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Abstract

This dissertation gives a full self-contained and detailed account of Ben
Yaacov’s results of [Benl3], where the ‘fundamental theorem of stability’
(i.e. the equivalence between various definitions of stable theory) in continuous
logic is proved in a very simple and elegant fashion using a functional analysis
theorem of Grothendieck. We structure this work in four parts: (1) We
present stability theory in the classical case and prove the fundamental
theorem in that setting. (2) We introduce the functional analysis notions
needed to prove Grothendieck’s theorem and indeed prove it; in doing so,
we provide a wider characterization theorem for compactness of certain
sets of continuous functions. (3) We give a detailed account of Continuous
First Order Logic. (4) Finally, we prove the fundamental theorem in the
continuous setting as done by Ben Yaacov in [Ben13]; we conclude with some
meta-mathematical and philosophical comments, pointing out a possible
interpretation of the nature of such a proof.

Keywords: continuous logic, functional analysis, model theory, stability, no-order

property, definability of types, Grothendieck, weak compactness, pointwise com-
pactness, sequential compactness.
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The life of science is as strong and carefree and
glorious as a fairy tale. And Ulrich felt: people
simply don’t realize it, they have no idea how much
thinking can be done already; if they could be taught
to think a new way, they would change their lives.

— Robert Musil






Introduction

Modern model theory is widely believed to have began in 1962 with Morley’s
PhD dissertation,’ where he proved his Categoricity Theorem, which provided
a positive answer to a conjecture formulated by f.o$ in 1954:

If a complete theory in a countable language is categorical for
some uncountable cardinal, then so is for every uncountable
cardinal.

To prove this result Morley introduced new concepts and techniques that have
become a standard part of the subject, e.g. ranks and total transcendence.

In the following years there were numerous attempts to answer problems
left open in Morley’s work and also to generalize it. During extensive
investigations of this sort,” Shelah introduced in the 70s some dividing lines
which separated theories into two classes: non-structured ones having as
many models as possible and structured ones admitting a sort of dimension
theory. One of such dividing lines is stability, a concept which generalizes
Morley’s total transcendence. Later on, other perspectives developed in
which stability theory gained even deeper geometric meaning.®*

There are various equivalent ways to define what it means for a theory
T to be stable, which can be informally grouped into three ideas:

(i) The theory T' cannot ‘define’ an infinite linear order.
(ii) All types over models of T" are definable.

(iii) The number of types over models of 7" is ‘small’

All of these convey the idea that a stable theory is in some sense tame,
suggesting some kind of structure underneath. The proof of their equivalence
has a distinct discrete model-theoretic flavour. In particular, the direction
(i)=(ii) is quite clunky, no matter which strategy is employed.”

Tt was then published as the article [Mor65].

*They eventually culminated in the massive book [She78].

3See for instance [Pil96)].

“This first part of the introduction is based on [Pil03, p. 1].

® Approaches include: heirs/coheirs [Poi00, §11.2] [Pil83, §1], binary trees [TZ12, §8.3]
[Bal88, §3.1], ranks [Chel7, §2.2] [Bal88, §3.1] [Bue96, §5.1], direct [Dri05, §8] [Pil96, §1.2].

xii



INTRODUCTION xiii

Continuous logic was first developed® in 1966 with the intent to generalize
results in two-valued model theory. However, proofs of the analogues in the
new logic of classical results were far from similar to the old ones. Other
generalizations’ of classical model theory were carried out aiming to be able
to deal with continuous structures using model-theoretic techniques, which
up to that point had only been used for algebraic structures.

Continuous First Order Logic (henceforth CFO) has been developed by
Ben Yaacov, Berenstein, Henson, lovino, Usvyatsov and others in the 00s
to combine both these features: suitability for applications to the study
of metric structures with model-theoretic techniques and generalization of
classical model theory. With applications in mind, these authors opted for a
slightly less general version of continuous logic, which is however equivalent
to both other generalizations mentioned above. The construction of the
resulting logic is very close to the classical one, with the truth-values set
{0,1} replaced with [0,1]. One nice and important feature is that this time
proofs are essentially the same as the classical ones.

