all’interno della teoria,
ma anche al loro carattere tecnico. Bisogna quindi trovare altri criteri diversi
all’intuizione, che permettano di accettare questi nuovi tipi di assiomi ed aiutino
ad avere confidenza nel loro utilizzo.

Vediamo ora i quattro criteri elencati da Bagaria.
Consistency. E’ una richiesta necessaria per qualunque sistema formale che

aspiri ad essere rappresentativo di una certa realtà matematica. Sebbene una
contraddizione renda un sistema banalmente completo, poiché incoerente, e
rispetti anche gli altri criteri, essa non può essere considerata una valida es-
tensione. Se da un lato la coerenza di un nuovo assioma rispetto a ZFC è una
condizione necessaria, non è tuttavia sufficiente per giustificarne l’adozione.

Maximality. Questo criterio può essere inteso come una generica indicazione
a preferire una visione dell’universo degli insiemi la più ricca possibile, e quindi
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a rifiutare assiomi limitativi come quello di costruibilità. Questo criterio è piut-
tosto vago e il tentativo più convincente di formalizzarlo è quello di Woodin di
cui parleremo in seguito. Nel caso di Woodin esso è inteso come completezza di
Hω2 rispetto ad una certa relazione di dimostrabilità.

Fairness viene da Bagaria definito cos̀ı:

One should not discriminate against sentences of the same logical
complexity.6

La giustificazione di questo principio è che in mancanza di una corretta
intuizione di cosa sia da considerare vero o cosa sia da considerare falso, bisogna
accettare come assiomi solo principi che danno una soluzione a tutti i problemi
di una data complessità logica.

Success è il criterio che prende in esame non la natura di un assioma ma
le sue conseguenze. Maggiori sono le conseguenze che discendono da un nuovo
assioma, maggiore è la propensione ad accettarlo. Questo principio non valuta
la verità di un nuovo assioma, quanto la sua utilità. L’utilità va qui intesa nel
senso di dare soluzione a problemi che ancora non erano stati risolti oppure nel
senso di gettare nuove luci su interi ambiti della teoria.

In generale si è portati ad accettare un nuovo assioma nella misura in cui sod-
disfa questi quattro criteri ed è coerente con i grandi cardinali. Da quanto detto
prima si può ritenere che gli assiomi di forcing rispettino, modulo la coerenza
relativa, tutti e quattro i criteri sopra elencati.

I risultati prodotti da Woodin negli ultimi anni forniscono nuove evidenze a
favore degli assiomi di forcing.

Cenni sul programma di Woodin

Il “programma di Woodin” mira a dare una soluzione al problema del continuo
ed allo stesso tempo fornisce solidi argomenti a favore degli assiomi di forcing.
Presenteremo qui alcuni cenni di questo programma che, in linea con quello di
Gödel, mira ad ampliare ZFC con assiomi che diano una soluzione a problemi
indecidibili. Una presentazione accessibile dei risultati di cui ora parleremo si
trova in [27], [28], mentre una presentazione completa del lavoro di Woodin è
[26].

I presupposti teorici da cui parte il programma di Woodin sono platonisti. Si
assume infatti come ambito di ricerca la teoria al primo ordine di V = (V,∈,=):

6“Non si dovrebbe discriminare tra proposizioni della medesima complessità logica”
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Th(V ) = {φ : V ! φ}, considerata come un dato compiuto. Per studiarla,
anziché utilizzare la gerarchia dei Vα:

• V0 = ∅,

• Vα+1 = P(Vα),

• Vλ =
⋃

α<λ Vα per λ limite,

• V =
⋃

α∈Ord Vα,

si considera la stratificazione di V come unione, al variare di λ fra i cardinali,
degli Hλ: le strutture date dagli insiemi di cardinalità ereditariamente minore
di λ.

Hλ = {x ∈ V : |x| < λ and ∀y (y ∈ tc(x) ⇒ |y| < λ)}.

Esse sono una buona approssimazione di V . Infatti la stratificazione degli
Hλ permette di considerare segmenti iniziali sufficientemente chiusi rispetto alle
operazioni insiemistiche.7 Inoltre per cardinali fortemente limite le due gerarchie
coincidono e V =

⋃
λ∈Card Hλ.

L’obiettivo è quindi quello di ampliare gli assiomi di ZFC risolvendo gradual-
mente i problemi formulabili nelle Th(Hλ). Questo processo non può ovviamente
esaurire tutti i problemi di ZFC, ma permettere di dotarci di assiomi in grado
di completare la teoria almeno per segmenti iniziali dell’universo degli insiemi.
Il primo passo in questa direzione è il teorema di assolutezza di Schoenfield:

Theorem 0.0.2. (Schoenfield) Se φ è Σ1
2 (per esempio una formula aritmet-

ica) allora qualunque modello transitivo M di ZFC soddisfa φ, oppure qualunque
modello transitivo M di ZFC soddisfa ¬φ.8

L’obiettivo di Woodin è allora quello di ottenere risultati analoghi a questo
teorema per Hλ, con λ arbitrario. Come vedremo Woodin è riuscito a dimostrare
un analogo del teorema di Schoenfield per Hω1 e in una certa misura anche per
Hω2 . Bisogna notare che nel caso si riuscisse a trovare un assioma che decida la
teoria di Hω2 , si avrebbe una soluzione di CH.

Nelle parole di Woodin il programma di ricerca da intraprendere è il seguente
(vedi [27]):

7Un aspetto molto utile è che gli Hλ, a differenza dei Vα, sono chiusi per rimpiazzamento.
8Questo teorema ci dice che non possiamo sperare di falsificare un teorema di teoria dei

numeri con un modello transitivo di ZFC.
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One attempts to understand in turn the structures Hω, Hω1 and then
Hω2 . A little more precisely, one seeks to find the relevant axioms
for these structures. Since the Continumm Hypothesis concerns the
structure of Hω2 , any reasonably complete collection of axioms for
Hω2 will resolve the Continumm Hypothesis.9

Woodin sceglie di lavorare su 〈Hω2 ,∈,=〉 piuttosto che su 〈P(P(N)),P(N),
N,+, ·,∈〉 (equivalente a 〈Vω+2,∈,=〉) e su 〈Hω1 ,∈,=〉 piuttosto che su 〈P(N), N,
+, ·,∈〉 (equivalente a 〈Vω+1,∈,=〉), come più ovvie generalizzazioni di 〈N,+, ·,∈
〉. Tuttavia se per la struttura Hℵ1 è più intuitivo individuare quali siano le pa-
tologie che si vogliono eliminare (come per esempio il paradosso di Banach-Tarski
e la conseguente non-misurabilità di alcuni sottoinsiemi dei reali), questo è più
complicato per Hℵ2 . Come dire che è più complicato addomesticare l’intuizione
a riconoscere cosa sia vero e cosa sia falso, man mano che si sale verso il trans-
finito. Se la presenza di insiemi di reali non misurabili non è certo auspicabile in
una corretta teoria di Hℵ1 , cosa bisogna evitare in una teoria di Hℵ2 che riesca
a comprendere il maggior numero di enunciati veri? Questo rende quindi più
complicato trovare un naturale completamento di Hℵ2 .

La ricerca di nuovi assiomi, secondo Woodin, deve seguire i seguenti criteri;
in accordo con quelli presentati in precedenza. Dato un nuovo assioma ψ,

• ψ deve risolvere molti problemi, dove molti è da intendere secondo il prin-
cipio di Fairness enunciato prima: deve risolvere tutti i problemi di una
certa complessità logica,

• ψ deve conciliarsi con un generico criterio di massimalità, cioè l’universo
deve essere il più saturo possibile rispetto a qualunque principio di costruzione
di insiemi.

L’analisi di Woodin parte dalla considerazione che, dati due enunciati φ e
ψ di ZFC, la corretta nozione di conseguenza logica non è più quella del primo
ordine:

φ ! ψ ⇐⇒ ∀M M ! ZFC + φ ⇒ M ! ψ,

ma, dal momento che V è una classe transitiva, è la seguente, più complessa,
relazione:

φ !WF ψ ⇐⇒ ∀M transitivo M ! ZFC + φ ⇒ M ! ψ.

9“Si cerca di capire in successione le strutture Hω, Hω1 e poi Hω2 . Un po’ più precisamente
si cerca di trovare gli assiomi rilevanti per queste strutture. Dal momento che l’Ipotesi del
Continuo è formalizzabile nella struttura ha a che fare con la struttura Hω2 , ogni collezione di
assiomi per Hω2 ragionevolmente completa risolverà l’Ipotesi del Continuo.”
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Avendo però solo il metodo del forcing come strumento per generare modelli
transitivi di ZFC, Woodin ha definito una nuova nozione di conseguenza logica
su ZFC:

φ !Ω ψ ⇐⇒ ∀B algebra di Boole completa e ∀α V B
α ! ZFC + φ ⇒ V B

α ! ψ.

Woodin sostiene che bisogna concentrare lo studio sulla relazione !Ω. Facendo
cos̀ı però si assume implicitamente che !WF sia equivalente a !Ω e quindi che il
forcing sia l’unico strumento (non solo l’unico che abbiamo) per produrre mod-
elli transitivi della teoria egli insiemi. Nel caso in cui si riuscisse a dimostrare
che il forcing sia effettivamente l’unico metodo per generare modelli transitivi di
ZFC allora la strategia di Woodin avrebbe piena legittimità. Ma a tutt’oggi non
abbiamo prove del fatto che non si possa inventare un nuovo strumento generale
per produrre modelli transitivi della teoria degli insiemi.

Diamo ora una definizione rigorosa di ciò che Woodin intende per una soluzione
di una teoria.

Definition 0.0.3. ψ è detta una soluzione per Hλ rispetto a "∈ {!,!WF ,!Ω

,/, . . .} sse per ogni enunciato φ ∈ Th(Hλ),

ZFC + ψ " #Hλ ! φ$ oppure ZFC + ψ " #Hλ ! ¬φ$.

Dunque il teorema di assolutezza di Schoenfield può essere riletto alla luce
della Definizione 0.0.11. Con abuso di notazione confonderemo un insieme ri-
corsivo di assiomi con un assioma.

Corollary 0.0.4. ZFC è una soluzione per Hℵ0 rispetto a !WF .

Il seguente importante teorema dimostra che gli assiomi dei grandi cardinali
sono una soluzione per Hℵ1 , rispetto a !Ω.

Theorem 0.0.5. (Woodin e altri)

• ZFC + esistono ω + 1 cardinali di Woodin / #L(R) ! AD$,

• se esiste una classe propria di cardinali di Woodin in V , allora Th(L(R)V ) =
Th(L(R)V B ), per ogni B algebra di Boole completa.

Quindi, dal momento che Hℵ1 ⊆ L(R) e poiché HL(R)
ℵ1

= Hℵ1 , abbiamo il
seguente corollario.

Corollary 0.0.6. φ = “esiste una classe propria di cardinali di Woodin” è una
soluzione per Hℵ1 rispetto a !Ω.
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Dopo aver quindi trovato una soluzione per Hℵ1 , in !Ω Woodin sta cercando
di estenderla ad una soluzione per Hℵ2 . L’idea è quella di definire una relazione
di Ω-dimostrabilità /Ω in L(R) tale che

L(R) ! #φ /Ω ψ$ ⇒ φ !Ω ψ

ed inoltre tale che per la più ampia famiglia di enunciati φ e ψ:

L(R) ! #φ /Ω ψ$ oppure L(R) ! #φ "Ω ψ$.

Woodin dimostra che una relazione con queste caratteristiche esiste.

Theorem 0.0.7. (Woodin) Si può definire una nozione di Ω-deduzione /Ω tale
che:

1. se L(R) ! #φ /Ω ψ$, allora in ogni estensione generica V B si ha che
L(R)V B ! #φ /Ω ψ$,

2. φ /Ω ψ ⇒ φ !Ω ψ,

3. esiste ψ (che chiameremo Woodin’s Maximum (WM)) soluzione per Hℵ2

rispetto a /Ω (e quindi anche rispetto a !Ω per il secondo punto),

4. qualunque soluzione φ per Hℵ2 rispetto a /Ω è tale che ZFC + φ /Ω ¬CH.

Questo teorema, al punto 1), ci dice che la nozione di Ω dimostrabilità è
invariante per forcing, al punto 2) che è corretta rispetto alla nozione di Ω-
conseguenza logica /Ω ed inoltre ci dice che, grazie a 3), nel momento in cui
si riuscisse a dimostrarne la completezza rispetto a !Ω, allora !Ω sarebbe una
naturale nozione di conseguenza logica da utilizzare per decidere ogni problema
in Hℵ2 . Infine, accettando che il forcing sia l’unico strumento per costruire nuovi
modelli transitivi, dal momento che /Ω è invariante per forcing, il punto 4) ci
direbbe che CH è falsa. Tuttavia sono molte le premesse che si devono ancora
accettare per giudicare corretta questa linea di ragionamento; non ultima la
completezza della Ω-logica. Questa ha assunto il nome di Ω-congettura:

∀φ, ψ ∈ Hℵ2 di complessità logica Π2 φ !Ω ψ ⇒ φ /Ω ψ. (1)

Dal momento che una vera completezza delle strutture del tipo Hλ non si può
avere, a causa del teorema di Gödel, vi è sempre un margine di arbitrarietà nella
scelta degli assiomi che decidano la struttura. Di conseguenza, in mancanza di
un’adeguata intuizione su ciò che sia da considerare vero nella struttura Hω2 ,
è più difficile accettare la verità di WM mentre non è problematico accettare
l’esistenza di una classe di cardinali di Woodin.
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Il seguente risultato mostra come lo studio degli assiomi di forcing ed il
programma di Woodin non siano affatto incompatibili, ma anzi paralleli.

Theorem 0.0.8. WM implica gli assiomi di forcing PFA e MM, ristretti ad
ordini parziali di cardinalità inferiore od uguale ad ℵ2.

Struttura della tesi

L’obiettivo di questa tesi è di dare una presentazione degli assiomi di forcing e
di mostrare come i più forti tra essi decidano la cardinalità del continuo. Essi
infatti implicano che

2ℵ0 = |P(N)| = |R| = ℵ2.

In questo modo il problema del continuo viene risolto negando CH.
Questo lavoro si struttura in quattro capitoli. Nel primo capitolo verranno in-

trodotti strumenti e definizioni utili per comprendere il seguito. Prima verranno
richiamati alcuni risultati sulle nozioni di insiemi club ed insiemi stazionari.
Verrà poi presentata una generalizzazione del concetto di insieme club ed insieme
stazionario agli spazi [κ]λ molto utile nella definizione di properness. Questa
verrà introdotta nel paragrafo successivo, insieme alle principali classi di forcing
di cui ci occuperemo. Infine verranno presentati alcuni risultati standard sulla
combinatorica infinita.

Nel secondo capitolo verrà data la definizione generale degli assiomi di forc-
ing. Si partirà da una discussione sull’assioma di Martin (MA), per poi vedere
come gli assiomi di forcing non siano che una sua generalizzazione. Verranno
quindi presentati PFA, SPFA e MM e le loro versioni limitate. Infine verrà fatto
un breve cenno su FA(σ-closed∗c.c.c., ℵ1), il più debole assioma di forcing che
verrà utilizzato per decidere la cardinalità del continuo.

Nel terzo capitolo verranno presentate le dimostrazione di 2ℵ0 = ℵ2 as-
sumendo MM e PFA. Le due dimostrazioni saranno fattorizzate utilizzando due
principi di riflessione, rispettivamente lo Strong Reflection Principle (SRP) e il
Mapping Refelction Principle (MRP). Inoltre verrà mostrato come assumendo
dei principi di riflessione, anche più deboli di SRP, (Reflection Principle (RP) e
Weak Reflection Principle (WRP)) la classe dei forcing semiproper e quella dei
forcing che preservano gli insiemi stationari su ω1 vengano a coincidere.

Nel quarto capitolo verrà presentata la dimostrazione di come FA(σ-closed∗c.c.c.,
ℵ1), un assioma di forcing più debole di MM e di PFA, decida anch’esso che la
cardinalità del continuo è ℵ2. Come nei casi precedenti la dimostrazione verrà
portata avanti utilizzando dei principi combinatoriali utili anche per applicazioni
diverse: in particolare lo Open Coloring Axiom (OCA).
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Introduction

The main object of set theory is the notion of infinity, which is analyzed with
the tools of mathematical logic. This study is focused on the analysis of the
concept of cardinality. Cantor defines the cardinality of a set as the equivalence
class of the sets that are in bijection with it.

We can notice that this definition is a natural abstraction of the notion of
number. Indeed, in the finite case, this is the right formalization of the concept
of number. Given a set X, |X| means its cardinality, and by Greek letters we
denote the equivalence classes induced by the relation of bijection. There is a
natural order relation between cardinalities: |X| ≤| Y | iff there is an injection
of X into Y , while |X| < |Y | iff |X| ≤| Y | and there is no injection from |Y | to
|X|.

One of the first results of the theory shows that the quotient space induced
by the relation of bijection is the same as the one induced by the relation of ≤
between cardinalities. It is named the Schroeder-Bernstein Theorem: |X| = |Y |
iff |X| ≤| Y | and |Y | ≤| X|. Moreover, Zermelo proved that, assuming we can
give a well-order to every set, for every X, Y , |X| ≤| Y | or |Y | ≤| X|; in this
way it is possible to show that cardinals fall into a linear well-order, extending
the classical one of natural numbers. Another very important result is Cantor’s
Theorem: for every set |X|, |P(X)| > |X|. Hence, the notion of infinite cardinal
is not trivial.

By analogy with natural numbers it is possible to define the operations of
sum, product, and exponentiation for cardinal numbers. Given two cardinals
κ and λ, the sum is defined as the cardinality of the disjoint union of the two
sets: |κ $ λ|; the product as the cardinality of the cartesian product: |κ × λ|;
the exponentiation as the cardinality of the set of all function from the first one
into the second one: |κλ|.

Notice that, as far as finite sets are concerned, the above operations coincide
with the operations of elementary arithmetic; as a matter of fact, given two sets
X and Y , of cardinality respectively n and m, n+m = |X$Y |, n·m = |X×Y | and
nm = |XY |. Hence cardinal arithmetic can be seen as a natural generalization
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of elementary arithmetic. Nevertheless, in the infinite case, it has different
properties, since there are specific characteristics of infinite sets to be taken into
account: for example, the fact that an infinite set can be in bijection with a
proper subset. For this reason it is not difficult to show that, given two infinite
cardinals κ and λ,

κ + λ = κ · λ = max{κ, λ}.

In one case, the operations of sum and product raise no problems, however,
on the other hand the problems related to the calculation of cardinal exponen-
tiation are ones of the deepest and most difficult of all set theory.

One of the first problems of cardinal arithmetic that captured the interest
of Cantor was that of the cardinality of the continuum: if we set X = N, in
Cantor’s Theorem we have that

|R| = 2|N| = |P(N)| > |N|.

Cantor conjectured that the value of 2|N| was the successor cardinal after
|N| = ℵ0, that is ℵ1. Nevertheless in more than one hundred years of efforts a
satisfactory and fulfilling solution to this problem could not be found.

From the continuum problem to the forcing axioms

At the beginning of the twentieth century the problem developed into the well-
known conjecture CH (Continuum Hypothesis):

2ℵ0 = |P(N)| = |R| = ℵ1

and its subsequent generalization GCH (General Continuum Hypothesis):

∀α ∈ On 2ℵα = ℵα+1.

Until the Sixties and after ZFC was accepted as the suitable set theory
formalisation, the most important progresses had been made attempting to prove
or disprove CH. After Gödel proved the Incompleteness Theorem -in 1931- people
started gathering that the solution might be different from the expected one. As
a matter of fact, in 1939, Gödel showed that Con(ZFC) ⇒ Con(ZFC + CH) and
in 1963, Cohen ([3]) showed that Con(ZFC) ⇒ Con(ZFC + ¬CH). In this way
Cohen completed the proof of the independence of CH from ZFC. Moreover he
endowed set theory with a very powerful tool: the method of forcing.
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Thereby, in the Sixties, set theory deeply changed. Most of the unsolved
problems were shown to be independent from ZFC. Furthermore, forcing re-
finements and generalisations showed that the main object of the theory was
independent problems. This feature deeply distinguishes set theory from other
theories, equally incomplete as number theory, that live in enough “simple”
enough universes where the phenomenon of incompleteness is not central to the
theory.

Since there were sufficiently elementary problems, as CH, that were expected
to have a complete solution, these developments drove set theory scholars to seek
for new principles that would allow them to solve problems that ZFC left open.

The first new axioms taken into consideration were the large cardinals ax-
ioms. They postulate the existence of infinite cardinals with specific combina-
torial properties. These sets are big enough to be a model of ZFC themselves.
Therefore, their existence cannot be proved in ZFC because of the second in-
completeness theorem.10.

This direction fell into the path of what is commonly known as the Gödel
program, as was stated by him in [6].

These axioms show clearly, not only that the axiomatic system of
set theory as known today is incomplete, but also that it can be
supplemented without arbitrariness by new axioms which are only
the natural continuation of the series of those set.

What lead Gödel was the possibility of solving problems related to sets of the
lowest hierarchy -of von Neumann- given by the existence of bigger and bigger
cardinals. As a matter of fact, thanks to their combinatorial properties, these
cardinals were useful to achieve the solution of undecidable problems. However,
it was soon realized that these new axioms were not sufficient in finding a solution
to CH.

The “concept of set” quoted by Gödel is the iterative one. It is based on
the idea that it is possible to iterate the operation of set of indefinitely: i.e.
the operation of putting together some objects and making a non-contradictory
set out of them. To extend this operation, the universe of sets was pushed in
order to be expanded “upwards”. For example, the existence of an inaccessible
cardinal was justified by the idea of considering the collection of all the sets
-given by admissible operations in ZFC- as a set itself.