In 2013, Ben Yaacov published the (quite sketchy) paper [Benl13] where
he presented a new proof® of (i)=(ii) — i.e. how definability of types over
models of T" follows from the fact that T" cannot ‘define’ an infinite linear
order — for CFO which crucially involves the use of a functional analysis
theorem” first proved by Grothendieck in 1952; this allows the proof to be
beautifully simple and crystal clear. There are at least two surprising things:
first, this new proof appears to be smoother than the (translation in CFO of
the) one in the two-valued setting; second, it essentially shows how a certain
kind of stability-like concept emerged in Grothendieck’s work, which was
originally totally unrelated to model theory. We try to address these topics
in the final section of this work.

This dissertation was first and foremost intended to be a unified, detailed
and self-contained account of this result of Ben Yaacov and of stability
in continuous logic. While working on it, the goal got broader and has
become trying to clarify and explain the reason why such a striking proof
works, shifting the focus more on a meta-mathematical level. This has led
to developing a wider framework where to collocate Grothendieck’s theorem.
In order to do all of this, we structure this dissertation as follows:

e In Chapter 1 we give a treatment of stability in the classical case
leading to the ‘fundamental theorem’ of equivalence of the various
definitions. This includes: a brief recall of some basic model-theoretic
definitions and results, also to fix notation (the notion of satisfaction,
the Compactness and Lowenheim—Skolem theorems, types and the

6
KC66.

"E.g. the logic of positive bounded formulae or the setting of compact abstract theories.

8Ben13, Theorem 3.

9Gro52, Théoréme 6.
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monster model), the no-order property, size of type spaces, a combi-
natorial theorem of Erdds and Makkai,'? the theorem of definability
of types, the ‘fundamental theorem of stability’, both in the local and
global versions and a double limit property equivalent to the no-order
property.

e The goal of Chapter 2 is proving a characterization theorem for com-
pactness of certain families of continuous functions, which subsumes
Grothendieck’s theorem. To do so, some functional analysis notions
are recalled, such as the weak topology and the pointwise convergence
topology. Then we prove the main theorem, i.e. the equivalence be-
tween weak compactness, pointwise compactness and a double limit
property for those continuous functions.

e In Chapter 3, we introduce from scratch continuous logic and all the
main results that are needed in the following: its syntax (language,
structures, formulae), semantics (interpretations, induced maps, theo-
ries), fundamental theorems (Compactness, Lowenheim-Skolem, exis-
tence of monsters), types, their logic and metric topologies, predicates
and restricted formulae.

e In Chapter 4 we combine all the previous results to use Ben Yaacov’s
idea for proving the fundamental theorem of stability in the continuous
case, again both in the local and global versions, trying to carefully
parallel the exposition to that of the classical case.

We conclude with a final section which is meant to be the place where we
draw some philosophical conclusions on the meaning of Ben Yaacov’s proof.

0 A nice proof for this result [ME66] is hard to find in the literature and thus we decided
to include here a detailed one.






Chapter 1

Stability in the classical case

In this chapter we introduce various classical model-theoretic notions related
to stability and eventually show that they are all equivalent. We base our
exposition on [Chel7] for §1.2 and §1.3 and on [Dri05] for §1.4.

1.1

Preliminary model theory

We recall some basic classical model theory notions and results, also to fix
notation. As a reference the reader may browse any introductory model
theory textbook, for instance [Mar02] or [TZ12].

1.1.1 First order logic

Convention 1.1. We adopt the following conventions:

For every language L, we take by default its cardinality |L| to be
infinite. To say that ¢ is an L-formula, sometimes we write ¢ € L.
When it does not create confusion, we use the same symbols M, N, ...
to denote both models and their universes.

If M is a model and A C M a set of parameters, often we write a € M
to say that a € M1%l where |a| is the length of the tuple a. To stress
the fact that a is a tuple, sometimes we write @. We also use the
notation M, for the cartesian product M1#l.

If F: M — N and ay,...,a, € M, we use the shorthand F(a) for
(F(ar),. .., F(an)).
We write M < N to say that M is an elementary substructure of N.