Hence, one of the main purposes that led to large cardinal axioms was to
maximize the domain of the operation of set of, and thus extend the universe of
sets, beyond ZFC. In Gödel’s words ([6])

10For an exhaustive account on the subject of big cardinals see [11] and [12]
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Only a maximum property would seem to harmonize with the con-
cept of set.

Since large cardinal axioms have a consistency strength bigger than ZFC, the
principles -as maximality- that helped to be confident in them are not simply
mathematical arguments.

Another aspect that helps to believe in the naturalness of large cardinal
axioms is their deep connection with the Axiom of Determinacy (AD). Moreover,
they justify each other and together they give a completion of the theory of L(R)
in the expected way.

Another useful feature of large cardinal axioms that speak in favour of their
non-arbitrary character is the fact that they fall into a linear order. This fact
does not have a demonstrable certainty, but an empirical soundness.

Since there are many problems -as CH- left open by large cardinal axioms,
from the Eighties on new principles that could determine the cardinality of the
continuum were sought after. What forcing brought in set theory was a general
method of constructing new models of ZFC. If the concept of maximality had
before been seen as a freer application of the operation of set of, it was later
meant as a wider saturation of the universe of sets, with respect to new objects
that lived in some forcing extension. This way led to the definition of forcing
axioms.

Historically, the first forcing axiom was Martin’s Axiom (MA), which was
discovered in the study of iterated forcing. Soon after MA had been generalized.
At the beginning of the Eighties, Baumgartner ([2]) and Shelah defined the
Proper Forcing Axiom (PFA) . In the late Eighties, Foreman, Magidor, and
Shelah ([5]) discovered Martin’s Maximum (MM).

Forcing axioms are a generalization of the Baire Category theorem. For a
wider class of topological spaces, they state that an uncountable intersection
of open dense sets is non-empty. It is easy to see that they affect cardinal
arithmetic. Indeed they imply the failure of CH. To see it, we suppose that CH
holds and so we can enumerate all reals in order type ω1: R = {rα : α ∈ ω1}.
Now, for every α ∈ ω1, define Dα = {h ∈ R : ∃n h(n) )= rα(n)}. Dα is dense
open of R for every α ∈ ω1 and every real number that is in the intersection of
all these sets is a real not belonging to the enumeration. Contradiction.

These axioms can be stated as follows:

FA(A, κ) it is true when, given A a class of topological spaces, if
X ∈ A and F is a family of ≤ κ open dense subsets of X, then⋂
F )= ∅.

Unlike large cardinal axioms, the forcing axioms do decide the cardinality of
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the continuum and show that 2ℵ0 ≥ ℵ2. In this work we will consider the axioms
PFA: FA(PProper,ℵ1), MM: FA(PSSP ,ℵ1) and many variances of them; where
PProper and PSSP are classes of topological spaces that wil will define later on.

Reasons to accept new axioms

The consistency strength of the strongest forcing axiom is -for what we know
so far- almost that of a supercompact cardinal: one of the biggest large cardi-
nals. Nevertheless, there has not been an inner model constructed for them yet.
Hence, we are less confident about their existence.

By the way, in favour of forcing axioms there is empirical evidence -supported
by Woodin’s work- that they give a complete theory of the structure Hℵ2 : the
collection of all sets hereditary of cardinality less than ℵ2. It happens that, if
by means of forcing axioms we can build up a counterexample to some sentence,
then that counterexample could be proved in ZFC itself.11. Finally, thanks
to results obtained with forcing axioms, it was possible to find new theorems
in ZFC. The following, due to Todorčević, is a theorem inspired by OCA -a
consequence of PFA-.

Theorem 0.0.9. Let X ⊆ R be a Σ1
1 set and let K ⊆ [R]2 = {(x, y) : x > y} be

an open subset. Then just one of the following holds:

• ∃P ⊆ X perfect set that is homogeneous for K (i.e. [P ]2 ⊆ K),

• X is covered by countably many sets homogeneous for [R]2 \K.

This theorem can be seen as a two-dimensional generalization, for Σ1
1 sets,

of the the Perfect Set Property; to see it, we need to set K = R to obtain, as a
corollary, that the perfect set property holds for analytic sets.

The above arguments are good reasons to believe that forcing axioms are
true statements. Nevertheless, since their consistency strength is bigger than
ZFC, the reasons we have to accept them are mostly philosophical. Bagaria has
listed four principles: Consistency, Maximality, Fairness, Success. They are the
main criteria that should lead the quest for new axioms.

Before analyzing these principles, we would like to make some comments
on the meaning of axioms. By definition, an axiom should be a self-evident
statement. Following this definition there should be an intuitive connection
between mathematical objects and human mind, that leads, without rational
arguments, to accept a sentence as an axiom just on the strength of intuition.

11For example, in ZFC we can show that there are just (ω1, ω
∗
1)-gap or (b, ω∗)-gap. Under

OCA, the former ones are the only gaps that can exist.
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This is how the concept of axiom is generally meant in the classical way. As
far as forcing axioms are concerned, this is not true. Indeed they are principles
for which the intuition has to be trained and has to get familiar with objects
that often have properties and characteristics far from being intuitive. Forcing
axioms are very different from the other axioms of ZFC; this is due not only
to the concepts involved -far from being basic in set theory- but also to their
technical nature. Hence, we need to find new criteria different from intuition,
to drive us to be more confident with forcing axioms.

We now see the four principles listed by Bagaria.
Consistency. This is the easiest question we would ask a formal system, so

that it can be representative of a mathematical context. Even if a contradiction
makes a system a trivially complete one, it still cannot be considered a sound
extension of the system. In one circumstance, consistency -with ZFC- of a new
axiom is a necessary condition, but it is not sufficient to adopt it.

Maximality. This principle can be seen as a generic instruction to prefer a
vision of the universe of sets to be as rich as possible. Hence, we need to reject
restrictive axioms like the Axiom of Constructability. This rule is rather vague,
and the most convincing attempt in formalizing it is that of Woodin; we will
discuss it later on. In that case, maximality is intended as completeness of Hℵ2 ,
with respect to a new relation of demonstrability.

Fairness. In Bagaria’s words:

One should not discriminate against sentences of the same logical
complexity.

The rationale of this principle is that, if we do not have a good intuition
of what is true and what is false in a certain domain, then we can just accept
axioms that give a solution to all problems of a given logical complexity.

Success. It is the principle that takes into account the consequences of an
axiom, not just its nature. The richer the consequences, the more one is inclined
to accept it. Success analyzes the utility of an axiom, more that its truth. Utility
is here to intended in the sense of giving solutions to problems not yet solved or
in the sense of giving new insights in old domains of the theory.

In general, we are confident about new axioms if they satisfy the four prin-
ciples above, and if they are coherent with big cardinals. Then, as a result,
we can believe that forcing axioms -modulo relative coherence- carry all the
characteristics shaped by Bagaria’s principles.

The results of Woodin are new evidences in favour of forcing axioms.
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An outline of Woodin’s program

“Woodin’s program” aims to give a solution to the problem of the continuum
and in the meantime gives good arguments in favour of forcing axioms. We now
present an outline of it, which like Gödel’s program seeks for new axioms of ZFC,
in order to give a solution to undecidable problems. A popular presentation of
the following results can be found in [27], [28], while a complete account of the
work of Woodin is [26].

The philosophy of mathematics inspiring Woodin’s work is platonism. As
a matter of fact, the main domain of research is the first order theory of V =
(V,∈,=): Th(V ) = {φ : V ! φ}, considered as a given object. To study it we
do not use the hierarchy of Vα:

• V0 = ∅,

• Vα+1 = P(Vα),

• Vλ =
⋃

α<λ Vα per λ limite,

• V =
⋃

α∈Ord Vα,

but we consider the stratification of V given by Hλ, where λ is a cardinal: the
structures given by the sets of cardinality hereditarily less than λ.

Hλ = {x ∈ V : |x| < λ and ∀y (y ∈ tc(x) ⇒ |y| < λ)}.

They are good approximations of V . Indeed the hierarchy of Hλ allows to
consider initial segments of the universe, sufficiently close for set operations.12

Moreover, V =
⋃

λ∈On Hλ and for strongly limit cardinals, the two hierarchies
are the same.

The main target is to extend ZFC, solving problems that can be formulated
in Th(Hλ), for each λ. This process cannot solve every problem in ZFC, but can
give us new axioms that can complete the theory as far as initial segments are
concerned. The first step toward this direction is the theorem of absoluteness
by Schoenfield:

Theorem 0.0.10. (Schoenfield) If φ is a Σ1
2-formula (for example an arith-

metical one) then every transitive model M of ZFC satisfy φ or every transitive
model M of ZFC satisfy ¬φ.13

12Note that the sets Hλ, unlike the sets Vα, are closed for replacement.
13This theorem tells us that we cannot hope to make false a theorem of number theory with

transitive models of ZFC.
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The idea of Woodin is to obtain results analogous to this theorem for Hλ,
for arbitrary λ. As we shall see Woodin succeeding in doing so for Hω1 , and to
a certain extent also for Hω2 . Note that if we could find an axiom that decides
the theory of Hω2 , we would have a solution of CH.

In Woodin’s words, the program should be as follows:

One attempts to understand in turn the structures Hω, Hω1 and then
Hω2 . A little more precisely, one seeks to find the relevant axioms
for these structures. Since the Continumm Hypothesis concerns the
structure of Hω2 , any reasonably complete collection of axioms for
Hω2 will resolve the Continumm Hypothesis.

Woodin chooses to work on 〈Hω2 ,∈,=〉 instead of 〈P(P(N)),P(N), N,+, ·,∈
〉 (equivalent to 〈Vω+2,∈,=〉) and on 〈Hω1 ,∈,=〉 instead of 〈P(N), N,+, ·,∈〉
(equivalent to 〈Vω+1,∈,=〉) , as more obvious generlizations of 〈N,+, ·,∈〉. For
the structure Hℵ1 we have a good intuition of what the pathological aspects
we would like to avoid are (like for example the Banach-Tarski paradox and
the consequent non-measurability of some sets of reals), but this is much more
difficult for Hℵ2 . It is more difficult to train our intuition to see what is true
and what is false, as soon as we go on in the hierarchy of the transfinite. If we
do not want to find, in Hℵ1 , sets of reals that are not measurable, what should
we avoid in a right theory of Hℵ2?

Following Woodin, the quest for new axioms should be coherent with the
following principles; which agree with the one presented before. Given a new
axiom ψ,

• ψ has to provide solutions for many problems, where many is intended
with accordance to the principle of Fairness: it should solve all problems
of a given logical complexity,

• ψ has to be be coherent with a generic principle of maximality, i.e. the
universe should be as full as possible with respect to any principle of set
construction.

Woodin’s analysis starts by considering that, given two sentences φ e ψ of
ZFC, the right notion of logical consequence is not the classical first order one:

φ ! ψ ⇐⇒ ∀M M ! ZFC + φ ⇒ M ! ψ,

but, since V is a transitive class, is the following more complex one:

φ !WF ψ ⇐⇒ ∀M transitive M ! ZFC + φ ⇒ M ! ψ.
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Since Woodin only has the method of forcing as a tool to construct transitive
models of ZFC, he defined a new notion of logical consequence on ZFC:

φ !Ω ψ ⇐⇒ ∀B complete Boolean algebra and ∀α V B
α ! ZFC+φ ⇒ V B

α ! ψ.

Woodin thinks that we need to concentrate the study on the relation !Ω.
In this way we are implicitly assuming that !WF is equivalent to !Ω and thus
that the method of forcing is the only (not just the only we know) tool to build
up transitive models of set theory. If we could show that this is the case, then
Woodin’s strategy would be fully legitimate. But still we do not have proofs that
we could not invent a new method that allows us to construct new transitive
models of set theory.

We now give a rigorous definition of what Woodin means by a solution of a
theory.

Definition 0.0.11. ψ is called a solution of the theory Hλ with respect to "∈
{!,!WF ,!Ω,/, . . .} iff for every sentence φ ∈ Th(Hλ),

ZFC + ψ " #Hλ ! φ$ or ZFC + ψ " #Hλ ! ¬φ$.

Hence, the absoluteness theorem by Schoenfield could be seen in the light
of Definition 0.0.11. With abuse of notation we will confuse a recursive set of
axioms and an single axiom.

Corollary 0.0.12. ZFC is a solution for Hℵ0 with respect to !WF .

The following important theorem shows that large cardinal axioms are a
solution for Hℵ1 with respect to !Ω.

Theorem 0.0.13. (Woodin and others)

• ZFC + there exist ω + 1 Woodin’s cardinals / #L(R) ! AD$,

• if there is a proper class of Woodin’s cardinals in V , then Th(L(R)V ) =
Th(L(R)V B ), for every complete Boolean algebra B.

Since Hℵ1 ⊆ L(R) and HL(R)
ℵ1

= Hℵ1 , we have the following corollary.

Corollary 0.0.14. φ = “there exist a proper class of Woodin’s cardinals” is a
solution for Hℵ1 with respect to !Ω.

Now that he has found a solution for Hℵ1 , in !Ω, Woodin is trying to extend
it to a solution for Hℵ2 . The main idea is that of defining a relation of Ω-
demonstrability /Ω in L(R) such that
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L(R) ! #φ /Ω ψ$ ⇒ φ !Ω ψ

and such that for the wider class of sentences φ and ψ:

L(R) ! #φ /Ω ψ$ or L(R) ! #φ "Ω ψ$.

Woodin shows that such a relation exists.

Theorem 0.0.15. (Woodin) We can define a notion of Ω-deduction /Ω such
that:

1. if L(R) ! #φ /Ω ψ$, then for every generic extension V B we have that
L(R)V B ! #φ /Ω ψ$,

2. φ /Ω ψ ⇒ φ !Ω ψ,

3. there exists ψ (that we shall call Woodin’s Maximum (WM)) solution for
Hℵ2 with respect to /Ω (and so also with respect to !Ω for the second
point),

4. any solution φ for Hℵ2 with respect to /Ω is such that ZFC + φ /Ω ¬CH.

This theorem shows, by 1) that the notion of Ω-demonstrability is invariant
under forcing; by 2) that it is sound with respect to the notion of /Ω logical
consequence; by 3) that if we could prove the completeness with respect to !Ω,
then !Ω would be the natural notion of logical consequence to use in deciding
every problem that could be formalized in Hℵ2 . If we accept that forcing is
the only tool we have to construct transitive models, then, recalling that /Ω is
invariant under forcing 4) would tell us that CH is false. Thereby there are still
many premises to be accepted to believe in this line of reasoning; above all the
completeness of the Ω-logica. So this conjecture is called the Ω-conjecture:

∀φ, ψ ∈ Hℵ2 that are Π2 φ !Ω ψ ⇒ φ /Ω ψ. (2)

Since we cannot have a true completeness of the structure like Hλ, because of
Gödel’s Theorem, there is always a sort of arbitrariness in choosing the axioms
that decide the structure. As a consequence, since we do not have a clear
intuition of what is true in Hω2 , it is more difficult to accept the truth of WM,
while we are more confident in the truth of Woodin’s cardinal.

The following result shows that the study of forcing axioms and Woodin’s
program are not incompatible, but they are very close.

Theorem 0.0.16. WM implies the forcing axioms PFA and MM, restricted to
posets of cardinality less or equal to ℵ2.
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Structure of the thesis

The main target of this thesis is to give an account of forcing axioms and to
show that the strongest of them decide the cardinality of the continuum. Indeed
they imply that

2ℵ0 = |P(N)| = |R| = ℵ2.

In this way the problem of the continuum is solved showing that ¬CH holds.
This work is structured in four chapters. In the first one we introduce the

tools and the definitions useful to understand the rest. Firstly we recall some
results on the notions of club sets and stationary sets. Then we present a gen-
eralization of the concepts of stationarity and clubness to the spaces [κ]λ, which
are very useful in the definition of properness. This latter notion will be intro-
duced in a following section, together with the main notions of forcing we will
deal with. Finally we will recall some standard results on infinite combinatorics.

In the second chapter we will give the general definition of a forcing axiom.
We start with a discussion on Martin’s Axiom (MA) and we see that forcing
axioms are a generalization of MA. We then present PFA, SPFA e MM and their
bounded counterparts. Finally we give the definition of FA(σ-closed∗c.c.c., ℵ1),
the weakest forcing axiom we use to decide the cardinality of the contuinuum.

In the third chapter we present the proof that 2ℵ0 = ℵ2 assuming MM
and PFA. These proofs are factorized by two reflection principles, respectively
the Strong Reflection Principle (SRP) and the Mapping Refelction Principle
(MRP). Moreover we show that assuming SRP and some weaker form of re-
flection, namely the Reflection Principle (RP) and Weak Reflection Principle
(WRP) the classes of semiproper forcing and stationary set preserving forcing
are the same.

In the fourth chapter we present the proof that FA(σ-closed∗c.c.c., ℵ1), a
forcing axiom weaker than MM and PFA, decides that the cardinality of the
continuum is ℵ2. As in the previous cases the proof uses some combinatorial
principles: namely the Open Coloring Axiom (OCA).
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Chapter 1

Background material

In this chapter we will fix the notation and review some basic facts about station-
ary sets, forcing and iterated forcing that will be useful for better understanding
the meaning of forcing axioms. We assume good knowledge of the method of
forcing. We will state some important results without proofs, unless the proofs
are essential for the exposition.

1.1 Useful facts about stationary sets

We start with some theorems and definitions we will use later on.

Definition 1.1.1. Let κ be a regular uncountable cardinal. A set C ⊆ κ is a
closed unbounded (club) subset of κ if C is unbounded in κ and if it contains all
its limit points less than κ.

A set S ⊆ κ is stationary if S ∩ C )= ∅ for every club C of κ.

The club sets generate the closed unbounded filter on κ, consisting of all the
sets X ⊆ κ that contain a club.

Definition 1.1.2. NSω1 indicates the ideal of non stationary sets, i.e. ω1 ⊃
X ∈ NSω1 iff ω1 \X is club.

NSω1 is a normal and ω1-complete ideal.

Lemma 1.1.3. (Fodor) If f is a regressive function on a stationary set S ⊆ κ
(i.e. f(α) < α, for every α ∈ S \ {0}), then there is a stationary set T ⊆ S and
some γ ∈ κ such that f(α) = γ, for every α ∈ T .

Definition 1.1.4. By a (ℵ0, ℵ1) Ulam matrix we mean a family A = {Aα,n :
α ∈ ω1 , n ∈ ω} of sets such that
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• ∀n ∈ ω, Aα,n ∩Aβ,n = ∅

• ∀α ∈ ω1, ω1 \
⋃

n Aα,n is at most countable.

The next theorem, building up a (ℵ0, ℵ1) Ulam matrix, shows that there
exists a maximal partition of ω1 in stationary sets.

Theorem 1.1.5. There exists a family S = {Sα : α < ω1} of disjoint stationary
subsets of ω1 that covers ω1 (i.e.

⋃
α<ω1

Sα = ω1) and is maximal for stationary
sets: if S ⊆ ω1 is stationary, then there is an α such that S ∩ Sα is stationary.

Proof. We begin with building up a (ℵ0, ℵ1) Ulam matrix; then we will use it
to form a maximal antichain of size ℵ1.

For every γ ∈ ω1 we take a bijection fγ : γ → ω. Define Aα,n = {γ >
α : fγ(α) = n}. If α )= β we have that Aα,n ∩ Aβ,n = ∅, otherwise there was
a γ such that fγ(α) = n = fγ(β). Hence for each n, the Aα,n’s are disjoint.
Moreover

⋃
n Aα,n = {γ ∈ ω1 : γ > α}. So ω1 \

⋃
n Aα,n is at most countable.

Since NSω1 is ω1-complete and
⋃

n Aα,n is club, we have that there is an n such
that Aα,n /∈ NSω1 . Thus we can define h : ω1 → ω such that Aα,h(α) /∈ NSω1 .
By the pigeonhole principle we have that exists m such that |h−1(m)| = ω1.
Set X = {α : Aα,m is stationary }. If we define S = ω1 \

⋃
α∈X Aα,m, then

{S} ∪ {Aα,m : α ∈ X} is a disjoint partition of ω1. It is also a stationary
partition, since if S is not stationary, we could put it in one of the Aα,m, for
some α and m. Let us renumber the family S = {S} ∪ {Aα,m : α ∈ X} as
S = {Tα : α ∈ ω1}.

To make the Tα maximal for the stationary sets, we can use the diagonal
union of the family. We call C = ΣαTα = {β : ∃α < β, β ∈ Tα} the diagonal
union of the Tα. If C is a club, then S = {Tα : α < ω1} is already maximal.
Indeed for every stationary set S ⊆ ω1 we have that S ∩ C is stationary. If
β ∈ S ∩C, then exists an α < β such that β ∈ S ∩Tα. If we call αβ the minimal
such α, we can define a regressive function

φ : S ∩ C → ω1

β 5→ αβ

and use Fodor lemma to find a stationary subset S′ ⊆ S ∩ C and α0 such that
S′ ⊆ Tα0 . Thus S ∩ Tα0 is stationary.

In the case C is not club, we define T = ω1 \ C. Since we want a family
of disjoint sets, we need to define Sα = Tα \ T . It is easy to see that C =⋃

β{Tβ \ (β + 1)}. Hence, since Tα is stationary and α is countable, Tα \ T =
Tα∩C = Tα∩

⋃
β{Tβ \ (β +1)} ⊇ Tα \ (α+1) is stationary. So we can now claim

that {T}∪{Tα \T : α < ω1} is a maximal family of disjoint stationary sets. Let
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us call C′ = {Tα \ T : α < ω1}. Given S a stationary set, we have that S ∩ T
or S ∩

⋃
C′ are stationary. If we are in the first case, we are done. If S ∩

⋃
C′,

as before, we can apply Fodor Lemma and find an α0 such that S ∩ Tα0 \ T is
stationary.

We end this section by defining a class of stationary sets and some results
on them.

Definition 1.1.6. For κ, a regular and uncountable cardinal and λ <κ regular,
we define Eκ

λ = {α < κ : cof(α) = λ}.

It is easy to see that Eκ
λ is stationary on κ. We just give, without proof,

some classical results related to this definition. For the proofs we refer to [20]

Theorem 1.1.7. Every stationary subset of Eκ
λ is the union of κ disjoint sta-

tionary sets.

Theorem 1.1.8. (Solovay) Let κ be a regular uncountable cardinal. Then
every stationary subset of κ is the disjoint union of κ stationary subsets.

1.2 Generalizing stationarity

It is possible to generalize the concept of clubness and stationarity to P(X), for
a given set X. We will refer to definitions as in [14].

By [X]κ, where κ is a regular cardinal and X is a set of cardinality al least
κ, we mean the set {x ⊆ X : |x| = κ}; and so [X]<κ =

⋃
{[X]µ : µ < κ}.

Definition 1.2.1. Let X )= ∅. A set C ⊆ P(X) is said to be club in P(X), if
there is a function F : [X]<ω → X such that

{z : F [[z]<ω] ⊆ z} ⊆ C

i.e. C contains the set of the closure points of F . For this reason we will refer
to it as to CF .

Definition 1.2.2. Let X )= ∅. A set S ⊆ P(X) is stationary in P(X) if, for
every function F : [X]<ω → X, CF ∩ S )= ∅.

It is easy to see that if S is a set of ordinals and κ = sup(S), we have that
S is stationary in P(κ) iff S is stationary in κ.

Note that in the case of the structure ([X]ℵ0 ,⊆) a club set, as in the definition
above, is equivalent to a closed unbounded set in the structure ([X]ℵ0 ,⊆). Hence,
for the collection of countable subsets of a given set X, it turns out that the
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club filter generated by the closed unbounded sets equals the one generated by
the sets of the closure points of F , for some F : [X]<ω → X.

This is not the only generalization of the notion of stationarity and clubness,
but it is the most useful for our applications. Indeed if we let M = (M, . . .) be
a structure for a countable language and we let F : [M ]<ω → M be a Skolem
function, then any N ⊆ M closed under F is, by definition of a Skolem function,
the universe of an elementary submodel of M (i.e. N ≺ M).

By the Lowenheim-Skolem theorem we have that, for a structure M as before
and a λ ≤ |M |, the set

{N ⊆ M : |N | = λ}

is stationary in P(M).
The following lemma shows how stationarity is mantained, passing from sets

to subsets.

Lemma 1.2.3. Suppose that X ⊆ Y and X )= ∅.

• If S ⊆ P(Y ) is stationary in P(Y ), then S % X = {Z ∩ X : Z ∈ S} is
stationary in P(X).

• If S ⊆ P(X) is stationary in P(X), then SY = {Z ⊆ Y : Z ∩X ∈ S} is
stationary in P(Y ). SY is called the lift of S to Y .

We have Fodor’s lemma, also for thins notion of stationarity.

Lemma 1.2.4. Let X )= ∅ and S ⊆ P(X) be a stationary set. If F : S → X
is such that F (Z) ∈ Z for all Z ∈ S, then there is an a ∈ X such that {Z ∈ S :
F (Z) = a} ⊆ S is stationary (i.e. F is costant on a stationary subset of S).

Definition 1.2.5. For a cardinal λ, we set Hλ = {x ∈ V : |x| < λ and if y ∈
tc(x), then |y| < λ}, i.e. Hλ is the class of all set hereditarily of cardinality less
than λ.

In what follows we shall be mostly concerned with structures like Hλ, for a
sufficiently large cardinal λ, and, thanks to Lemma 1.2.3, with stationary and
club sets of [Hλ]κ. Then we can give the following definition.

Definition 1.2.6. Given a sufficiently large θ, X ⊆ Hθ and h : [Hθ]<ω → Hθ

a Skolem function for Hθ, clh(X) will be the closure of X under h. Hence if
M ∈ clh(X), then M ≺ Hθ.

One can ask, why we need to deal with M elementary substructure of Hλ.
The reason is that for λ infinite regular Hλ is a structure closed under enough
axioms of ZFC to develop all the relevant arguments.
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Moreover, elementary substructures are downward closed for witnesses of
existential sentences and if we can define something in Hλ with parameters in
M , then this object lives in M . This is the reason why, if λ is uncountable,
ω ∈ M . We can also prove the following theorem.

Theorem 1.2.7. If λ is regular and uncountable and M ≺ Hλ is countable,
then for any countable set A ∈ M we have that A ⊆ M . Hence M ∩ ω1 ∈ ω1.

Proof. We can easily define each element of A, since A, ω, n ∈ M and, by ele-
mentarity, a function f that witnesses the countability of A is in M . Thus if
a ∈ A, then a ∈ M . So we have just showed that if α ∈ M ∩ ω1, then α ⊆ M .
Hence M ∩ ω1 is an initial segment of ω1 and it is a proper one because M is
countable.

This is not true for κ > ω1. Hence we will often refer to sup(M ∩κ), instead
of M ∩κ. Because the latter is not an ordinal anymore, but just a countable set
of ordinals less then κ.

Corollary 1.2.8. If M ≺ Hθ, then, for all A ∈ M ∩P(ω1), A is uncountable if
and only if A ∩M is unbounded in ω1 ∩M .

We end this section with some facts we will use later on.

Fact 1.2.9. The set of all countable elementary substructures of Hθ is club in
[Hθ]ω.

Fact 1.2.10. If M ≺ Hθ and X ∈ Hθ and X is definable from parameters in
M , then X ∈ M .

Fact 1.2.11. If X ∈ Hθ and A ∈ [Hθ]!ω, then {M ∩X : A ⊆ M ≺ Hθ} is a
club.

Proof. Take, for every countable elementary submodel M of Hθ, the Skolem hull
of M ∪ {A} = M∗, in Hθ. Then the set of all the M∗ is club and its trace on X
too.

Fact 1.2.12. If S ∈ M ≺ Hθ, X ∈ Hθ, S ⊆ [X]ω and M ∩ X ∈ S, then S is
stationary in [X]ω.

Proof. Take F ∈ M such that F : [X]<ω → X and let clF be the set of all the
closure points of F . We have X ∈ Hθ and M ≺ Hθ, hence X ∈ M . Now in
M we have that F : [X ∩ M ]<ω → X ∩ M , so M ∩ X ∈ clF . By hypothesis
M ∩ X ∈ S, hence, in S ∩ clF )= ∅, so M ! S ∩ clF )= ∅ and using again the
fact that M ≺ Hθ, we obtain that S ∩ clF )= ∅ is true in Hθ.
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Fact 1.2.13. Given a continuous increasing ∈-chain 〈Mα : α < ω1〉 (i.e. if
α < β, Mα ∈ Mβ and if γ is limit, Mγ =

⋃
α<γ Mα) of countable elementary

submodels of Hθ, the set

E = {ξ ∈ ω1 : Mξ ∩ ω1 = ξ}

is club in ω1.

1.3 Notions of forcing

We now present the principal classes of notions of forcing, that we will use
further on in the discussion.

1.3.1 κ-c.c. and λ-closed forcing

We begin with two basic properties. They are useful in preservation of cofinality
and cardinality in generic extensions.

Definition 1.3.1. We say that a notion of forcing P preserves a property Γ of
an object X if 1P & “X̌ has the property Γ′′, whenever X has the property Γ in
V .

Definition 1.3.2. For a cardinal κ, a notion of forcing P is said to be κ-c.c if
whenever A ⊆ P is an antichain, then |A| < κ.

For example, the forcing that adds a Cohen real in the generic extension is
ℵ1-c.c. (also called c.c.c.: countable chain condition). We have the following
theorem.

Theorem 1.3.3. If P is κ-c.c. and κ is a regular cardinal, then P preserves
cofinalities ≥ κ (i.e. if λ ≥ κ, then cof(λ)V = cof(λ)V [G], whenever G is a
generic filter). Hence it preserves cardinals ≥ κ.

Definition 1.3.4. A poset P is λ-closed if whenever γ < λ and 〈pξ : ξ < γ〉 is
a decreasing sequence of elements of P , then there is a q ∈ P such that q ≤ pξ,
for every ξ < γ.

We have:

Theorem 1.3.5. If P is λ-closed, then P preserves cofinalities ≤ λ. Hence it
preserves cardinals ≤ λ.
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1.3.2 Properness

We define a wide class of forcing notions, introduced by Shelah: the class of
proper posets. There are different, but equivalent definitions of properness. To
begin with, we need to define, what is an (M,P )-generic condition

Definition 1.3.6. (Shelah) Given a notion of forcing P , an uncountable car-
dinal λ > 2|P |, M a countable elementaty substructure of Hλ such that P ∈ M ,
we say that a condition q ∈ P is (M, P )-generic iff for every dense D ⊆ P , such
that D ∈ M , D∩M is predense below q (i.e. for all q1 ≤ q there is a d ∈ D∩M
compatible with q1)1.

It is not hard to see that, for q being (M,P )-generic, we could equivalently
ask that if α̇ ∈ M is a name of an ordinal, then q & α̇ ∈ M (∀r ≤ q ∃s ≤ r
∃β ∈ M s & α̇ = β) or, if G denotes a P -generic filter over M , then q &
“Ġ ∩M is an M -generic filter′′.

We can now define what is a proper notion of forcing, see [18] and [19].

Definition 1.3.7. (Shelah) A poset P is called proper iff for every regular
uncountable cardinal λ > 2|P |, and countable M ≺ Hλ, with P ∈ M , every
p ∈ P ∩M has an extension q ≤ p that is an (M,P )-generic condition.

It turns out that we can give many alternative definitions of properness.
An interesting one involves infinite games. We shall call Γ(P ) the proper game
associated to P . In this game we have two players I and II. At the beginning
I chooses p0 ∈ P and a dense set A0 ⊆ P . In his turn II chooses a countable
B0

0 ⊆ A0. At the second step I chooses another dense A1, whereas II answers
with B1

0 ⊆ A0 and B1
1 ⊆ A1, and so forth for ω steps. At the end of the game,

we say that II wins iff ∃q ≤ p0 such that ∀i, Bi =
⋃
{Bn

i : i ≤ n} is predense
below q.

Theorem 1.3.8. (Baumgartner, Jech, Shelah) Given a poset P , the fol-
lowing are equivalent.

1. P is proper (as in definition 1.3.7).

2. For some regular uncountable cardinal λ0 > 2|P |, for every countable M ≺
Hλ, with P ∈ M , every p ∈ P ∩ M has an extension q ≤ p that is an
(M,P )-generic condition.

3. For any uncountable λ, if S ⊆ [λ]!ω is stationary , &P “Š is stationay
in [λ]!ω” (i.e. S remains stationary in the generic extension, hence P
preserves stationary sets).

1In this definition dense can be replaced by maximal antichain.
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4. For some uncountable λ0, P preserves stationay subsets of [λ0]!ω.

5. For every regular λ > 2|P | the set T = {N ≺ Hλ : N countable, P ∈ N ,
and ∀p ∈ P ∩N ∃q ≤ p so that q is (N, P )-generic} contains a subset club
in [Hλ]!ω.

6. For some regular λ0 > 2|P | the set {N ≺ Hλ0 : N countable, P ∈ N , and
∀p ∈ P ∩N ∃q ≤ p so that q is (N, P )-generic} contains a subset club in
[Hλ0 ]!ω.

7. Player II has a winning strategy in Γ(P ).

Proof. Clearly 1 ⇒ 2, 3 ⇒ 4 and 5 ⇒ 6.
For 1 ⇒ 3, assume that P is proper and that S ⊆ [λ]!ω is stationary. We

need to show that S remains stationary in the generic extension made by P . By
the definition of a club set, we just need to find for every f : [λ]<ω → λ in V [G]
an x ∈ S such that x is closed under f . For this purpose let ḟ be a forcing name
for f .

For a sufficiently large κ, let M ≺ Hκ be countable with ḟ ,λ, p0, P ∈ M
and such that M ∩ λ ∈ S. This is possible because the set {M ∩ λ : M ∈ [κ]ω,
M ≺ Hκ and ḟ ,λ, p0, P ∈ M} is club in [λ]!ω. As P is assumed to be proper,
there is a q ≤ p0 that is (M,P )-generic.

We claim that q & “M ∩ λ is closed under f”. Let x ∈ [M ∩ λ]<ω (note that
x ∈ M) and consider the dense set D = {p ∈ P : ∃α < λ and p & ḟ(x) = α}. By
(M,P )-genericity of q, D∩M is predense below q. Thus, if there is a q′ ≤ q that
decides ḟ(x) = α, there must be a compatible r ∈ D∩M . So r & ḟ(x) = α. Now
we see that α is defined by x, ḟ and r, thus α ∈ M . Hence q′ & ḟ(x) ∈ M ∩ λ
and by genericity of q′, q & ḟ(x) ∈ M ∩ λ. Since x was arbitrary q & “M ∩ λ is
closed under f”.

For 3 ⇒ 5, let λ > 2|P | be a regular uncountable cardinal and P a notion
of forcing that preserves stationary sets. Set C = {M ≺ Hλ : M is countable
and P ∈ M}. C is club in [Hλ]!ω. For p ∈ P define Sp = {M ∈ C : p ∈ M
and ¬∃q ≤ p such that q is (M, P )-generic } ∈ V . We claim that each Sp is not
stationay, so S = {M ∈ C : ∃p ∈ M and M ∈ Sp} is not stationary, since INS

(the ideal of not stationary sets on [Hλ]!ω) is normal. Note that T = C \S and
so the claim proves that T contains a club.

Let Gp be a P -generic filter over V , with p ∈ Gp. In V [Gp] we define a
function f as follows

f : {D ⊆ P : D dense } ∩ V → Gp

D 5→ f(D) = q ∈ Gp ∩D
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Set Cp = {M ≺ HV
λ : p ∈ M and ∀D ∈ M if D is a dense subset of P ,

then f(D) ∈ M}. Clearly Cp is a club in [Hλ]!ω. We now prove in V [G] that
Sp ∩ Cp = ∅. Let M ∈ Sp and q ≤ p. Since q cannot be (M,P )-generic, there
exists a D ∈ M dense in P , such that D ∩M is not predense below q. Hence
there is a q′ ≤ q incompatible with every element of D ∩M . If we call

E = {q′ ≤ p : there exists a D ∈ M dense, such that q′ is incompatible with
every element of D ∩M},

we have just shown that E is dense in P . By genericity of q, E ∩ Gp )= ∅.
Let q0 be in E ∩Gp. By way of contradiction, we suppose that M is also in Cp.
Then f(D) ∈ M ∩Gp for all D ∈ M and so f(D) and q0 must be compatible for
all D ∈ M , since they both lie in Gp: a contradiction. This argument took place
in V [Gp], but P preserves stationary sets and so Sp must not be non stationary
in V as well.

Similary we can prove that 2 ⇒ 4 and 4 ⇒ 6.
For 5 ⇒ 7, let λ be as in 5) and let C ⊆ T be club in [Hλ]!ω. We show

how to build up a winning strategy for II in Γ(P ). At the first move player I
chooses a p0 ∈ P and A0 and II finds a N0 ∈ C such that p0, A0 ∈ N0 and
plays B0

0 = N0 ∩A0. In the second turn I chooses A1 and II finds N1 such that
N0 ⊆ N1 and A1 ∈ N1, then he or she plays B1

0 = N1 ∩ A0 and B1
1 = N1 ∩ A1,

and so forth for the rest of the game. II can always find an Ni, because C
is unbounded. At the end N =

⋃
{Nn : n ∈ ω} ∈ C, since C is closed. So

p0 ∈ N and there is a q ≤ p that is (N, P )-generic. But for all i we have that
Bi =

⋃
{Bn

i : i ≤ n} =
⋃
{Nn ∩Ai : i ≤ n} = N ∩Ai, for (M,P )-genericity of q,

is predense below q. So II has a winning strategy.
Finally we prove that 7 ⇒ 1. Let σ be a winning strategy for II in Γ(P ).

So (Bn
0 , Bn

1 , . . . , Bn
n) = σ(p0, A0, A1, . . . , An). Let λ be sufficiently large and

M ≺ Hλ, countable and such that P,σ ∈ M (note that σ ∈ Hλ). If p0 ∈ M ∩P ,
let A0, A1, . . . , An, . . . be an enumeration of all dense subset of P that lie in M .
Without loss of generality we can suppose that I plays p0, A0, A1, . . . , An, . . . By
elementarity σ ∈ M and, since p0, A0, A1, . . . , An ∈ M , σ(p0, A0, A1, . . . , An) =
(Bn

0 , Bn
1 , . . . , Bn

n) ∈ M . Since each Bn
i is countable, Bn

i ⊆ M . Thus Bi =⋃
{Bn

i : i ≤ n} ⊆ Ai ∩N . Since σ is a winning strategy for II, there is a q ≤ p0

such that, for all i, Bi is predense below q. Then so is Ai ∩N . This means that
q is (M,P )-generic.

Associating names for ordinals to dense sets that decide the names, we can
easily see that the proper game can also be played in the following way: I chooses
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p ∈ P and plays α̇n ∈ V P , names for ordinals, whereas II plays real ordinals βn.
II wins the game if there is a q ≤ p such that q & ∀n∃k α̇n = βk.

A useful fact about proper notions of forcing is that we can “control” the
countable sets of ordinals in the generic extension.

Fact 1.3.9. If P is proper and A is a countable set of ordinal in V [G] (where
G is a P -generic filter) then there exists a countable B in V such that A ⊆ B

In particular there is no ordinal α < ωV [G]
1 such that ∀β ∈ V (β < ωV

1 → β <
α). So a proper forcing notion does not collapse ℵ1.

Fact 1.3.10. If P and Q are two proper notions of forcing we have that the two
step iteration P ∗Q is still proper.

Proof. For an uncountable λ, let X ⊆ [λ0]!ω be stationary. Let G be a P -generic
filter, hence, by properness, X is still stationary in V [G]. We now force with Q
over V [G]. Let H be a Q-generic filter. Since Q is proper X is stationary in
V [G][H] = V [G ∗H]. Hence P ∗Q is proper.

1.3.3 Semiproperness

We now turn to another class of notions of forcing: the semiproper ones. Define
MP = V P ∩M . If q is (M,P )-generic and if α̇ ∈ MP is a name for an ordinal,
then q forces α̇ to be in M . That is, if the generic extension thinks that some
object in MP is a name of an ordinal, then q forces it to be interpreted as an
ordinal belonging to M . So we have that

q & M [G] ∩Ord = M ∩Ord.

Since we have a predicate for V

V = {x̌G : x ∈ V },

where x̌ is the canonical name for x, we can see that q & M [G] ∩ V = M ∩ V .
If we ask the above properties only for countable ordinals, we have semiproper-

ness.

Definition 1.3.11. (Shelah) Given a sufficiently large regular cardinal λ, M ∈
[Hλ]ω and M ≺ Hλ, P ∈ M , we say that q ∈ P is (M, P )-semigeneric if
α̇ ∈ MP , a P -name for an ordinal, and &P α̇ is a countable ordinal imply
q & α̇ ∈ M .

And so:
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Definition 1.3.12. (Shelah) A poset P is called semiproper iff for every regular
uncountable cardinal λ > 2|P |, and countable M ≺ Hλ, with P ∈ M , every
p ∈ P ∩M has an extension q ≤ p that is an (M,P )-semigeneric condition.

As for properness we have equivalent formulations, but restricted to count-
able ordinals. We also have the notion of a semiproper game, where, instead of
ordinals and name for ordinals, I and II play countable ordinals and names for
countable ordinals.

Theorem 1.3.13. (Shelah) The following are equivalent.

1. P is semiproper (as in definition 1.3.12).

2. For some regular uncountable cardinal λ0 > 2|P |, for every countable M ≺
Hλ0, with P ∈ M , every p ∈ P ∩ M has an extension q ≤ p that is an
(M,P )-semigeneric condition.

3. For every regular λ > 2|P | the set T = {N ≺ Hλ : N countable, P ∈ N ,
and ∀p ∈ P ∩ N ∃q ≤ p such that q is (N, P )-semigeneric} contains a
subset club in [Hλ]!ω.

4. For some regular λ0 > 2|P | the set {N ≺ Hλ0 : N countable, P ∈ N , and
∀p ∈ P ∩N ∃q ≤ p so that q is (N, P )-semigeneric} contains a subset club
in [Hλ0 ]!ω.

5. Player II has a winning strategy in the semiproper game.

Note that the equivalent formulation of properness in terms of preserving
stationarity on [λ]ω does not generalize to semiproperness, in preserving sta-
tionarity on [ω1]ω. We just have one direction, summarized in the following
theorem. The proof is the same as in the case of properness.

Theorem 1.3.14. (Jech) If P is semiproper and if S ⊆ [ω1]!ω is station-
ary, then &P S is stationary in [ω1]!ω (since S is stationary in [ω1]!ω iff S is
stationary in ω1, this means that P preserves stationary subsets of ω1 ).

Under strong assumptions, namely the strongest forcing axioms we will in-
troduce in the next chapter, we can have a converse of theorem 1.3.14. Then,
in that context, we will see that the class of semiproper notions of forcing and
the class of the ones that preserves stationary sets of ω1 are the same.

Definition 1.3.15. We say that a notion of forcing P is SSP (Stationary Set
Preseving) if 1P & “Š is stationary”, whenever S is a stationary set on ω1.
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1.4 Infinitary combinatorics

We recall some standard facts, useful in the applications. For the proofs or more
on the subject see [13].

Definition 1.4.1. A family F of sets is called a ∆-system if there is a fixed r,
called the root of the ∆-system, such that if a, b ∈ F , then a ∩ b = r.

We will refer to the following Lemma as the ∆-system Lemma.

Lemma 1.4.2. Let κ be an infinite cardinal. Let θ > κ be regular and satisfy
∀α < θ (|α|<κ < θ). Assume |F| ≥ θ and ∀x ∈ F (|x| < κ), then there is an
A ⊆ F , such that |A| = θ and A forms a ∆-system. Moreover, if F ⊆ [θ]≤κ we
can assume that for all x, y ∈ A, min(x\r) > sup(y\r) or min(y\r) > sup(x\r).

We will often use the ∆-system Lemma in the following form.

Corollary 1.4.3. If F is any uncountable family of finite sets, there is an
uncountable A ⊆ F which forms a ∆-system.

The following theorem is a useful application of the ∆-system Lemma.

Definition 1.4.4. A topological space X has the countable chain condition
(c.c.c.) if there are no uncountable family of pairwise disjoint non empty open
subsets of X.

Theorem 1.4.5. Suppose that Xi(i ∈ I) are spaces such that every finite r ⊆ I,∏
i∈r Xi is c.c.c. Then

∏
i∈I Xi is c.c.c.

It is not difficult to see that what can be shown for c.c.c. spaces can be
translated for c.c.c. posets and vice-versa. Hence Theorem 1.4.5 can be restated
as follows: suppose that Pi(i ∈ I) are posets such that every finite r ⊆ I,

∏
i∈r Pi

is c.c.c. Then
∏

i∈I Pi is c.c.c.

1.4.1 Combinatorial principles

We now recall some combinatorial principles and their consequences on cardinal
arithmetic.

Definition 1.4.6. (Jensen) (♦ principle) ♦ is the following statement: there
is a sequence 〈fα : α < ω1〉 of function fα : α → 2 = {0, 1} such that for every
function f : ω1 → 2 the set {α ∈ ω1 : f % α = fα} is stationary in ω1.

〈fα : α < ω1〉 is called a ♦-sequence. Jensen showed that ♦ holds in L. The
following proposition is easy to prove.
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Proposition 1.4.7. ♦ implies CH.

We now define a weaker form of ♦.

Definition 1.4.8. (Devlin, Shelah) (weak ♦ principle) w♦ is the following
statement: for each function F : 2<ω1 → 2 there is a g : ω1 → 2 such that for
any f : ω1 → 2 the set {α ∈ ω1 : F (f % α) = g(α)} is stationary in ω1.

To see that w♦ follows from ♦, we just need to define, g(α) = F (fα), for a
given F ; where fα is an element of a ♦-sequence.

An interesting characterisation of w♦, we will use later on, is the following;
see [4].

Theorem 1.4.9. (Devlin, Shelah) 2ℵ0 < 2ℵ1 iff w♦.

Hence if w♦ fails we have that 2ℵ0 = 2ℵ1 .
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Chapter 2

Forcing Axioms

In this chapter we introduce the principal forcing axioms. They are topological
principles that assure the existence, in V , of objects, whose existence cannot be
proved nor disproved in ZFC only.

We start with the general definition of a forcing axiom.

Definition 2.0.10. FA(Γ, κ): For every notion of forcing P with the property
Γ and D a collection of κ-many dense subsets of P, there is a D-generic filter
G that intersects every D ∈ D.

2.1 Martin’s Axiom

Historically the forcing axioms were defined trying to generalize Martin’s axiom.
This axiom was formulated for the first time by Martin and it has its origin in
the study of iterated forcing, whose first application was to show that Suslin’s
Hypothesis is independent from ZFC.

Definition 2.1.1. (Martin’s Axiom) MA(κ): whenever P is a non-empty
c.c.c. partial order and D is a family of ≤ κ dense subsets of P , there is a filter
G in P such that G ∩ D )= ∅, for all D ∈ D. MA is the statement ∀κ < 2ℵ0

MA(κ).

Thus MA(κ) =FA(c.c.c., κ). Some consequences of MA show that the cardi-
nals between ω and 2ω share many properties with ω. For example, under MA,
we have that for κ < 2ω, 2κ = 2ω and that the union of κ subsets of R, each of
Lebesgue measure zero, has Lebesgue measure zero.

MA however does not say much about the cardinality of the continuum. By
one of the first application of an iterated forcing, it was shown that MA and CH
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are independent. Indeed MA(κ) is consistent with 2ℵ0 = λ, for any λ such that
cof(λ) > κ.

Theorem 2.1.2. (Solovay and Tennenbaum) Assume that κ ≥ ω1, κ is
regular and 2<κ = κ. Then there is a generic extension in which MA holds and
2ω = κ.

The following theorem shows that we have an upper bound for MA(κ).

Fact 2.1.3. MA(2ℵ0) is inconsistent.

Proof. Let P be the forcing of all finite partial functions from ω to 2, ordered
by end-extension. Define the countable family of dense sets

Dn = {p ∈ P : n ∈ dom(p)}.

Moreover for every total function h : ω → 2 define the dense set

Eh = {p ∈ P : ∃n ∈ dom(p)(p(n) )= h(n))}

If G is a {Dn : n ∈ ω}-generic filter and G ∩ Eh )= ∅, then
⋃

G )= h.
Now if we set D = {Dn : n ∈ ω} ∪{ Eh : h ∈ 2ω}, we have |D| = 2ℵ0 .

Assuming MA(2ℵ0), we obtain a generic filter G such that if A ∈ D, then G∩A )=
∅. Hence

⋃
G is a real that differs from all the other reals: a contradiction.

The following theorem gives a topological equivalent formulation of MA. See
[13] for the proof.

Theorem 2.1.4. The following are equivalent:

• MA(κ)

• Let X be a compact c.c.c. (i.e. a space with no uncountable family of pair-
wise disjoint, non-empty open subsets) Hausdorff space and Uα be dense
open subsets of X, for α < κ. Then

⋂
α<κ Uα )= ∅.

Observe that for κ = ω we have stated the Baire category theorem that holds
for any compact topological space. For κ > ω the countable chain condition
hypothesis is essential.

Definition 2.1.5. MAκ: MA restricted to posets of size strictly less than κ.

The following theorem is useful in proving that MA is consistent with ZFC.

Lemma 2.1.6. MA is equivalent to MA2ℵ0 .
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Hence it is sufficient to force MA in the generic extension for notions of
forcing of cardinality less than 2ℵ0 . We will see that this is not the case for
stronger forcing axioms.

We can give a more general definition in the line of Definition 2.1.5.

Definition 2.1.7. FA(Γλ, κ): FA(Γ, κ) restricted to posets with the property Γ
and of size < λ.

We can restate Lemma 2.1.6 as FA(c.c.c.,κ) = FA(c.c.c.2ℵ0 , κ).

2.2 PFA, SPFA and MM

If we want to generalize MA to obtain stronger forcing axioms we could widen
the class of forcing notions involved and change the cardinality of the family of
the dense sets.

The following facts show one of the reasons why we use the class of proper
notions of forcing.

Fact 2.2.1. If a notion of forcing P is c.c.c. then it is proper.

Proof. Every condition is (M, P )-generic, for a suitable M ≺ Hλ. This is because
in the definition of properness we could equivalently use dense sets or maximal
antichains and if A is a maximal antichain, then by Theorem 1.2.7 since A ∈ M
and by the c.c.c. condition is countable, then A ⊆ M . Hence for every p ∈ P
there is a compatible extension of p in A ∩M .

Fact 2.2.2. Every ω-closed forcing P is proper.

Proof. Set p0 = p ∈ P and find, once given an enumeration {Dn}n∈ω of all the
dense sets of P in M , a decreasing sequence {pn} of conditions in P ∩M such
that pn ∈ Dn. Then a common extension of all the pn’s is (M,P )-generic and
it exists because P is ω-closed.

So we have that Pc.c.c. ∪ Pω-closed ⊆ PProper, where

PΓ = {P : P is a notion of forcing with the property Γ}.

This is one of the reasons why, for a natural generalization of MA, we consider
a forcing axiom where the class of forcing notions is the proper one. This is called
Proper Forcing Axiom (PFA):

Definition 2.2.3. (Proper Forcing Axiom) PFA: FA(PProper,ℵ1) holds.
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If we replace proper with semiproper we have a stronger forcing axiom: the
SemiProper Forcing Axiom. This is because PProper ⊆ PSP . Indeed, if for some
countable model M all the names for ordinals in MP are forced to be ordinals
in M , then the names for countable ordinals are forced too.

Definition 2.2.4. (SemiProper Forcing Axiom) SPFA: FA(PSP ,ℵ1) holds.

A property shared by all the classes of forcing introduced so far is that of
preserving stationary subsets of ω1. Recalling definition 1.3.15, PSSP is the class
of forcing notions that preserve stationary subsets of ω1. The corresponding
forcing axiom is called Martin’s Maximum, MM.

Definition 2.2.5. (Martin’s Maximum) MM: FA(PSSP ,ℵ1) holds.

So far we have that

Pc.c.c. ∪ Pω-closed ⊆ PProper ⊆ PSP ⊆ PSSP

which implies that

MM ⇒ SPFA ⇒ PFA ⇒ MA(ω1).

In the next chapter we will see that assuming SPFA the notions of semiproper-
ness and of stationary set preservation coincide (i.e. PSP = PSSP ) and so MM
and SPFA are equivalent.

One may try to improve MM, but next fact shows that Martin’s Maximum
is the strongest forcing axiom of the kind FA(Γ, ℵ1). This is the reason of its
name.

Theorem 2.2.6. Let P be a notion of forcing such that there is a stationary
set S ⊆ ω1 and &P “S is not stationary ′′. Then there is a family D of size ℵ1

of dense subsets of P such that there is no generic filter G that intersects every
D ∈ D.

Proof. Since S in not stationary in V [G], whenever G is a P -generic filter, there
is a club Ċ ∈ V P such that &P S ∩ Ċ = ∅. Define for every α ∈ ω1

Dα = {p ∈ P : ∃β > α such that p & β ∈ Ċ}.

It is easy to check that every Dα is dense. For each α ∈ ω1 define

Eα = {p ∈ P : either p & α ∈ Ċ or ∃γ < α ∀ξ ∈ (γ,α) p & ξ /∈ Ċ}.
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All the Eα’s are dense as well. Suppose that there is a G such that ∀α (G∩Dα )=
∅) and ∀α (G ∩ Eα )= ∅) and define

C = {α ∈ ω1 : ∃p ∈ G p & α ∈ Ċ}.

Then C is a club in ω1: we show it in the same way we would show that the
Dα and the Eα are dense sets. Indeed if α ∈ ω1, then G ∩Dα )= ∅ and so there
is a p ∈ G such that p & β ∈ Ċ, for some β > α. Hence C is unbounded. To
see that it is closed we use the sets Eα. Let γ be a limit point such that there
is a p ∈ G that force γ /∈ Ċ, but is a limit of elements of C, say (γn)n. Then
p ∈ Eα and so there is a ξ such that Ċ ∩ γ = ξ. Take a sufficiently big m such
that there is a q ∈ G with q & γm ∈ Ċ and ξ < γm < γ. Since G is a filter there
is a common extension of both p and q, say r that forces γm to be and not to
be in Ċ: impossible. Thus C ∩ S = ∅, contradicting the stationarity of S.

The next theorems gives respectively, an upper and a lower bound for the
consistency strength of MM in terms of large cardinals.

Theorem 2.2.7. (Foreman, Magidor, Shelah) If there is a supercompact
cardinal, then there is a generic model that satisfies MM (hence PFA and SPFA).

Theorem 2.2.8. (Foreman, Magidor, Shelah) Con(ZFC + MM) implies
Con(ZFC + ∃ class many Woodin cardinals).

2.3 Bounded Forcing Axioms

We now present another interesting class of forcing axioms, the Bounded Forcing
Axioms: FA(Γ, κ,λ), where Γ is a property that defines a class of posets and κ
and λ are cardinals.

Definition 2.3.1. (Bounded Forcing Axioms) FA(Γ, κ,λ): for every notion
of forcing P with the property Γ and I a collection of κ maximal antichains of
B = r.o.(P ) \ {0} (where r.o.(P) is the regular open boolean algebra associated
to P), such that |I| ≤ λ, for all I ∈ I, there is a generic filter G that intersects
every I ∈ I.

If φ ∈ FA(Γλ, κ), then φ ∈ FA(Γ, κ,λ), because there are no maximal an-
tichains in P of cardinality greater than λ, if P itself has a cardinality at most
λ. Then MA(ℵ1) can be seen as the first bounded forcing axiom.

Note that in the previous definition we are dealing with antichains instead
of dense subsets. In the definition of FA(Γ, κ) there was no difference in using
dense sets or antichains, but here we need to stress the difference. The reason
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is that if a poset P has cardinality κ, where κ is regular, then the dense subsets
of P may have cardinality κ.

It is also useful to remark that we are using the antichains of B = r.o.(P )\{0}
and not of P just for technical reasons, because the generic extensions yield by
a poset P or by B = r.o.(P ) \ {0} are exactly the same.

The bounded forcing axioms we will be interested in are the FA(Γ, ω1, ω1),
where Γ is proper, semiproper or stationary set preserving. The correspond-
ing axioms are respectively BPFA (Bounded Proper Forcing Axiom), BSPFA
(Bounded SemiProper Forcing Axiom) and BMM (Bounded Martin’s Maxi-
mum). As before we have that BMM ⇒ BSPFA ⇒ BPFA ⇒ MA(ℵ1).

Another equivalent formulation of the bounded forcing axioms is in terms of
absoluteness. Recall that by the Levy-Schoenfield absoluteness theorem we have
that given a Σ1-formula of the language of set theory φ = ∃x ψ(x, a), where a
is a parameters in Hω2 , if there is a witness of the existence of such an x, then
there is a witness of it in Hω2 . In symbols

(Hω2 ,∈) ≺1 (V,∈).

The characterization of the bounded forcing axioms is then in terms of
generic absoluteness. See [1].

Theorem 2.3.2. (Bagaria) Let Γ be a class of posets and κ an infinite cardinal
of uncountable cofinality, then the following are equivalent:

1. FA(Γ, κ,κ)

2. (Hκ+ ,∈) ≺1 (V P,∈), where P ∈ Γ.

In other words FA(Γ, κ,κ) is equivalent with having Σ1-absoluteness for for-
mulas with parameters in Hκ+ between the universe and a generic extension
performed with a poset in PΓ.

As an easy corollary we have the following.

Corollary 2.3.3. Let Γ be a class of posets and κ an infinite cardinal of uncount-
able cofinality, then FA(Γ, κ) implies that (Hκ+ ,∈) ≺1 (V P,∈), where P ∈ Γ.

The converse also holds if Γ is the class of κ+-cc posets, because if P is κ+-cc,
then FA(Γ, κ) and FA(Γ, κ,κ) are equivalent.

Of course there is a similar theorem for MA, since MA can be seen as a
bounded forcing axioms. It says that every Σ1-sentence of the language of set
theory with parameters in κ, κ < 2ℵ0 , forced by a c.c.c. poset is true.
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There is a question that arises naturally: is there an equivalent characteriza-
tion for FA(Γ, κ), in terms of absoluteness? One can expect to find it increasing
the size of the parameters, but this is not the case. Indeed PFA does not imply
Σ1-absoluteness for formulas with parameters in Hω3 , forced by a proper forcing,
because, as we will see in the next chapter, it implies that the continuum is ℵ2.
So we would have an enumeration or the reals A = {rα : α ∈ ω2} belonging to
Hω3 . Now if we force to have a new Cohen real, then the following sentence:
“There is a real r that is not coded by A” is a Σ1 sentence with parameter A,
hence in Hω3 , that is true in the generic extension but not in the ground model.

Also increasing the logic complexity of the sentences involved we cannot get
more, since PFA does not implies Σ2-absoluteness either. Indeed using a proper
forcing, we can collapse the continuum to be ω1, so that CH holds in the generic
extension but not in the ground model. But CH is a Σ2-statement and so we
cannot have Σ2-absoluteness using PFA.

2.4 FA(σ-closed∗c.c.c., ℵ1)

We now present the last forcing axiom that we will use in the last chapter to
prove that the continuum is ℵ2.

Definition 2.4.1. FA(σ-closed∗c.c.c., ℵ1) is the forcing axiom obtained consid-
ering the notions of forcing that are the two step iteration of a σ-closed forcing,
followed by a c.c.c. forcing

Next theorem shows that FA(σ-closed∗c.c.c., ℵ1) is weaker than PFA.

Theorem 2.4.2. PFA implies FA(σ-closed∗c.c.c., ℵ1)

Proof. Fact 2.2.1 tells us that a c.c.c. forcing is proper and Fact 2.2.2 says that
a σ-closed forcing is proper. Since the iteration of proper forcing is also proper,
we have that Pσ-closed∗c.c.c. ⊆ PProper, hence PFA = FA(PProper,ℵ1) implies
FA(σ-closed∗c.c.c., ℵ1).
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Chapter 3

MM and PFA imply that
2ℵ0 = ℵ2

In this chapter we will present some of the proofs that 2ℵ0 = ℵ2 using some
forcing axioms: namely MM and PFA.

3.1 MM and SRP

We begin by the direct proof that MM decides the value of the continuum. This
is maybe the easiest proof, because MM is the strongest forcing axiom. Indeed
we can demonstrate something stronger.

Note before that

|[ℵ1]ℵ1 | ≤ |[κ]ℵ1 | ≤| ω1κ| ≤| [κ]ℵ1 |× 2ℵ1 = |[κ]ℵ1 |.
We argue for the equality |ω1κ| = |[κ]ℵ1 | × 2ℵ1 as follows. Given X ∈ [κ]ℵ1

we can define X̄ = {f ∈ ω1κ : ran(f) = X}. Let now #X be a well order of X̄
in order type 2ℵ1 . Now define

Ψ : ω1κ → [κ]ℵ1 × 2ℵ1

f 5→ (ran(f), α)

where α indicates that f is the α-th function in (X̄, #X) and ran(f) = X. It
is clear that Ψ is an injection. On the other hand the map sanding X ∈ [κ]ℵ1

to some fX : ω1 → κ such that ran(fX) = X is injective so |[κ]ℵ1 | ≤| ω1κ| ≤
|[κ]ℵ1 |× 2ℵ1 and 2ℵ1 ≤ |ω1κ| ≤| [κ]ℵ1 |× 2ℵ1 . Hence |[κ]ℵ1 |× 2ℵ1 = |ω1κ|.

Theorem 3.1.1. (Foreman, Magidor, Shelah) Assume MM. Than for every
regular cardinal κ ≥ ℵ2, we have that κℵ1 = κ.
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Proof. Let A = {Aα : α < κ} be a family of pairwise disjoint stationary subsets
of Eκ

ω. A exists due to theorem 1.1.5. The following claim is enough to prove
the theorem.

Claim 3.1.2. Assume MM. Then for every function f : ω1 → κ, there exists
an ordinal γf < κ of cofinality ω1 such that for all α < κ we have that

α ∈ ran(f) iff Aα ∩ γf is stationary. (3.1)

Assume that the claim holds and let f and g be functions with distinct
ranges. We first notice that γf and γg cannot be equal. By hypothesis there
is α ∈ ran(f)∆ran(g). We may assume that α ∈ ran(f) \ ran(g). Now by
the claim we have that Aα ∩ γf is a stationary subset of γf , while Aα ∩ γg is a
non-stationary subset of γg. So γf )= γg.

It is clear that
Φ :[ κ]ℵ1 → κ
ran(f) 5→ γf

is an injection of [κ]ℵ1 into κ. Hence the theorem follows.
We now turn to the proof of the claim 3.1.2. Take f : ω1 → κ and fix a

family S = {Sα : α < ω1} of pairwise disjoint subsets of ω1 that covers ω1 and
such that for every S ⊆ ω1 stationary, there exists α so that S∩Sα is stationary
(this is possible due to theorem 1.1.5).

We show that using MM we can construct a continuos increasing F : ω1 → κ
such that, for every δ < ω1

δ ∈ Sα iff F (δ) ∈ Af(α).

To show that such a function F suffices for the proof of the claim, we let
γf = supδ<ω1

(F (δ)).
Now set E = {F (α) : α < ω1}. E is a club subset of γf as it is a continuos

and injective image of a club subset of ω1. Hence cof(γf ) = ω1. For the left
to right direction of 3.1, let α < ω1 be in dom(f) and C be a club in γf . We
need to find a δ ∈ C ∩ Af(α). Since F is continuos and injective, we have that
F−1[C∩E] is club in ω1. By the choice of S, we have that exists γ ∈ Sα∩F−1(C).
Thus, by the definition of F we have that F (γ) = δ ∈ C ∩ Af(α). For the other
direction of 3.1, we suppose Aξ ∩ γf is a stationary subset of γf and we have
to show that ξ ∈ ran(f). By the property of F we have that F−1[Aξ ∩ E] is
stationary in ω1. By the maximality of the stationary partition of ω1, we have
that exists α such that F−1[Aξ ∩E]∩Sα is stationary and so is not empty. Pick
a γ ∈ F−1[Aξ ∩ E] ∩ Sα so F (γ) ∈ Aξ, but, by definition of F , F (δ) ∈ Af(α).
Since we required the Aη to be pairwise disjoint, we have that Af(α) = Aξ. Thus
ξ = f(α).
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We now proceed to exhibit the F by an application of MM. For this purpose,
we define a stationary set preserving notion of forcing P that approximate the
F . Then, by a standard application of MM, we can construct such an F in V .

Let p ∈ P iff p : γ + 1 → κ is an increasing continuos function with domain
a countable successor ordinal and such that δ ∈ Sα iff p(δ) ∈ Af(α) for all δ ≤ γ.

Let q ≤ p iff q is an end-extention of p. We will show that Dα = {p ∈ P :
α ∈ dom(p)} is dense for all α < ω1 and that P is stationary set preserving. It
is clear that for any filter G intersecting all the dense sets Dα,

⋃
G is a function

which satisfies 3.1.
We prove the density part by induction. The base case as well as the successor

step are trivial. To prove the limit case, first of all notice that

Eξ = {p : ran(p) \ ξ )= ∅}

is dense for all ξ < κ.
Now assume that for some limit α < ω1, Dβ is dense for all β < α. Since the

family S is a partition of ω1, there is a γ such that α ∈ Sγ . Now for a sufficiently
large cardinal λ,

C = {M ∈ [Hλ]ω : M ≺ Hλ and p, P, α ∈ M}

is a club in [Hλ]ω, thus Cκ = {ξ : ∃M ∈ C and sup(M ∩ κ) = ξ} is a club
subset of Eκ

ω. Now Af(α) is stationary in Eκ
ω, so there is M ∈ C such that

sup(M ∩ κ) = η ∈ Af(γ). Let (αn)n and (ηn)n be two sequences contained in
M with limit respectively α and η. By induction we define (pn)n, a decreasing
sequence of conditions in M extending p with p0 = p. Given pn ∈ M we want
to construct pn+1 ∈ M . Note that Dαn and Eηn are definable by P , αn and ηn

which are all in M , hence Dαn , Eηn ∈ M . By inductive hypotesis Dαn is dense.
Then, by a density argument applied in M to the dense open set Eηn ∩ Dαn ,
we can define pn+1 ∈ M such that αn ∈ dom(pn+1) and pn+1(ξ) ≥ ηn for some
ξ ≥ αn. If for some n, α ∈ dom(pn) we are done since pn is a condition in
P ∩ Dα. Otherwise notice that the choice of the conditions pn is such that
α =

⋃
n dom(pn) and η = sup(

⋃
n ran(pn)). So if we set q =

⋃
n pn ∪ {〈α, η〉},

we have that q is a condition in Dα below p since η ∈ Af(γ) and any other pair
〈β, ξ〉 ∈ q appears already in some pn, now since pn is a condition in P we must
have ξ ∈ Af(β).

We now show that P is stationary set preserving. To this aim let S ⊆ ω1

be stationary, p ∈ P and Ċ a name for a club in V P . We must find δ ∈ S and
q ≤ p such that q & δ ∈ Ċ. First of all by maximality of S there is α such that
S ∩ Sα is stationary.
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Let λ be a sufficiently large regular cardinal, such that p, P, Ċ ∈ Hλ, then

E = {N ∈ [Hλ]ω1 : Ċ ∈ N ≺ Hλ such that ω1 ⊆ N and sup(N ∩ κ) ∈ Af(α)}

is a stationary subset of [Hλ]ℵ1 such that

Eκ = {sup(N ∩ κ) : N ∈ E}

is a stationary subset of Eκ
ω.

We show that E is stationary in [Hλ]ℵ1 and that Eκ is stationary in Eκ
ω at

the same time . Fix a function F : [Hλ]<ω → Hλ, then it is easy to see that
H = {η < κ : κ ∩ F”[η]<ω ⊆ η} is club. Let S ⊆ Eκ

ω be a stationary set, then
S∩H )= ∅. Now pick δ ∈ Af(α)∩H and fix a sequence (δn)n with limit δ. We set
M = clF (ω1∪{δn}n), the closure of ω1∪{δn}n under F . Hence M ∈ E, because
δ has countable cofinality and is closed for F . This shows that E is stationary.
Moreover sup(M ∩ κ) = δ, because we did not get new bigger ordinals, since
κ ∩ F”[δ]<ω ⊆ δ and so Eκ is stationay in Eκ

ω.
Moreover

D = {M ∈ [N0]ω : Ċ ∈ M ≺ N0 is such that sup(M ∩ κ) = η}

is a club subset of [N0]ω. To see it let H : [N0]<ω → N0 and let X be closed for
H such that sup(H) = γ an γ /∈ M .

Then we have that

Dω1 = {δ : ∃M ∈ D such that M ∩ ω1 = δ}

is club in ω1.
Hence, by stationarity of S ∩ Sα, there exists M countable elementary sub-

structure of N0, such that P, p, Ċ ∈ M , sup(M ∩ κ) = η ∈ Af(α) and M ∩ ω1 =
δ ∈ S ∩ Sα. As before we fix (δn)n and (ηn)n two sequences with limit re-
spectively δ and η and we find an increasing sequence of (pn)n, such that each
pn ∈ M , δn ∈ dom(pn+1) and pn+1(ξ) ≥ ηn for some ξ ≥ δn. Now we also ask
that at stage n there is a βn ≥ δn in M such that pn+1 & βn ∈ Ċ, since Ċ is a
name for a club. Then as before we can argue that q =

⋃
n pn ∪ {〈δ, η〉} ∈ P ,

moreover we have that δ = limn βn and q & δ ∈ Ċ since q & βn ∈ Ċ for all n
and δ = supn βn. This is true because βn < δ for every n, since βn is definable
by parameters in M , hence βn ∈ M and so βn < M ∩ ω1 = δ. This completes
the proof of the claim and proves the theorem.

We then have our theorem as a corollary.

Corollary 3.1.3. MM implies that 2ℵ0 = ℵ2.
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Proof. By the above theorem we have that 2ℵ0 ≤ 2ℵ1 ≤ ℵℵ1
2 = ℵ2. But MM

implies MA(ℵ1) so ℵ1 < 2ℵ0 . So we have that 2ℵ0 = ℵ2.

A careful reading of the proof shows that we can divide it into two parts. In
the first one we prove that MM gives us an object in V (in this case a function)
with the desired properties. In the other part we see that the existence of such
an object implies some reflecting properties involving stationary sets.

This is the reason why, soon after this proof, some reflection principles have
been isolated. The strategy is to show that MM implies them, using MM just
once, and then, without reference to forcing, use these principles to infer state-
ments about the universe of sets.

We need the definition of a projective stationary set.

Definition 3.1.4. We say that S ⊆ [λ]ω is projective stationary if for every
stationary set T ⊆ ω1, the set {X ∈ S : X ∩ ω1 ∈ T} is stationary in [λ]ω.

The original definition of SRP is due to Todorčević, but the following defini-
tion is an equivalent version due to Jech. The concepts we are going to introduce
are been extensively studied by Jech, Feng and Zapletal, see [8], [9], [10].

Definition 3.1.5. (Jech-Todorčević)(Strong Reflection Principle (SRP))
For every regular λ ≥ ℵ2 the following principle SRP(λ) holds: if S is projective
stationary in [Hλ]ω, then there is a continuous increasing ∈-chain 〈Mα : α < ω1〉
(i.e. if α < β, Mα ∈ Mβ and if γ is limit, Mγ =

⋃
α<γ Mα) of countable ele-

mentary submodels of Hλ, such that, for every α < ω1, Mα ∈ S.

We now define another reflection priciple that follows from SRP and that is
simpler to use in the applications.

Definition 3.1.6. (Jech)(Reflection Principle (RP)) For every regular λ ≥
ℵ2 the following principle RP(λ) holds: if S is stationary in [Hλ]ω, then there is a
continuous increasing ∈-chain (Mα : α < ω1) of countable elementary submodels
of Hλ, such that {α < ω1 : Mα ∈ S} is stationary.

Before, we need a useful consequence of SRP.

Definition 3.1.7. Given κ a regular uncountable cardinal, we say that an ideal
I on κ is λ-saturated if there exists no collection W of size λ of subsets of κ
such that X /∈ I for all X ∈ W and if X, Y are distict members of W , then
X ∩ Y ∈ I.

Theorem 3.1.8. Assuming SRP we have that NSω1, the ideal of the non sta-
tionary sets on ω1, is ℵ2-saturated (i.e. every maximal stationary antichain in
NSω1 has size at most ℵ1).
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Proof. Let W be a maximal family of stationary sets such that if X, Y ∈ W , then
X ∩ Y is not stationary. We call such a family a maximal stationary antichain.
We shall show that |W | ≤ℵ 1. For this purpose we claim that the set

S = {M ∈ [Hω2 ]
ω : M ≺ Hω2 , W ∈ M and ∃A ∈ W ∩M (M ∩ ω1 ∈ A)}

is projective stationary.
For a stationary T ⊆ ω1, since W is a maximal stationary antichain, we have

that there exists A ∈ W such that T ∩ A is stationary. Let C ⊆ {M ∈ [Hω2 ]ω :
A ∈ M ≺ Hω2}, C is club, so {M ∩ω1 : M ∈ C} is club in ω1. By stationarity of
T ∩A, there is a M ∈ C such that M∩ω1 ∈ T ∩A. Hence {M ∈ S : M∩ω1 ∈ T}
is stationary in [Hω2 ]ω and so S is projective stationary.

So we can apply SRP and find an ∈-increasing continuous chain 〈Mα : α <
ω1〉 of countably elementary substructures of Hω2 , such that, for every α ∈ ω1,
Mα ∈ S. If we call M =

⋃
α<ω1

Mα and we show that W ⊆ M , we are done.
By way of contradiction we suppose that there is a A ∈ W \ M . Now

consider the elementary chain 〈Nα : α < ω1〉, where Nα is the Skolem hull of
Mα ∪ {A} ∪ α and N =

⋃
α<ω1

Nα. By a fixed point argument we can see that
set {α ∈ ω1 : Mα ∩ ω1 = α} is club. So, by definition of Nα, the set

C = {α ∈ ω1 : Mα ∩ ω1 = Nα ∩ ω1 = α}.

is a club.
Take α ∈ C ∩A. Since S is projective stationary, Mα ∈ S and, by definition

of S, there is a B ∈ W ∩Mα such that α ∈ B. But W is a maximal stationary
antichain and A, B ∈ W , so we have that A ∩ B is non stationary. Then we
can find a club set D such that A ∩ B ∩D = ∅. By definition of Nα, we have
that A, B ∈ Nα, so we have that D ∈ Nα. But α ∈ D, because D ∈ Nα is club
and, by en elementary argument, α = Nα ∩ω1 is a limit point of D; indeed D is
unbounded in Nα ∩ ω1. This is a contradiction, since α ∈ A, α ∈ B and α ∈ D,
but A ∩B ∩D = ∅.

Thanks to theorem 3.1.8, we have the following fact.

Fact 3.1.9. If NSω1 is ℵ2 saturated and λ is a regular cardinal, then for every
S ⊆ [λ]ω there is a stationary A ⊆ ω1 such that for every stationary B ⊆ A, the
set {X ∈ S : X ∩ ω1 ∈ B} is stationary.

Proof. For every stationary set A ⊆ ω1 define

SA = {X ∈ S : X ∩ ω1 ∈ A}.
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Now let W = {Aξ : ξ < θ} be a maximal antichain of stationary sets such that
SAξ is non stationary. Since NSω1 is ℵ2-saturated, we have θ ≤ ω1. Without
loss of generality we can suppose θ = ω1.

Let Cξ ⊆ [λ]ω be the club that witnesses that SAξ is non stationary, i.e.
Cξ ∩ SAξ = ∅. Then define A = 9ξ(ω1 \Aξ) and

C = 9ξCξ = {X ∈ [λ]ω : X ∈
⋂

α∈X

Cα}

respectively the diagonal intersection of the complements of the Aξ and of the
Cξ.

By normality of the club filter, C is still a club. Hence C ∩ S is stationary.
Explicitly C ∩ S = {X ∈ S : ∀α ∈ X ∩ ω1 X ∈ Cα}. If we set X ∩ ω1 = β, we
can read it as: there are stationarily many X ∈ S such that their traces avoid
the sets Aα, for α < β. Then it follows that A = {β ∈ ω1 : β /∈

⋃
α<β Aβ} is

stationary. Hence A is the stationary set we were looking for. The stationarity
of SA lies on the stationarity of C ∩ S.

We can now prove the following chain of implications: MM ⇒ SRP ⇒ RP.

Theorem 3.1.10. SRP implies RP.

Proof. Let S ⊆ [Hλ]ω be stationary, we need to find a continuous increasing
∈-chain 〈Mα : α < ω1〉 of countable elementary submodels of Hλ, such that
the set {α < ω1 : Mα ∈ S} is stationary. By theorem 3.1.8 and fact 3.1.9, we
have that there is an A ⊆ ω1 such that for every stationary B ⊆ A, the set
{X ∈ S : X ∩ ω1 ∈ B} is stationary. We claim that the set

T = {M : M ∈ S or M ∩ ω1 /∈ A}

is projective stationary. Indeed, if R ⊆ ω1 is stationary we have R ⊆ A or
R ∩ A /∈ NSω1 (or both, as well). In the first case the fact 3.1.9 tells us that
{M ∈ T : M ∩ω1 ∈ R} is stationary. Otherwise, if R∩A /∈ NSω1 , for stationary
many M we have that M ∩ ω1 ∈ R \A, since {α ∈ R : α /∈ A} is stationary.

Then we can use SRP and find a continuous increasing ∈-chain 〈Mα : α < ω1〉
of countable elementary submodels of Hλ, such that Mα ∈ T for all α. So, for
stationary many α, Mα ∩ ω1 ∈ A, hence, for stationary many α, Mα ∈ S.

Theorem 3.1.11. MM implies SRP.

Proof. Given an S ⊆ [Hκ]ω projective stationary, we shall force an ∈-increasing
continuous chain 〈Mα : α < ω1〉 of countable elementary substructures to be in
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S, using a stationary set preserving notion of forcing P . Then, by a standard
application of MM, this chain will live in V .

We say that p ∈ P iff p = 〈Mα : α ≤ γ〉 and, for all α ≤ γ, Mα ∈ S. We
can see conditions as sets of pairs {(α,Mα) : α ≤ γ}. Then, q ≤ p iff q is an
end-extension of p. By MM, there is a filter G that intersects the dense sets
Dα = {p ∈ P : α ∈ dom(p)} for all α ∈ ω1. So clearly

⋃
G is the chain with the

desired property, provided that Dα is dense for all α.
We still need to prove that P is a stationary set preserving notion of forcing.

To this aim let T ⊆ ω1 be stationary and Ċ ∈ V P a name for a club. For p ∈ P
we need to find a q ≤ p and a δ ∈ T such that q & δ ∈ Ċ. We fix a sufficiently
large cardinal λ such that P, Ċ, S, T, p ∈ Hλ. Since S is projective stationary
ST = {M ∈ S : M ∩ ω1 ∈ T} is stationary in [Hκ]ω. Then, by lemma 1.2.3,
S[Hλ]ω

T (i.e. the lift of ST to [Hλ]ω) is stationary in [Hλ]ω. Moreover we have
that

{M ∈ [Hλ]ω : M ≺ Hλ}.

is club in [Hλ]ω. Hence there is an M ≺ Hλ such that M ∩ Hκ ∈ S and
M ∩ ω1 = δ ∈ T .

Since M is countable we can enumerate all its dense subsets {Dn}n∈ω. Now
we define a sequence of decreasing conditions pn+1 ≤ pn such that

• p0 = p,

• for all n, pn+1 ∈ Dn,

• for all n, pn ∈ M .

Fix a sequence (δn)n ⊆ M that converges to δ. If pn = 〈Mα : α ≤ γn〉, by
a density argument applied in M and since Ċ is club, we can find a sequence
(ηn)n ⊆ M with limit δ such that, for all n, γn+1 > ηn+1 ≥ δn and pn+1 &
ηn+1 ∈ Ċ. So, limγn = δ = limηn. Since, for every n, Mγn ∈ S and pn ∈ M , we
have that

⋃
n∈ω Mγn = M ∩Hκ. Thus, if we set q =

⋃
n∈ω pn ∪ {(δ, M ∩Hκ)},

then q ∈ P and q & δ ∈ Ċ.

We now see how to factorize the proof of MM via SRP. We just need to show
that the claim of theorem 3.1.1 follows from SRP.

Claim 3.1.12. Given a maximal family S = {Sα : α < ω1} of disjoint station-
ary subsets of ω1, a family A = {Aα : α < κ} of disjoint stationary subsets of
Eκ

ω, a function f : ω1 → κ and λ, a sufficiently large cardinal, we have that the
following set

R = {M ∈ [Hλ]ω : M ≺ Hλ, for some α ∈ M∩ω1, M∩ω1 ∈ Sα and sup(M∩κ) ∈ Af(α)}
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is projective stationary.

Proof. We need to show that if T ⊆ ω1 is stationary; then the set {M ∈ R :
M ∩ ω1 ∈ T} is stationary. Since the family S is maximal, there is α such that
T ∩ Sα is stationary. Then a careful reading of the proof that the forcing P , in
theorem 3.1.1, is stationary set preserving shows that there are stationary many
models in R with the desired property.

Since R is projective stationary we can use SRP to exibit a a continuous
increasing ∈-chain 〈Mα : α < ω1〉 such that for every α < ω1, Mα ∈ R. Set
F : ω1 → κ such that, for δ ∈ ω1, F (δ) = sup(Mβ ∩ κ).

3.1.1 Reflection implies PSP = PSSP

We end this section showing that, assuming SRP, the class of semiproper forcing
and the class of stationary set preserving ones are the same.

Theorem 3.1.13. If we call PSP the class of semiproper forcing and PSSP the
class of stationary set preserving forcing, we have that SRP implies PSP = PSSP .

Proof. We first note that a semiproper forcing P is stationary set preserving. So
we just need to show that, under SRP, every stationary set preserving forcing is
also semiproper.

By way of contradiction, suppose that there is a forcing Q ∈ PSSP \PSP and
fix a sufficiently large cardinal κ such that every Q-name for a countable ordinal
is in Hκ. Then, by theorem 1.3.13, there is a p ∈ Q such that

X = {M ∈ [Hκ]ω : M ≺ Hκ and ¬∃q ≤ p such that q is (M,Q)-semigeneric }

is stationary in [Hκ]ω.
By X⊥ we denote the set

X⊥ = {M ∈ [Hκ]ω : M ≺ Hκ,∀N(M ≺ N ≺ Hκ and N∩ω1 = M∩ω1 ⇒ N /∈ X)}

and we claim that S = X ∪X⊥ is projective stationary.

Claim 3.1.14. S = X ∪X⊥ is projective stationary

Proof. Let W ⊆ P(ω1) be the collection of all stationary sets S ⊆ ω1 such that

XS = {M ∈ X : M ∩ ω1 /∈ S}

is a club subset of X, i.e. the sets that witness that X is not projective stationary.
Now define X̄ = ∆S∈W XS , that is

X̄ = {M ∈ X : ∀S ∈ W ∩M we have that M ∩ ω1 /∈ S}
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Note that X9X̄ is non stationary. Actually X̄ ⊆ X, but if X\X̄ were stationary,
then for every M ∈ X \ X̄ we would have that there is an S ∈ W ∩M such that
M ∩ ω1 ∈ S and so by Fodor’s Lemma for some S ∈ W the set {M ∈ X \ X̄ :
M ∩ ω1 ∈ S} would be stationary, contradicting that S ∈ W .

Now define

YS = {M ∈ [Hκ]ω : M /∈ X, W,S ∈ M and M ∩ ω1 ∈ S}

and note that for every S ∈ W we have that YS ⊆ X⊥. Thus X̄ ∪
⋃

S∈W YS ⊆
X̄ ∪X⊥.

It is then sufficient to show that X̄∪
⋃

S∈W YS is projective stationary. This is
because, if S /∈ W then, by definition of W , there are stationary many elements
of X that have a trace on S. Otherwise, suppose S ∈ W and note that YS is
the lift of S, modulo two club conditions: M /∈ X and W, S ∈ M . Hence it is
stationary and it witnesses the projective stationarity of X̄ ∪

⋃
S∈W YS relative

to S.

By SRP we can find an ∈-increasing continuous chain 〈Mα : α < ω1〉 of
contable elementary substructures of Hκ.

Claim 3.1.15. The set SX = {α < ω1 : Mα ∈ X} is not stationary.

Proof. Let G ⊆ P be a filter and V [G] the generic extension by G. Since
P ∈ PSSP , if we suppose that SX is stationary, then it remains stationary in
V [G]. Since every Mα is countable, let, in V [G], {δ̇ξ : ξ < ω1} be an enumeration
of all names for countable ordinals that are in

⋃
α∈ω1

Mα.
We now work in V [G]. Let

C = {α < ω1 : Mα ∩ ω1 = α and ∀ξ < α(δ̇ξ ∈ Mα and δ̇ξ
G

< α)}.

It is easy to see that, by definition, C is club. If α ∈ C, then there is a
q ∈ G such that, for every δ̇ξ ∈ Mα, q & ∃β ∈ Mα (δ̇ξ = β). Thus, q is (Mα, Q)-
semigeneric: a contradiction, since Mα ∈ X. So S in not stationary in V [G] and
hence in V .

Now we come back to the proof of theorem 3.1.13. Thanks to the claim,
we can say that, modulo eliminating non stationary many Mα, the elementary
chain 〈Mα : α < ω1〉 is in X⊥. But now we can get to a contradiction again.

Let λ >κ be sufficiently large, such that Q and 〈Mα : α < ω1〉 are in Hλ. Let
M ≺ Hλ be countable. If we call δ = M∩ω1, then, by elementarity, we have that
Mδ ⊆ M ∩Hκ. Note that, for every α, α ⊆ Mα. Then δ = Mδ ∩ ω1; otherwise
we could not have Mδ ⊆ M ∩Hκ. By definition of X⊥ and since Mδ ∈ X⊥, we
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have that M ∩Hκ /∈ X. Hence there is a q ≤ p that is (M,Q)-semigeneric. The
arbitrary choice of M contradicts the stationarity of X [Hλ]ω .

Actually we can use just RP to see that PSP = PSSP . We can even use a
weaker form of reflection that we can call WRP.

Definition 3.1.16. (Weak Reflection Principle (WRP)) WRP is the fol-
lowing statement: given a cardinal λ ≥ ℵ2 and S ⊆ [λ]ω a stationary set, there
exists a set X ⊆ λ of size ℵ1 such that ω1 ⊆ X and S ∩ [X]ω is stationary in
[X]ω. We say that S reflects at X.

Theorem 3.1.17. RP implies WRP

Proof. Suppose that S is a stationary subset of [λ]ω, we need to find a subset
X of λ of size ℵ1 such that S ∩ [X]ω is stationary in [X]ω. We define S∗ =
{M ≺ Hλ : M ∈ [Hλ]ω and M ∩ λ ∈ S}. By stationarity of S, S∗ is stationary
in [Hλ]ω. We can then apply RP to S∗ and get a continuous increasing ∈-chain
〈Mα : α < ω1〉 of countable elementary submodels of Hλ, such that {α < ω1 :
Mα ∈ S∗} is stationary. If we call M =

⋃
α∈ω1

Mα, we have that M is an
elementary substruture of Hλ of size ℵ1 and that M ∩λ is the X we were looking
for. If we call Xα = Mα ∩X = Mα ∩M ∩ λ = Mα ∩ λ, it is easy to see that by
constuction of X the set {Xα : α ∈ ω1} is club in [X]ω. On the other hand, we
know by RP that {α < ω1 : Mα ∈ S∗} = {α < ω1 : Mα ∩ λ ∈ S} = {α < ω1 :
Xα ∈ S} is stationary. It follows that S ∩ [X]ω is stationary in [X]ω, because if
C is club in [X]ω we can just consider its intersection with the set of all the Xα,
that is still a club, and for stationary many index α we have that Xα ∈ S.

Definition 3.1.18. A set S ⊆ [κ]ω is a local club if the set

{X ∈ [κ]ω1 : S ∩ [X]ω contains a club in [X]ω}

contains a club in [κ]ω1.

It is not difficult to see that WRP implies that for κ ≥ ℵ2 and S ⊆ [κ]ω a
stationary set, the set

{X ∈ [κ]ω1 : S reflects at X}

is stationary in [κ]ω1 . This means that every local club in [κ]ω contains a club.
By theorem 1.3.13 we have that, if we set, for a sufficiently large θ

SP = {M ∈ [Hθ]ω : P ∈ M ≺ Hθ,∀p ∈ M ∃q ≤ p and q is semigeneric for M}

P ∈ PSP iff SP contains a club.
Jech in [8] showed that P ∈ PSSP iff SP is a local club. Hence, since WRP

implies that every local club contains a club, we have that PSP = PSSP .
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3.2 PFA and MRP

We now turn to PFA and how it decides the cardinality of the continuum. As
for MM, we present a proof that PFA implies 2ℵ0 = ℵ2 which uses a reflection
principle that can be stated without any reference to the machinery of forcing:
the Mapping Reflection Principle. The results in this section are taken from [15]
and [16].

Before we state MRP we need some definitions.

Definition 3.2.1. Let X )= ∅ be an uncountable set, λ a sufficiently large
regular cardinal and M a countable elementary submodel of Hλ such that [X]ω ∈
M . We say that Σ ⊆ [X]ω is M -stationary if whenever E ⊆ [X]ω is club and
E ∈ M , then E ∩ Σ ∩M )= ∅.

It is possible to give a topology on [X]ω, called the Ellentuck topology,
declearing the sets

[x, N ] = {Y ∈ [X]ω : x ⊆ Y ⊆ N}

to be open; where N ∈ [X]ω and x ⊆ N is finite. This topology is useful for our
purpose, since the closed sets cofinal in the order structure generate the club
filter on [X]ω.

Definition 3.2.2. A set mapping Σ is said to be open stationary if for an
uncountable X = XΣ and a regular uncountable cardinal λ = λΣ sufficiently
large such that X ∈ Hλ and [X]ω ∈ Hλ, we have that dom(Σ) ⊆ {M ∈ [Hλ]ω :
M ≺ Hλ} is club and, for every M ∈ dom(Σ) with X ∈ M , Σ(M) ⊆ [X]ω is
open in the Ellentuck topology on [X]ω and M -stationary.

We can now state the Mapping Reflection Principle.

Definition 3.2.3. (Mapping Reflection Principle (MRP)) If Σ is an open
stationary set mapping, there is a continuous ∈-increasing chain 〈Nξ : ξ < ω1〉
of elements in the domain of Σ such that for all limit ordinal 0 < ν < ω1 there
is a ν0 < ν such that, for all η ∈ (ν0, ν), if ν0 ∈ Nη, then Nη ∩XΣ ∈ Σ(Nν).

We now prove that MRP is a consequence of PFA.

Theorem 3.2.4. (Moore) PFA implies MRP

Proof. Let Σ be an open stationary set mapping defined on a club set C of
elementary models of Hλand let X = XΣ and λ = λΣ be the assiocated param-
eters. The strategy will be of using a proper notion of forcing PΣ to shoot an
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elementary chain with the desired property through C. Then, applying PFA,
the desired chain will be found in V .

To this aim, take p ∈ PΣ iff p : α+1 → dom(Σ). p is a continuous ∈-increasing
map such that for all 0 < ν ≤ α there is an ν0 < ν with p(ξ) ∩ X ∈ Σ(p(ν)),
whenever ν0 ∈ p(ξ) and ξ ∈ (ν0, ν). We say that q ≤ p iff q is an end-extension
of p.

If we show that the sets Eα = {p ∈ PΣ : α ∈ dom(p)} are dense for all
α ∈ ω1, then, by PFA,

⋃
G will be the desired ∈-chain, whenever G is a generic

filter.
Since dom(Σ) is a club of elementary countable model of Hλ, we have that

for every x ∈ X the following set

E∗
x = {p ∈ PΣ : ∃νx ∈ dom(p) such that x ∈ p(ν)}

is dense. We now work in V [G]. We can define

Φ : X → ω1

x 5→ νx

(where νx = some α such that x ∈ p(α)) a surjection: X =
⋃

ν∈ω1
p(ν) ∩ X,

hence Φ[X] is unbounded in ω1. Since X is uncountable and since p(ν) is
countable, then Φ is ω to one. We fix a countable model M ≺ H

2|PΣ|+ such
that Φ̇, X,Σ, PΣ, α, x ∈ M . If we set Dα = {p ∈ PΣ : ∃x ∈ X ∃η ∈ dom(p), x ∈
p(η) and p & Φ̇(x) = α̌}, then, assuming PΣ proper, we can find a (M, PΣ)-
generic condition q such that q & Φ[X ∩ M ] = M ∩ ω1. We now extend q to
decide α and so there is a q′ that forces Φ(x) = α ∈ M ∩ ω1 (by properness).
Hence, if PΣ is proper, then Dα is dense for every α ∈ ω1. But Dα ⊆ Eα, hence
Eα is dense.

Finally we show that PΣ is proper. For p ∈ PΣ, let θ > |PΣ|+ be a sufficiently
large regular cardinal and M a countable elementary submodel of Hθ such that
p, Σ, PΣ, H|PΣ|+ ∈ M and M ∩Hλ ∈ C. This is possible since C is club. We will
find an extension of p that is (M,PΣ)-generic.

Let {Di ⊆ PΣ : i ∈ ω} be an enumeration of the dense subsets of PΣ in M .
By induction we define a sequence (pn)n of decreasing conditions, with p0 = p
such that pn ∈ M ∩ Dn for all n and such that for every sup(dom(pn)) > ξ >
max(dom(p0)) we have pn(ξ) ∩X ∈ Σ(M ∩Hλ). We will find a q ≤ pn for all n
such that q(M∩ω1) = M∩Hλ and q will be (M,PΣ)-generic. Then ν = max(p0)
will witness that ∀ξ ∈ (ν, M ∩ ω1) q(ξ) ∩ X ∈ Σ(M ∩ Hλ). To this aim, fix a
sequence of countable ordinals ηn → η = M ∩ ω1.
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Suppose that pi has been defined such that ∀ξ ∈ (max(dom(p0)), sup(dom(pi)))
pi(ξ) ∩X ∈ Σ(M ∩Hλ). We now want to define pi+1. We set

Ei = {N∗ ∈ [H|PΣ|+ ]ω : N∗ ≺ H|PΣ|+ such that Hλ, Di, pi, PΣ, ηi ∈ N∗}.

Notice that Ei ∈ M since is defined with parameters in M . Since Ei is club in
[H|PΣ|+ ]ω, so is

Ei
X = {N : N = N∗ ∩X and N∗ ∈ Ei}

in [X]ω. Also Ei
X ∈ M .

Since Σ(M ∩ Hλ) is open and M ∩ Hλ- stationary, there is an Ni ∈ Ei
X ∩

Σ(M ∩Hλ) ∩M and an xi ⊆ Ni finite, such that [xi, Ni] ⊆ Σ(M ∩Hλ).
Now we extend pi to

qi = pi ∪ {(ζi + 1,hull({pi} ∪ xi))}

where ζi is the biggest element of dom(pi) and hull({pi}∪xi)) is the Skolem hull
of {pi}∪xi taken in Hλ. Notice that qi ∈ M . Since hull({pi}∪xi)) contains the
range of pi, the function qi : ζi + 1 → dom(Σ) is ∈-increasing, and since ζi + 1 is
a successor and dom(qi) does not contain new limit ordinal, qi is also continuous.
Thus qi ∈ PΣ ∩M .

Moreover, since N∗
i ∈ Ei, we have that N∗

i contains pi, xi and Hλ. Hence
qi ∈ N∗

i . So in N∗
i we can find an extension pi+1 of qi that is in N∗

i ∩Di, with
sup(dom(pi+1)) ≥ ηi. To see that for all ξ ∈ dom(pi+1) \ dom(pi) pi+1(ξ) ∩X ∈
Σ(M ∩ Hλ), we observe that if z ∈ ran(pi+1) \ ran(pi), then z ∩ X ∈ [xi, Ni],
because pi+1 ∈ N∗

i and so z∩X ∈ [xi, N∗
i ∩X] = [xi, Ni]. Hence, since Σ(M∩Hλ)

contains a neighborhood of the basic open [xi, Ni], z ∈ Σ(M ∩Hλ).
Now we set q =

⋃
i pi∪{(supiζi, M ∩Hλ)}, our argument shows that sup{ζi :

i ∈ ω} = sup{ηi : i ∈ ω} = M ∩ ω1, q(M ∩ ω1) = M ∩ Hλ, q ∈ PΣ and q is
(M,PΣ)-generic.

We now present a priciple that follows from MRP and that we will use to
show that PFA decides the cardinality of the continuum. We need to fix some
notation.

Definition 3.2.5. A sequence 0C = 〈Cξ : ξ < ω1 and lim(ξ)〉 is called a C-
sequence (or a ladder system) if Cξ is an unbounded subset of ξ of order type ω,
for all limit ordinals ξ < ω1.

For a fixed C-sequence 0C and N ⊆ M countable sets such that ot(M ∩Ord)
= α is a limit ordinal and sup(N ∩Ord) < sup(M ∩Ord), we define

w(N, M) = |sup(N ∩Ord) ∩ π−1[Cα]|
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where π : M → α is the transitive collapse of M . Is useful to note that w is left
monotonic in the sense that if N1 ⊆ N2 ⊆ M and sup(N2∩Ord) < sup(M∩Ord),
then w(N1, M) ≤ w(N2, M).

Definition 3.2.6. (Moore) (vAC) For every A ⊆ ω1, vAC(A) holds, where
vAC(A) is the following statement. There is an uncountable δ < ω2 and an
increasing sequence 0N = 〈Nξ : ξ < ω1〉 which is club in [δ]ω such that for all
limit ν < ω1 there is a ν0 < ν such that if ξ ∈ (ν0, ν), then

Nν ∩ ω1 ∈ A ⇐⇒ w(Nξ ∩ ω1, Nν ∩ ω1) < w(Nξ, Nν).

Note that if A is stationary and B is a club set and 0NA and 0NB are witness
for vAC(A), respectively vAC(B), such that

⋃ 0NA =
⋃ 0NB, then 〈Nξ : ξ <

ω1, Nξ ∈ 0NA and Nξ ∈ 0NB〉 witnesses vAC(A ∩B).
We now show how vAC follows from MRP and that vAC implies that 2ℵ1 = ℵ2.

Then, by a standard application of PFA, we will see that ℵ1 < 2ℵ0 ≤ 2ℵ1 = ℵ2

and this will conclude the proof that PFA implies 2ℵ0 = ℵ2.
Now we need a lemma.

Lemma 3.2.7. Take M ∈ {N ∈ [H(2ℵ1 )+ ]ω : N ≺ H(2ℵ1 )+}. Then Σ<(M) and
Σ≥(M) are open in the Ellentuck topology on [ω2]ω and M -stationary, where

Σ<(M) = {N ∈ [M ∩ ω2]ω : w(N ∩ ω1, M ∩ ω1) < w(N, M ∩ ω2)}

and

Σ≥(M) = {N ∈ [M ∩ ω2]ω : w(N ∩ ω1, M ∩ ω1) ≥ w(N, M ∩ ω2)}.

Proof. We begin showing that Σ<(M) is M -stationary. Let E ⊆ [ω2]ω be club
and in M . We need to find an N ∈ E ∩ Σ<(M) ∩M . Since sup{sup(Y ) : Y ∈
E} = ℵ2 > ℵ1, by the pigeonhole principle, there is a γ < ω1 such that

{sup(N) : N ∈ E and N ∩ ω1 ⊆ γ}

is unbounded in ω2. By elementarity of M , there is γ in M ∩ ω1 such that

{sup(N) : N ∈ E ∩M and N ∩ ω1 ⊆ γ}

is unbounded in M ∩ ω2. Then we can take N ∈ E ∩M such that N ∩ ω ⊆ γ
such that

w(N, M ∩ ω2) = |sup(N) ∩ π−1[Cot(M∩ω2)]| > |CM∩ω1 ∩ γ|.
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By construction of N , we have that |CM∩ω1 ∩ γ| ≥| sup(N ∩ ω1) ∩ CM∩ω1 | =
w(N ∩ ω1, M ∩ ω1), then N ∈ E ∩ Σ<(M) ∩M .

For Σ≥(M), fix again an E ⊆ [ω2]ω, club and in M . Now let γ < ω2 be
uncountable such that E∩[γ]ω is club in [γ]ω. This is possible since E is club and
so there is an F : [ω2]<ω → ω2 such that clF ⊆ E. Then C = {δ ∈ ω2 : F [δ]<ω ⊆
δ} is club in ω1. Now it is sufficient to take a γ ∈ C and F % γ : [γ]<ω → γ
witnesses that E ∩ [γ]ω is club, since clF "γ ⊆ E ∩ [γ]ω. By elementarity we can
find such a γ in M . Then, since {sup(N ∩ ω1) : N ∈ E ∩ [γ]ω} is club in ω1, we
can find N ∈ E ∩ [γ]ω ∩M such that

w(N ∩ ω1, M ∩ ω1) = |sup(N ∩ ω1) ∩ CM∩ω1 | ≥ |γ ∩ π−1
M∩ω2

[Cot(M∩ω2)]|.

and γ∩π−1
M∩ω2

[Cot(M∩ω2)] ⊆ N . Since by definition of γ, |γ∩π−1
M∩ω2

[Cot(M∩ω2)]| ≥
|N ∩ ω2 ∩ π−1

M∩ω2
[Cot(M∩ω2)]| then N ∈ E ∩ Σ≥(M) ∩M .

Finally we see that Σ<(M) is open; the same argument works equally well
for Σ≥(M).

We show that for every point x ∈ Σ<(M) there is a neighborhood of x, in
the Ellentuck topology, contained in Σ<(M). Take N ∈ Σ<(M). sup(N) <
sup(M ∩ ω2) and so there is a β such that

sup(N) ∩ π−1[Cot(M∩ω2)] ⊆ β

Note that |sup(N) ∩ π−1[Cot(M∩ω2)]| is always finite, since Cα is an ω-
sequence. Hence there is always a β ∈ N in the interval [(sup(N)∩π−1[Cot(M∩ω2)]), sup(N)].

Since we also have sup(N ∩ ω1) < M ∩ ω1 there is a γ such that

sup(N ∪ ω1) ∩ π−1[Cot(M∩ω1)] ⊆ γ

As before we can find such a γ in N .
Then, since w is left monotonic, [{β, γ}, N ] ⊆ Σ<(M). And this concludes

the proof of the lemma.

Now we can prove what we claimed.

Theorem 3.2.8. (Moore) MRP implies vAC

Proof. Take A ⊆ ω1 and M ∈ {N ∈ [H(2ℵ1 )+ ]ω : N ≺ H(2ℵ1 )+}, if we define ΣA

as follows

ΣA(M) =
{

Σ<(M) if M ∩ ω1 ∈ A
Σ≥(M) is M ∩ ω1 /∈ A,
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lemma 3.2.7 implies that ΣA is open stationary. Then we can apply MRP, with
X = ω2 and λ = (2ℵ1)+, and find a reflecting sequence 0N = 〈Nξ : ξ < ω1〉 for
ΣA. If we let δ = ω2 ∩

⋃
{Nξ : ξ < ω1}, then, since 0N is a continuous ∈ chain,

δ is an ordinal. Hence δ and 〈Nξ ∩ ω2 : ξ < ω1〉 witness vAC(A).

We now present a consequence of vAC on cardinal arithmetic, namely that
2ℵ1 = ℵ2. This will conclude the following chain of implications: PFA ⇒
MRP ⇒ vAC ⇒ 2ℵ1 = ℵ2. This result will be the first part of the proof that
PFA implies 2ℵ0 = ℵ2.

Theorem 3.2.9. (Moore) vAC implies that 2ℵ1 = ℵ2.

Proof. Our target will be to show that under vAC we can find a well ordering of
P(ω1)/NSω1 in ordertype ω2. This is sufficient since |P(ω1)| = |P(ω1)/NSω1 |.
Indeed, let S = {Sα : α < ω1} be a partition of ω1 in stationary sets, then the
map

φ : P(ω1) → P(ω1)/NSω1

A 5→
⋃

α∈A Sα

is injective. So |P(ω1)| = |P(ω1)/NSω1 |.
Fix A ⊆ ω1, by an application of vAC(A), we have an uncountable δA < ω2

and a continuous ∈-chain 0NA = 〈NA
ξ : ξ < ω1〉 club in [δA]ω. We claim that the

following function

ψ : P(ω1)/NSω1 → ω2

A 5→ min{δ : δ witnesses vAC(A)} = δA

is well defined and injective.
To see that δA = δB, whenever A =NSω1

B, let C be the complement, in ω1

of A9B. By hypothesis A9B is nonstationary, so C is club and A∩C = B∩C.
If 0NA witnesses vAC(A), then, since C is club, the set

E = {ξ : Nξ ∩ ω1 ∈ C}

is club in ω1. So 0N = 〈Nξ : ξ ∈ C〉 is a witness for vAC(B) and δB ≤ δA. With
the same argument and assuming 0NB, we show that δA ≤ δB.

For the injectivity we suppose that δA = δB = δ and we show that A =NSω1

B. The key observation here is that the ∈-chain 0NA and 0NB coincide on club
many elements. Indeed

F = {ξ ∈ ω1 : NA
ξ = NB

ξ and ξ = Mξ ∩ ω1}
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is club in ω1, because both 0NA and 0NB are club in [δ]ω. Let us consider lim(F )
the set of the limit points of F . If we show that lim(F ) ∩ A = lim(F ) ∩ B. It
follows that A =NSω1

B.
Suppose that γ is the first ordinal in (lim(F ) ∩ A) \ B. Since γ ∈ lim(F ),

we have that γ = NA
γ ∩ ω1. By definition of the ∈-chains we have that there is

a ηB < γ such that for every µ ∈ (ηB, γ)

w(NB
µ ∩ ω1, N

B
γ ∩ ω1) ≥ w(NB

µ , NB
γ ),

since γ = NA
γ ∩ω1 was chosen not to be in B. On the other hand there is ηA < γ

such that for every µ ∈ (ηA, γ)

w(NA
µ ∩ ω1, N

A
γ ∩ ω1) < w(NA

µ , NA
γ ),

since γ ∈ A.
Set η = max{ηA, ηB}, since γ is a limit ordinal, there is ν ∈ (η, γ) ∩ F .

Hence we have that NA
γ = NB

γ and NA
ν = NB

ν . This is a contradiction, because
at the same time we have that w(NB

ν ∩ω1, NB
γ ∩ω1) ≥ w(NB

ν , NB
γ ) and w(NB

ν ∩
ω1, NB

γ ∩ ω1) < w(NB
ν , NB

γ ).
Hence ψ is injective and so 2ℵ1 = |P(ω1)| = |P(ω1)/NSω1 | = ℵ2.

To conclude this section we still have to show that, assuming PFA, 2ℵ0 = 2ℵ1 .
The following theorem will suffice.

Theorem 3.2.10. Assuming PFA we have that |P(ω)| )= ℵ1.

Proof. Assuming the contrary, let {rα : α < ω1} be an enumeration of 2ω (i.e.
of the reals). Now let P2<ω be the Cohen forcing that adds a real to the generic
extension V [G], whenever G is a generic filter over P2<ω .

For every rα, define

Drα = {p ∈ P2<ω : p &
⋃

G )= rα}

Since the Cohen forcing is c.c.c., it is proper. Then we can apply PFA to
find a filter G in V such that G∩Drα )= ∅ for every α ∈ ω1. Then we have that⋃

G = r /∈ {rα : α < ω1}. A contradiction.

Corollary 3.2.11. PFA implies that 2ℵ0 = ℵ2.

Proof. PFA ⇒ vAC ⇒ 2ℵ1 = ℵ2. Moreover PFA ⇒ 2ℵ0 )= ℵ1. Then, since
2ℵ0 ≤ 2ℵ1 , it follows that 2ℵ0 = 2ℵ1 . Hence 2ℵ0 = 2ℵ1 = ℵ2.
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Note that in theorem 3.2.10 we could just assume BPFA (or even MA(ω1)),
because we just have a forcing c.c.c. and ℵ1 dense set to be intersected.

Actually BPFA is also sufficient to have vAC(A), for a fixed A. Indeed, the
sentence expressed by vAC(A) is a Σ1-sentence in the parameters 0C ∈ Hω2 , the
ladder system and A ⊆ ω1. Moreover for some A, vAC(A) can be forced in the
extension by a proper notion of forcing. Hence by the absoluteness given by
BPFA we have vAC(A). Thus we have the following corollary.

Corollary 3.2.12. (Moore) BPFA implies that 2ℵ0 = ℵ2.

We remark that BPFA is actually weaker than PFA, indeed we have that
MRP does not follow from BPFA (since they have a different consistency strength),
but vAC(A) does. The notion of forcing we need to use to force vAC(A) is a forc-
ing that shoots a continuous increasing chain in the open and M - stationary
map we defined in lemma 3.2.7 and this forcing is proper. Note that we are not
forcing MRP, but just an instance of it: the one for that particular Σ.

We conclude this section with the following remark. It is possible to show
directly that vAC decides the cardinality of the continuum. Recall that w♦ is
equivalent to 2ℵ0 < 2ℵ1 ; hence if w♦ fails, then 2ℵ0 = 2ℵ1 .

Theorem 3.2.13. vAC implies the failure of w♦.

We conclude this chapter noting that, since BMM implies BPFA, also BMM
decides that the cardinality of the continuum is ℵ2. Historically the proof that
BMM implies 2ℵ0 = ℵ2 was the first one using a bounded forcing axiom. It used
a general combinatorial principle, called θAC . This principle is similar to vAC

and can be stated with a Σ1-sentence forcable by a stationary set preserving
notion of forcing. For more on this subject see [23].
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Chapter 4

FA(σ-closed∗c.c.c., ℵ1) and the
continuum

In this chapter we see how FA(σ-closed∗c.c.c., ℵ1) affects the cardinality of the
continuum. This is the weaker unbounded forcing axiom we consider and it
follows from PFA. From now on we will abbreviate σ-closed∗c.c.c. with σ∗c.

In the same fashion as with the other forcing axioms we will use some com-
binatorial principles to factorize the proof that FA(σ∗c,ℵ1) implies 2ℵ0 = ℵ2.
On one hand we will show that the Open Coloring Axiom (OCA), introduced
by Todorčević in [22], gives ℵ2 as a lower bound to the continuum. On the other
hand we will see that by means of a certain oscillation map FA(σ∗c,ℵ1) also
gives ℵ2 as an upper bound for 2ℵ0 .

4.1 FA(σ∗c,ℵ1) and OCA

OCA can be see as a two-dimensional version of the Perfect Set Property (PSP).
We recall that the PSP says that, for every X ⊆ R, either X is countable, or it
contains a perfect set and that it follows from AD.

Every separable metric space is homeomorphic to a subset of R with the
relative topology. We shall thus concentrate on subsets of R.

Definition 4.1.1. Given Y ⊆ R, let [Y ]2 = {(x, y) ∈ Y 2 : x > y} (the half of
the plane below the bisector) and let K ⊆ [Y ]2 be a coloring.

• We say that K is an open coloring, if K is open in [Y ]2 with the relative
topology induced by R2 over [Y ]2.

• Y is said to be K-countable if Y =
⋃
{Yn : n ∈ ω}, where, for every n,

[Yn]2 ⊆ [Y ]2 \K i.e. if Yn is homogeneous for Kc = [Y ]2 \K.
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We state two different axioms. The first one OCAP is a natural consequence
of AD and we state it to justify the second one OCA, that widen the class of
sets for which the relevant dichotomy holds.

Definition 4.1.2. Given Y ⊆ R, OCAP (Y ) holds if for any K open coloring of
Y exactly one of the following holds:

• Y is K-countable,

• there is a perfect set P ⊆ Y , homogeneous for K.

OCAP holds iff OCAP (Y ) holds, for every Y .

We have the following important theorems.

Theorem 4.1.3. (Todorčević) If X ⊆ R is Σ1
1, then OCAP (X).

Theorem 4.1.4. (Feng) AD(X) implies OCAP (X).

To see OCA(X) as a two dimensional version of the PSP(X), we have to
consider the coloring K = [X]2, for X as in the above theorems.

We now present the axiom OCA.

Definition 4.1.5. (Todorčević) (Open Coloring Axiom (OCA)) Given
Y ⊆ R, OCA(Y ) holds if for any K open coloring of Y , exactly one of the
following holds:

• Y is K-countable,

• there is an uncountable set X ⊆ Y , homogeneous for K.

OCA holds iff OCA(Y ) holds, for every Y .

The next fact shows that we cannot have the same principle for closed col-
orings.

Fact 4.1.6. There is a closed coloring K of [R]2 such that neither R is K-
countable nor K has a perfect homogeneous subset.

Proof. Consider the lines ln = {(x, y) : y = x − 1/n} that accumulate on the
bisector and define K =

⋃
n<ω ln. Clearly K is closed in [R]2. We can then

define the fiber K(x) = {y : (x, y) ∈ K} = {y : ∃n ∈ ω y = x−1/n}; then K(x)
is countable. But if Y is homogeneous for K and x ∈ Y , then Y ⊆ K(x). Hence
there cannot be a perfect set homogeneous for K.
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For the other part, suppose that R =
⋃

n∈ω Xn. Since R has the Baire
Property there must be an n such that Xn is not meager. We claim that if
Z is homogeneous for Kc, then Z is meager, hence a contradiction. To see it,
suppose the contrary and let I be an in interval (it can also be R) on which Z is
comeager and let

⋂
n∈ω Dn ⊆ Z, where Dn are open dense in I. Hence K∩ [Dn]2

is open dense in K ∩ [I]2, with the relative topology induced by [I]2. Since R
is a Baire space, K ∩

⋂
n∈ω[Dn]2 is dense in K ∩ [I]2 and hence nonempty. But

this contradicts the fact that Z is homogeneous for Kc.

We now show that OCA is a consequence of FA(σ∗c,ℵ1). We will follow [24].
Given an open coloring K, we will use the convention to set K = K0 and

Kc = K1.

Definition 4.1.7. Given Y ⊆ R and an open coloring K of [Y ]2, we say that a
subset X ⊆ Y is i-homogeneous if [X]2 ⊆ Ki; where i ∈ {0, 1}.

We now present the proof of Veličković of a theorem by Todorčević.

Theorem 4.1.8. (Todorčević, Veličković) Let S be a set of reals and suppose
that K is a given open coloring (i.e. [S]2 = K0 ∪K1). Assume that S is not the
union of < 2ℵ0 1-homogeneous sets. Then there is Y ⊆ S of size 2ℵ0 such that
PY = ({X ∈ [Y ]<ω : [X]2 ⊆ K0},⊇), the poset of finite 0-homogeneous subsets
of Y ordered by reverse inclusion, has the 2ℵ0-chain condition.

Proof. Let p ∈ Sn and U ⊆ Sn be open in the product topology with p ∈ U ; pi

will denote the ith element of p. Define

Up = {q ∈ U : qi )= pi and {pi, qi} ∈ K0, for all i < n}.

Give A ⊆ Sn, f : A → S, and p arbitrary in Sn (p not in dom(f) is also possible),
let

ωf (p) =
⋂
{cl(f [Up ∩A]) : U ⊆ Sn open and p ∈ U}.

ωf (p) is the collection of the accumulation points x of f such that for every
ε > 0 we can find q ∈ Sn such that

• |q − p| < ε,

• ∀i < n {qi, pi} ∈ K0,

• |f(q)− x| < ε.
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It is useful to observe here that, once we fixed p, ωf (p) depends just on a
countable dense subfuntion of f . Let g ⊆ f be so, then ωg(p) ⊆ ωf (p), because
g ⊆ f , but if we choose x ∈ ωf (p) by the definition of ωf (p) we can find (qn)n

such that qn → p and f(qn) → x, then using the fact that g is dense we can
find, ∀ε > 0, (tn)n such that

∀t ∈ dom(g)∀n |tn − qn| < ε

and
∀n |g(tn)− f(qn)| < ε.

Since ε is arbitrary x ∈ ωg(p). This shows that ωf (p) ⊆ ωg(p).
We also observe that a priori we could have more than 2ℵ0 1-homogeneous

sets. Note that since K1 is closed, if a set T is 1-homogeneous, then its closure
is still 1-homogeneous. Since R has a countable basis (namely that given by the
rational intervals) we can code a closed set by a real.1 Thus we can enumerate
the closed 1-homogeneous subsets in order type the continuum. It is then this
sufficient for our propose that {Tξ : ξ < 2ℵ0} is an enumeration of all the closed
1-homogeneous subsets of S. Let {fξ : ξ < 2ℵ0} be an enumeration of all
countable functions from a finite power of S to S.

We can now define Y = {xξ : ξ < 2ℵ0} in the following way:

1. xα ∈ S \ {xξ : ξ < α} (hence Y has size 2ℵ0),

2. xα /∈ Tξ, for ξ < α,

3. xα does not belong to any 1-homogeneous set of the form ωfξ
(p)∩S, where

ξ < α and p ∈ [{xξ : ξ < α}]<ω.

We now show that PY has the 2ℵ0-c.c. Suppose not and let F = {sα : α ∈
2ℵ0} be a family of size 2ℵ0 of pairwise incompatible conditions of PY . Without
loss of generality we can assume that every element in F has the same size
n ≥ 1. We prove, by induction, that for every n we can find two conditions
such that their union is still a finite 0-homogeneous subset of Y , hence they are
compatible.

For n = 1, F = {{xαξ} : ξ < 2ℵ0},
⋃
F ⊆ Y and we argue as follows. If

there are {xα}, {xβ} ∈ F such that {xα, xβ} ∈ K0 we are done, otherwise we
have that

⋃
F = {xαξ : ξ < 2ℵ0} is 1-homogeneous and so is its closure. Thus

we have that there is a ξ such that cl(
⋃
F) = Tξ, but now for every α > ξ

{xα} ∈F , but xα /∈ Y , because of 2): a contradiction.
1For example we can consider a real that enumerate finite unions of rational intervals, whose

intersection is the given closed set.
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Suppose n > 1. We can refine F with an application of the ∆-system lemma
and find a root r such that ∀s, t ∈ F s ∩ t = r. Note that given s, t ∈ F
(s \ r) ∪ (t ∩ r) = s is 0-homogeneous and if s ∪ t is not 0-homogeneous, this
is witnessed by some xα ∈ s \ r and xβint ⊆ r. We can thus concentrate
on the family {s \ r : s ∈ F}; let us call this new family still F . We can
assume that r = ∅. Again, by the ∆-system lemma we can have that ∀s, t ∈ F ,
s = {xαs

0
, . . . , xαs

n−1
}, t = {xαt

0
, . . . , xαt

n−1
} are listed in increasing order with

respect to the enumeration and αs
0 > αt

n−1 or αt
0 > αs

n−1. Hence if s ∈ F , then
s = {s(0), . . . , s(n − 1)}, where the elements of s are listed in order: s(0) <
. . . < s(n− 1) < 2ℵ0 . Moreover if s )= t then there are no i, j ≤ n− 1 such that
s(i) = t(j).

Since, for every α, sα is 0-homogeneous and K0 is open, we can find an open
Uα = Iα

0 × . . .× Iα
n−1 ⊆ Sn such that,

• for every i, Iα
i has rational coordinates ,

• sα(i) ∈ Iα
i ,

• Iα
i × Iα

j ⊆ K0, for i )= j.

Refining F , using the pigeonhole principle we can find a basic open U such
that U = Uα, for avery α. Our goal is to find two conditions s, t ∈ F whose
union is 0-omogeneous. The couples with different indices raise no problems as
sα(i) ∈ Ii, sβ(j) ∈ Ij and ∀i, j < n − 1 Ii × Ij ⊆ K0. It remains to check the
homogeneity of the couples {s(i), t(i)}, for all i < n.

Since for s, t ∈ F , s∩ t = ∅, we can think of F as the graph of an (n−1)-ary
injective function g, such that, for all s ∈ F , g(s % (n− 1)) = s(n− 1) (i.e. the
function that, given the n− 1 first elements of s, gives back the last one). Note
that

ωg(s % (n − 1)) =
⋂

m cl{t(n − 1) : t % (n − 1) ∈
∏n−2

i=0 (s(i) − 1/m, s(i) +
1/m), t % (n− 1) and s % (n− 1) are 0-homogeneous }.

As we remarked above ωg(s % (n − 1)) is a closed set made of the points
that are limits of sequences (tj(n − 1))j such that tj % (n − 1) → s % (n − 1)
and tj % (n − 1) ∪ s % (n − 1) is 0-homogeneous. It is here that we use the
inductive hypothesis: to find tj % (n − 1) such that tj % (n − 1) ∪ s % (n − 1) is
0-homogeneous.

Now we can define

F0 = {s ∈ F : s(n− 1) ∈ ωg(s % (n− 1))}.
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The next claim shows that for almost all elements s ∈ F it is the case that
s(n− 1) ∈ ωg(s % (n− 1)).

Claim 4.1.9. F \ F0 has size < 2ℵ0

Proof. By way of contradiction, suppose the contrary. For each s ∈ F \F0 pick
a rational open interval Is such that

• s(n− 1) ∈ Is,

• Is ∩ ωg(s % (n− 1)) = ∅.

Fix also a basic open set U s ⊆ Sn−1 (given by a product of rational intervals)
that contains s % (n − 1) and such that, if q ∈ U s

s"(n−1), then g(q) /∈ Is; this is
possible by definition of ωg(s % (n− 1)) Since we have countable many rational
intervals, there is a Z ⊆ F \ F0 of size 2ℵ0 such that all the Is equals a fixed I
and all the U s are equal to U . By inductive assumption pick s, t ∈ Z such that
s ∪ t is 0-homogeneous. Since I and U are all the same, we get t % (n − 1) ∈
Us"(n−1) and g(t % (n − 1)) = t(n − 1) ∈ I. A contradiction with the fact that
g(t % (n− 1)) /∈ I.

Back to the proof of the theorem, we refine g and define g0 to be a countable
dense subfunction of g. Then there is a ξ such that g0 = fξ. By the above claim
we can pick s ∈ F0 such that, for all i, s(i) is above ξ and above any element
of g0. Since s ∈ F0, s(n − 1) ∈ ωg(s % (n − 1)). For what we remarked above
ωg(s % (n−1)) = ωg0(s % (n−1)) = ωfξ

(s % (n−1)) and so, by 3), ωfξ
(s % (n−1))

is not 1-homogeneous, since s(n− 1) ∈ ωfξ
(s % (n− 1)). Recall that K0 is open;

so we can take u, v ∈ ωfξ
(s % (n − 1)) such that {u, v} ∈ K0 and two open

intervals I and J , such that u ∈ I, v ∈ J and I × J ⊆ K0. By the definition of
ωg0(s % (n− 1)), there is a p ∈ domg0 such that p ∪ s % (n− 1) is 0-homogeneous
and g0(p) ∈ I. Now take a sufficiently small U ⊆ Sn−1 such that, s % (n−1) ∈ U
and for every q ∈ U , p ∪ q is 0-homogeneous. This is possible since K0 is open.
Pick a q ∈ U such that g0(q) ∈ J . Thus p∪ g0(p) and q ∪ g0(q) are two elements
of F whose union is 0-homogeneous.

Theorem 4.1.10. FA(σ∗c,ℵ1) implies OCA.

Proof. Fix a set of reals S and an open coloring K. Assume that S cannot be
covered by countably many 1-homogeneous sets. Let P be the σ-closed poset
that collapse 2ℵ0 to ℵ1. We now work in V [G], where G is a P -generic filter.
Since P is σ-closed, in the generic extension, it is still true that S cannot be
covered by countably many 1-homogeneous sets. By Theorem 4.1.8, since in
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V [G] holds CH, there is a Y = {xξ : ξ < 2ℵ0} ⊆ S of size ℵ1 such that PY is
c.c.c. We force over V [G] with PY . Let ḟ ∈ V P , ḟ : ω1 → 2ℵ0 be a bijection
and choose a Ż ∈ V P∗PY such that 1P∗PY & “Ż = {xαξ : ξ < ω1} ⊆ Y is
0-homogeneous”.

Since, for every α ∈ ω1,

Dα = {〈p, K〉 : ∃ξ ḟ(ξ) ≥ ḟ(α) and 〈p, K〉 & xf(ξ) ∈ Ż}

is dense. Let H be a {Dα : α ∈ ω1}-generic filter, then {x : ∃p ∈ H p ! x ∈ Ż}
is an uncountable 0-homogeneous subset of S.

Finally assuming FA(σ∗c,ℵ1) we can have such a {Dα : α ∈ ω1}-generic
filter in V . Hence Z ⊆ S is a 0-homogeneous set of size ℵ1; thus OCA holds.

4.2 OCA, gaps and the continuum

We now see how OCA affects the continuum. We will show that it decides an
important cardinal invariant of the continuum; see [7].

We need to recall some theorems and definitions relative to objects that live
in the space ωω = {f : f : ω → ω}.

Definition 4.2.1. Given u ∈ ωn for some n ∈ ω, we define

[u] = {f ∈ ωω : f % n = u}.

Definition 4.2.2. Given u, v ∈ ωn for some n ∈ ω, we define

[u]⊗ [v] = {(x, y) : (x ∈ [u] ∧ y ∈ [v]) ∨ (x ∈ [v] ∧ y ∈ [u])}.

Definition 4.2.3. Given f, g ∈ ωω we say that f eventually dominates g and
we write g <∗ f if |{n : f(n) ≥ g(n)}| is finite.

A set A ⊆ ωω is said to be bounded if there is a f ∈ ωω such that g <∗ f ,
whenever g ∈ A. Otherwise is said to be unbounded.

Definition 4.2.4. The cardinal b is the minimal size of an unbounded family
on ωω.

Our goal is to show that, under OCA, we can prove that b = ℵ2. Before we
need to develop the theory of gaps on ωω.

Definition 4.2.5. (A, B) is called a (κ, λ∗)-pregap in ωω if A = {fα : α ∈ κ},
B = {gβ : β ∈ λ} and the following conditions are respected:
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1. for all α < γ < κ, we have fα <∗ fγ,

2. for all β < ρ < λ, we have gβ >∗ gρ,

3. for all α < κ and β < λ, we have fα <∗ gβ.

We say that a pregap is filled if there is an h ∈ ωω such that for all f ∈ A and
g ∈ B

f <∗ h <∗ g.

By a gap we will mean an unfilled pregap.

Given a (κ, λ∗)-gap it is possible to build up a (λ, κ∗)-gap; thus we can
assume that κ ≥ λ. Also we can assume that κ and λ are regular since, given a
(κ, λ∗)-gap, we can construct in an obvious way a (cf(κ), cf(λ)∗)-gap.

In ZFC the best results we can have is that there are no (ω,ω∗)-gaps and
the following theorems. For more on the subject see [17].

Theorem 4.2.6. (Hausdorff) There exists a (ω1, ω∗1)-gap on ωω.

Theorem 4.2.7. There exists a (b, ω∗)-gap on ωω.

Under OCA, these gaps are the only ones that provably exist.

Theorem 4.2.8. (Todorčević) Assuming OCA, the only kind of gap that exists
are either (ω1, ω∗1), or (κ, ω∗), where κ ≥ b.

Proof. To get to a contradiction suppose that A = {fα : α < κ}, B = {gβ : β <
λ} and (A, B) is a (κ, λ∗)-gap, where κ and λ are uncountable regular cardinals
and κ >ω 1.

We now refine the gap in the following way. Note that for every α there is mα

such that |{β : fα(n) < gβ(n)∀n ≥ mα}| = λ. By the pigeonhole principle, for
κ-many α, mα is the same number. Rescaling the fα and the gβ and removing
the α that are not useful we can assume that for all α < κ mα = 0. Hence we
can define

X = {(fα, gβ) : ∀n fα(n) < gβ(n), α < κ, β < λ}.

We now give a coloring on X.

K = {(fα, gβ), (fξ, gη) : ∃n fα(n) ≥ gη(n) or ∃n fξ(n) ≥ gβ(n)}.

Note that K is open since if {(fα, gβ), (fξ, gη)} ∈ K, then there is a n that
witnesses it. The following open

U{(fα,gβ),(fξ,gη)} = {{(t, s), (t′, s′)} ∈ [X]2 : t % (n+1) = fα % (n+1), s % (n+1) =
gβ % (n + 1), t′ % (n + 1) = fξ % (n + 1), s′ % (n + 1) = gη % (n + 1)}
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is an open neighborhood of {(fα, gβ), (fξ, gη)} contained in K.
To prove the theorem it is sufficient to show that X is neither K-countable,

nor has an uncountable subset homogeneous for K.
Suppose that X is K-countable. Hence X =

⋃
n Xn, with each Xn 1-

homogeneous. Set
Bn = {β : ∃α (fα, gβ) ∈ Xn},

and
An = {α : ∃β (fα, gβ) ∈ Xn}.

By the definition of K and since Xn is 1-homogeneous, given α ∈ An and
β ∈ Bn, for every m, fα(m) < gβ(m). There are two cases: if there is n
such that |An| = κ and |Bn| = λ, then we can define a function g setting
g(m) = min{gβ(m) : β ∈ Bn}. For all α ∈ An and m ∈ ω, fα(m) < g(m) and
for all β ∈ Bn g <∗ gβ; then g fills the (κ, λ∗)-gap (An, Bn).

The other possibility is that, for all n, either |Bn| < λ or |An| < κ; then, by
regularity, ⋃

n

{An : |An| < κ} = α0 < κ

and ⋃

n

{Bn : |Bn| < λ} = β0 < λ.

Choose β ≥ β0 and find n0 such that (fα0 , gβ) ∈ Xn0 . Notice that Xn0 ⊆
An0×Bn0 . We get a contradiction noting that if |An0 | < κ, then α0 /∈ An0 while
if |Bn0 | < λ, then β /∈ Bn0 ; but we supposed that, for every n, either |Bn| < λ
or |An| < κ.

Since X is not K-countable, by OCA it should have an uncountable subset
0-homogeneous. We now show that such a subset cannot exist.

Again suppose the contrary and let Y be uncountable and such that [Y ]2 ⊆
K. Note that for all (fα, gβ), (fξ, gη) ∈ Y , α )= ξ and β )= η; else, since Y is
0-homogeneous, there is a n such that fα(n) ≥ gη(n) and so fξ(n) ≥ gη(n),
contradicting the fact that (fξ, gη) ∈ X.

With a bit of work we can build inductively an ω1-sequence {(fαν , gβν ) :
(fαν , gβν ) ∈ Y, ν ∈ ω1} such that fαρ <∗ fαγ <∗ gβγ <∗ gβρ, for ρ < γ. Recall
that we supposed that κ > ω1; then there is a η such that, for all ν, fαν <∗ fη.

By the pigeonhole principle we can find a n0 such that

A = {ν : ∀n ≥ n0 fαν (n) < fη(n)}

is uncountable and we can find a n1 ≥ n0 such that

B = {ν ∈ A : ∀n ≥ n1 gβν(n) > fη(n)}
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is uncountable. If we define BY = {fαν : ν ∈ B} we have that BY =⋃
u∈ω<ω BY ∩ [u]. Hence, since |ω<ω| = ℵ0 we can find u0 ∈ ωn1 such that

C = {ν ∈ B : fαν ∈ [u0]}

is uncountable and for the same reason we can find u1 ∈ ωn1 such that

D = {ν ∈ C : gβν ∈ [u1]}

is uncountable.
Observe that for all ρ, γ ∈ D, if k < n1, fαρ(k) = fαγ (k) < gβγ(k), while if

k ≥ n1, then fαρ(k) < fη(k) < gβγ(k). This means, for all ρ, γ ∈ D and for all
k ∈ ω, fαρ(k) < gβγ(k). Hence {(fαρ , gβρ), (fαγ , gβγ)} /∈ K: a contradiction.

This conclude the proof of the theorem.

We now come back to our problem: how OCA effects the continuum.

Theorem 4.2.9. (Todorčević) OCA implies that every family F ⊆ ωω of size
ℵ1 is bounded (Hence b > ℵ1).

Proof. Let A = {fα ∈ ωω : α < b} an unbounded family, without loss of
generality we can assume that A is a family of strictly increasing functions. We
define the following coloring on [A]2

K = {(fα, fβ) : ∃n, m (fα(m) < fβ(m) ∧ fα(n) > fβ(n)) ∨ (fα(m) >
fβ(m) ∧ fα(n) < fβ(n))}.

K is open: given (fα, fβ) ∈ K it is sufficient to fix the first k > n, m
coordinates, then the set of couples that coincide with (fα, fβ) on the first k
values is a 0-homogeneous neighborhood of the point:

[fα % k]⊗ [fβ % k] ⊆ K.

Observe that A cannot be K-countable; else A =
⋃

n An, with each An 1-
homogeneous, and so there would be an n0 such that An0 is uncountable. Hence,
by definition of the coloring, (An0 , <lex) would be an uncountable well order
inside ωω, which is impossible: We can see ωω as the irrational in R. Hence if
we let {xξ : ξ ∈ ω1} be an increasing sequence of reals in order type ω1 under
<lex we have that {(xξ, xξ+1) : ξ ∈ ω1} is an uncountable family of pairwise
disjoint non empty open subsetes of R; contradicting the fact that (R, <) has a
countable dense set.

So, by OCA, there is an uncountable F ⊆ A, that is 0-homogeneous. We
now show that F is bounded and, since |A| > |F| ≥ ω1, this will conclude the
theorem.
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Suppose that F is unbounded. To each t ∈ ω<ω, such that [t] ∩ F = ∅,
we associate αt such that fαt ∈ F and fαt <∗ fαs , whenever αt < αs. Choose
γ > sup{αt : t ∈ ω<ω} with fγ ∈ F such that for all t ∈ ω<ω fαt <∗ fγ . This is
possible since |ω<ω| = ℵ0 and F is uncountable. Pick now k0 ∈ ω such that

Z = {f ∈ F : ∀k ≥ k0 f(k) > fγ(k)}

is still unbounded. Such a k0 exists, because if we call Zn = {f ∈ F : ∀k ≥
n f(k) > fγ(k)}, we have that

⋃
n Zn is a final segment in A. Hence there must

be an n such that Zn is uncountable. Let then n = k0 and Z = Zn.
For our purposes we say that u ∈ ω<ω is good if Z ∩ [u] is unbounded.

Claim 4.2.10. There is a good u, |u| ≥ k0 such that {n : u#n is good } is
infinite.

Proof. Suppose the contrary, then for every u that is not good define gu ∈ ωω

such that bounds every element of Z ∩ [u]. Since there are at most countably
many such u, let g be an element of ωω such that gu <∗ g for every u that is not
good. Set now

T = {u : ∀s ( u s is good }

and note that Z = Z ∩ [T ]∪
⋃
{Z ∩ [s] : s is not good }. We assume that T is a

finite splitting tree, else the claim was proved. For every u ∈ T define fu ∈ ωω

such that at the step n, fu(n) is bigger then the value at n of any extension of
u: this is possible since T is finitely splitting. Hence if x ∈ [u]∩T , then x <∗ fu.
Again, since there are countably many u ∈ T , it is possible to define an f that
dominates (with respect to <∗) every fu. But this is a contradiction, because
for f ∈ Z either it is dominated by g, or by f , hence Z should be bounded.

Thanks to the claim we can find k1 ≥ k0 and u ∈ ωk1 such that Z ∩ [u] is
unbounded and such that the set H = {f(k1) : f ∈ Z ∩ [u]} is infinite.

By the definition of fγ(k) there is a k2 ≥ k1 such that

∀k ≥ k2 fαu(k) < fγ(k).

and there is f ∈ Z ∩ [u] such that f(k1) > fγ(k2), because H is infinite.
Note that

• if k < k1, then fαu(k) = f(k) (by the choice of k1),

• if k1 ≤ k ≤ k2, then fαu(k) ≤ fαu(k2) < fγ(k2) < f(k1) ≤ f(k),

• if k > k2, then fαu(k) < fγ(k) < f(k) (because f ∈ Z).
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We finally got to a contradiction, because both f and fαu are in F , but the
inequalities above show that {f, fαu} /∈ K.

It is still an open question whether OCA decides the cardinality of the con-
tinuum. The following result is optimal up to now and gives a lower bound to
2ℵ0 .

Theorem 4.2.11. (Todorčević) OCA implies that b = ℵ2.

Proof. We show that b > ℵ2 implies that there is a an (ω2, λ∗) gap for some
uncountable λ. By Theorem 4.2.8 this contradicts OCA. Moreover, by Theorem
4.2.9 b )= ℵ1. We conclude that b = ℵ2.

Let A = {fα : α ∈ ω2} be a family of strictly increasing functions in ωω.
Since we supposed b > ω2, the set F = {g ∈ ωω : ∀α ∈ ω2 fα <∗ g} )= ∅.
Now let B = {gα : α < λ} ⊆F be a maximal chain with respect to the reverse
eventual domination (i.e. >∗).

We claim that cof(λ) > ω. The theorem will follow once we note that
(A, B) is a (ω2, λ∗) gap with cof(λ) an uncountable cardinal. Hence OCA is
contradicted.

To see that cof(λ) > ω we will see that for every {gn : n ∈ ω} ⊆F decreasing
chain under <∗, it is possible to find a g ∈ F such that g <∗ gn, for every n.

Fix fα ∈ A. Note that, for all i, gi ∈ F , hence fα <∗ gi. Hence, for each
n ∈ ω, there is a kn

α such that ∀k ≥ kn
α

fα(k) < min{gi(k) : i ≤ n}.

Thus we can define a function mα ∈ ωω such that for every n

mα(n) = kn
α.

Since b > ω2, there is m >∗ mα, for all α ∈ ω2. We can now define the function
g as follows, for any k ∈ [m(n), m(n + 1))

g(k) = min{gi(k) : i ≤ n}.

Given fα ∈ A, let n be sufficiently large such that ∀k ≥ n, m(k) > mα(k); then
for all l > n, if j ∈ [m(l), m(l+1)), then j ∈ [mα(l′), mα(l′+1)), for some l′ ≥ l.
So

fα(j) < min{gi(j) : i ≤ l′} ≤ min{gi(j) : i ≤ l} = g(j)

Hence g ∈ F and g <∗ gn, for all n.
This conclude the proof of the theorem.
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Since |ωω| = 2ℵ0 we have the following corollary, that is the first part of the
proof that FA(σ∗c,ℵ1) decides the cardinality of the continuum.

Corollary 4.2.12. OCA implies that 2ℵ0 ≥ ℵ2.

Proof. OCA implies that b = ℵ2. Hence ℵ2 = b ≤ |ωω| = 2ℵ0 .

4.3 FA(σ∗c,ℵ1) implies that 2ℵ1 = ℵ2

In this section we will see that, by means of to FA(σ∗c,ℵ1), it is possible to
define a coding of the subsets of ω1 in order type ω2. The results in this section
are due to Veličković. See [25].

4.3.1 Colorings and coding

Definition 4.3.1. Let κ >ω 1 be a regular cardinal and suppose to have a
sequence of ω1 colorings

[κ]2 = Kξ
0 ∪Kξ

1

for ξ ∈ ω1.
We say that α ≤ κ, with cof(α) = ω1, is good if for every ξ ∈ ω1, there is a

club C ⊆ α, which is either Kξ
0-countable or Kξ

1-countable.
Moreover define, for a good α,

Aα = {ξ ∈ ω1 : ∃C ⊆ α, C club and K1-countable}.

Note that, with an abuse of notation, we ask α ≤ κ, even if we required
κ >ω 1 regular and cof(α) = ω1. This is because if we collapse κ to ω1 with a
σ-closed poset, then cof(κ) will be ω1 and so we could have κ good. The main
reason for this definition is to show, in the next theorem, that it is possible to
use the good α’s to code the subsets of ω1.

Note also that if C ⊆ κ is uncountable it cannot be both K0-countable and
K1-countable; else we would have an uncountable subset both 0-homogeneous
and 1-homogeneous. So the above definition makes sense.

Definition 4.3.2. Let κ > ω1 be regular and let P = Coll(ℵ1, κ) the collapse
of κ to ℵ1 by countable conditions. Let ω1 colorings be given as in Definition
4.3.8. In V [G] (a generic extension made via P ) define the poset of finite Ki

homogeneous subsets of C ⊆ κ, ordered by reverse inclusion

Q̄ξ
i (C) = ({F ∈ [C]<ω : [F ]2 ⊆ Kξ

i },⊇),

where i ∈ {0, 1} and ξ ∈ ω1.
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Q̄ξ
i (C) will be used to force a subset X ⊆ C, that is Ki homogeneous for the

ξth coloring.

Definition 4.3.3. For i ∈ {0, 1}, ξ ∈ ω1 and C ⊆ κ, let

Qξ
i (C) =

∏

n∈ω

Q̄ξ
i (C)

be the finite support product of ω copies of Q̄ξ
i (C).

Note that, forcing with Qξ
i (C), we make C Ki-countable for the ξth coloring.

When C = κ, we write Q̄ξ
i instead of Q̄ξ

i (C) and Qξ
i instead of Qξ

i (C).

Definition 4.3.4. Let Fn(ω1, 2) be the collection of all finite partial functions
from ω1 to 2.

From now on we will fix a σ-closed poset P that collapses κ to ω1, a P -generic
filter G and a P -name Ċ for a club set of κ of order type ω1.

Consider the following statement

&P ∀s ∈ Fn(ω1, 2)
∏

ξ∈dom(s)

Qξ
s(ξ)(Ċ) is c.c.c. (4.1)

Next theorem will use the strength of FA(σ∗c,ℵ1) to show that it is possible
to obtain, in V [G], every A ⊆ ω1 as Aα, for some good α.

Theorem 4.3.5. (Veličković) Assume FA(σ∗c,ℵ1) and let, for ξ ∈ ω1,

[κ]2 = Kξ
0 ∪Kξ

1

be a sequence of colorings such that 4.1 holds. Then, for every A ⊆ ω1 there is
a good α ≤ κ such that Aα = A.

Proof. Fix A ⊆ ω1 and letχA be the characteristic function of A. We now work
in V [G]. Let

QχA =
∏

ξ∈ω1

Qξ
χA(ξ)(Ċ),

be the product with finite support of the Qξ
χA(ξ)(Ċ).

Using 4.1, a standard application of Theorem 1.4.5 guarantees that QχA is
c.c.c., provided that all its factors are c.c.c. Fix now in V [G] a QχA-generic filter
H. In V [G ∗H] we have that Ċ is KχA(ξ) countable for the ξth partition. Thus
there are Ḣξ

n, for ξ ∈ ω1 and n ∈ ω, such that

&P∗QχA
[Ḣξ

n]2 ⊆ Kξ
χA(ξ) and Ċ =

⋃

n∈ω

Ḣξ
n.
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Now for every α, ξ ∈ ω1, the following sets

Dξ
α = {〈p, q〉 : α ∈ dom(p), p & p(α) ∈ Ċ,∃n q & p(α) ∈ Ḣξ

n}

are dense. If we choose a filter G ∗ H {Dξ
α : α, ξ ∈ ω1}-generic, then letting

δ = {p(ξ) : ∃q ∈ H 〈p, q〉 ∈ G ∗ H, ξ ∈ ω1}, C = {p(ξ) : ∃q ∈ H 〈p, q〉 ∈
G ∗H, ξ ∈ ω1}, Hξ

n = {p(ξ) : ∃q ∈ H 〈p, q〉 ∈ G ∗H, 〈p, q〉 ! p(ξ) ∈ Ḣξ
n, ξ ∈ ω1}

we have that δ < κ and has cofinality ω1, C is a club in δ such that ∀γ ∈ C and
∀ξ ∈ ω1 there is an n such that ∃〈p, q〉 ∈ G ∗H such that 〈p, q〉 ! γ ∈ Ḣξ

n, hence
γ ∈ Hξ

n.
Note that |{ξ ∈ ω1 : χA(ξ) = 1}| = |A| = ℵ1 and

ξ ∈ Aα ⇐⇒ ∃C ⊆ α, C club and Kξ
χA(ξ)-countable and χA(ξ) = 1 ⇐⇒ ξ ∈ A.

4.3.2 The oscillation map

We now present a sequence of ω1 colorings that have the property expressed by
4.1 and that will give us an upper bound to the cardinality of the continuum.
Without loss of generality we can work on the space of all the increasing function
from ω to ω that we will indicate as (ωω). From now on we fix an unbounded
family F in (ωω).

Definition 4.3.6. Let F ⊆ (ωω) be a family totally ordered by eventual dom-
ination, in order type b. For k ∈ ω, we say that X ⊆ [F ]k is unbounded if
∀f ∈ F ∃A ∈ X such that f <∗ g for every g ∈ A.

The following theorem is crucial and we state it without proof. It is essen-
tially due to Todorčević; see [21].

Theorem 4.3.7. (Todorčević) There is a function σ : (ωω)2 → ω such that
for any unbounded family X ⊆ [(ωω)]k and any function u : k × k → ω, there
are a, b ∈ X such that

∀i, j < k σ(ai, bj) = u(i, j)

We can now define a sequence of coloring for which the Property 4.1 will
hold.

Definition 4.3.8. Fix an increasing enumeration of {fα : α ∈ b} of F ; then
for every ξ ∈ ω1 we define the following coloring.

For α < β < b

{α,β} ∈ Kξ
0 ⇐⇒ σ(fω1·α+ξ, fω1·β+ξ) is even.
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Not that Fξ = {fω1·α+ξ : α ∈ b} is unbounded in F and Fξ form a disjoint
family; i.e. Fξ ∩ Fγ = ∅, for ξ, γ ∈ ω1.

Lemma 4.3.9. Given a sequence of colorings as in Definition 4.3.8, we have
the following property.

∀s ∈ Fn(ω1, 2)
∏

ξ∈dom(s)

Qξ
s(ξ) is b-c.c.

Proof. We show that the product of any two elements is b-c.c (i.e. if |dom(s)| =
2). This proof can be easily generalised to the case of any finite product. Thus
fix a Qξ

s(ξ) and Qγ
s(γ). By definition Qξ

s(ξ) =
∏

n∈ω Q̄ξ
s(ξ) and Qγ

s(γ) =
∏

n∈ω Q̄γ
s(γ),

so if we show that Q̄ξ
s(ξ) × Q̄γ

s(γ) is b-c.c. then, modulo the generalisation to the
case of any finite product, the Lemma will follow.

Let A = {pα ∈ Q̄ξ
s(ξ)× Q̄γ

s(γ) : α ∈ b} be a family of incompatible conditions.

Note that pα ∈ Q̄ξ
s(ξ) × Q̄γ

s(γ) iff pα = (Xα, Yα), where Xα, Yα ∈ [κ]<ω, Xα is

homogeneous for Kξ
s(ξ) and Yα is homogeneous for Kγ

s(γ). Assume Kξ
s(ξ) = Kξ

0

and Kγ
s(γ) = Kγ

1 . We claim that is possible to find two compatible conditions in
A.

Since b is uncountable, we can assume that, for all α ∈ b, |Xα| = n and
|Yα| = m, for fixed n, m ∈ ω. Moreover, by the ∆-system Lemma there are
roots r0, r1 such that Xα∩Xβ = r0 and Yα∩Yβ = r1, for α,β ∈ b. Moreover, by
the ∆-system Lemma we can refine A so that max(Xα ∪ Yα) < min(Xβ ∪ Yβ),
for α < β.

Define
B = {Xα \ r0 : α ∈ b}

and
C = {Yα \ r1 : α ∈ b}.

We now work with B × C, because (r0, r1) is not going to raise problems in
seeking two compatible conditions. Let |Xα \ r0| = k and |Yα \ r1| = l, for every
α, then Xα \ r0 = {δ0, . . . , δk−1} and Yα \ r1 = {β0, . . . ,βl−1}.

We can now define X ⊆ [F ]k+l as follows:
Z = {fω1·δ0+ξ, . . . , fω1·δk−1+ξ, fω1·β0+γ , . . . , fω1·βl−1+γ} ∈ X ⇐⇒ ∃α Xα \

r0 = {δ0, . . . , δk−1} ∈B and Yα \ r1 = {β0, . . . ,βl−1} ∈C .

Define a label function g : |Xα \ r0|+ |Yα \ r1| = k + l → κ× 2

g(n) =

{
(ηi, 0), if ∃j ηi = δj ;
(ηi, 1), if ∃j ηi = βj .
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where {η0, . . . , ηl+k−2} = Xα \ r0 ∪ Yα \ r1.
Let now u : (k + l)× (k + l) → ω be the following function:

u(i, j) =






0, if g(i) = (x, 0) and g(j) = (x, 0);
1, if g(i) = (x, 1) and g(j) = (x, 1);
2, if g(i) = (x, 1) and g(j) = (x, 0);
3, if g(i) = (x, 0) and g(j) = (x, 1).

By Theorem 4.3.7 there are Z = {fω1·µ0+ξ, . . . , fω1·µk+l−2+γ} ∈X and W =
{fω1·ν0+ξ, . . . , fω1·νk+l−2+γ} ∈X such that, for θ ∈ {ξ, γ},

σ(fω1·µi+θ, fω1·νj+θ) = u(i, j)

Hence there are α,β ∈ b such that Xα\r0∪Yα\r1 = Z and Xβ \r0∪Yβ \r1 = W .
Note that, by definition of X , {µi : i < k+l−1} ∈B and {νi : i < k+l−1} ∈C .
So, by the definition of Kξ

0 and of Kγ
1 , we can conclude that

∀i, j < k {µi, νj} ∈ Kξ
0

and
∀k ≤ i, j < k + l − 1 {µi, νj} ∈ Kγ

1

Thus (Xα \ r0, Yα \ r1) ∪ (Xβ \ r0, Yβ \ r1)2 is Kξ
0 homogeneous on the first

k components and Kγ
1 homogeneous on the last ones. So the same happens for

(Xα, Yα) ∪ (Xβ, Yβ) = pα ∪ pβ.

Lemma 4.3.9 is true in V , hence when forcing with a σ-closed poset P that
collapse b to ω1, in the generic extension we will have

&P ∀s ∈ Fn(ω1, 2)
∏

ξ∈dom(s)

Qξ
s(ξ) is c.c.c.

that is the property 4.1.
As a simple corollary we obtain the upper bound we promised.

Corollary 4.3.10. Assuming FA(σ∗c,ℵ1), we have that 2ℵ1 = ℵ2.

Proof. We managed to construct a sequence of ω1 coloring on b, such that 4.1
holds, so that Theorem 4.3.5 applies. Hence we have an injective map from
P(ω1) in b: the one that to each A ⊆ ω1 associates min{α : Aα = A}. Moreover
FA(σ∗c,ℵ1) implies OCA which implies b = ℵ2. Hence 2ℵ1 = ℵ2.

2Where the union is to be taken component by component.
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We thus have the following important corollary.

Corollary 4.3.11. FA(σ∗c,ℵ1) implies 2ℵ0 = ℵ2.

Proof. Under FA(σ∗c,ℵ1) we have that

2ℵ1 ≥ 2ℵ0 = |ωω| ≥ b = ℵ2 = 2ℵ1

hence 2ℵ0 = 2ℵ1 = ℵ2.

Note that in all this chapter we used poset of size ≤ 2ℵ0 , so we actually
showed something stronger: FA(Γ,ℵ1) implies that 2ℵ0 = ℵ2, where Γ = {P :
P is a σ∗c poset and |P | ≤ 2ℵ0}. This weaker form of FA(σ∗c,ℵ1) is equiconsis-
tent with a weakly compact cardinal; this is a large cardinal assumption much
weaker than the one used for PFA, that for example is consistent with V = L.
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