If M is an L-structure and A C M a set of parameters, we use the
notation My or (M, a)sca to denote the structure in the language
Ly=LU{a:aec A} consisting of M with an additional constant
symbol for each a € A. To simplify, we use the same notation for the

symbol and its interpretation, i.e. a™ = a.
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Definition 1.2. A formula ¢(x) € L is realized by b € M if M = ¢(b). If
the model is clear, we may also write b = ¢(z). A set of formulae ® C L4
is realized by b if it realizes all formulae in ®. We say that ® is finitely
satisfiable if every finite subset of @ is realized in some model, and that ® is
satisfiable if it is realized in some model. An L-theory is a set of L-sentences.

We list now some fundamental theorems that we will freely use multiple
times and that are deeply related to the very essence of first order logic
and its finitary nature. Fix a language L. We start from the main tool for
proving that a theory is satisfiable.

Fact 1.3 (Compactness Theorem, [Mar02, Theorem 2.1.4]). If an L-theory
is finitely satisfiable, then it is satisfiable.

The next theorem gives a way to produce non-standard models of any
theory of almost any cardinality.

Fact 1.4 (Upward Lowenheim—Skolem Theorem, [Mar(02, Theorem 2.3.4]).
If M is an infinite L-structure and k > |M| 4+ |L|, there is an L-structure
N = M with |N| = k.

The following result goes in the opposite direction. From a model M
with a specific subset A of sufficiently big size x, we can always extract an
elementary submodel N < M of size k containing A.

Fact 1.5 (Downward Léwenheim-Skolem Theorem, [Mar(02, Theorem 2.3.7]).
If M is an L-structure and A C M, there is an L-structure A C N < M
such that |N| < |A| + |L|. In particular, if |A| > |L| then |N| = |A|.

1.1.2 Types

The next notion is fundamental in what follows. A type is a consistent set of
formulae. Every type is realized in some big structure. In such a structure
we can think of any type as the set of all possible first order properties of
some element.

Definition 1.6. Fix an L-structure M and A C M.

o A partial type over A (in M) is a set ® of L 4-formulae which is finitely
satisfiable in M 4.

o A partial type p over A is complete if it is maximal finitely satisfiable.
We denote the space of complete types over A with SM(A). For b € M,
the complete type of b over A is

™ (b/A) = {é(x) € La: M = 6(b)}.

e An n-type is a type with n free variables. An z-type is a type such
that every formula in it has free variables in the tuple z. We write
p(z) to stress that p is an z-type. The spaces of complete n-types and
z-types over A are denoted respectively by SM(A) and SM(A).



CHAPTER 1. STABILITY IN THE CLASSICAL CASE 3

When we just say type, we usually mean complete type. Notice that |z| can
even be infinite of any size. Often, if the context makes the model we are
working in clear, we omit the superscripts indicating the model.

A complete type is equivalently a partial type which for every L-formula
¢ contains either ¢ or —¢. This definition has the problem that it does not
generalize nicely to the continuous logic case. We recall now two important
properties that models we would like to work in should have.

Definition 1.7. Let s be infinite and M be a structure. We say that:

o M is k-saturated if for any A € [M]<", every partial type ®(z) over A
with |z| < k is realized in My.

e M is k-homogeneous if every partial elementary map F': M — M with
|F'| < k can be extended to an automorphism of M.

It is always possible to find a model with these properties.

Fact 1.8 ([Mar02, Theorem 4.3.12]). For any theory T and any cardinal k,
there exists a k-saturated and r-homogeneous model M = T.

For the rest of the following chapter, we fix a a language L and a complete
L-theory T. We would like to always work in a huge model where every
type we are interested in is realized and such that every model we encounter
elementarily embeds into it. Due to the previous result, we can fix such a

model
M

which is x(M)-saturated and x(M)-homogeneous for some cardinal (M)
larger than the size of any set we will consider. We refer to M as the
monster model. Whenever we talk about objects without specifying where
they belong, they are implicitly assumed to live in the model M. We use the
adjective small to mean smaller than x(M). For ¢(z) € L(M) and a € M
we write = ¢(a) to mean M = ¢(a).

1.2 No-order property

Convention 1.9. From now onwards in this chapter, we work with the
following fixed data: a language L, a complete L-theory T' and a monster
model M = T'. So here by model we mean a small L-structure M =T

The first concept we are interested in is a combinatorial property, called
the no-order property. The idea is that a theory T has this property when it
cannot ‘define’ an infinite linear order. When this happens 7' is in some sense
sufficiently tame. We will see that it is equivalent to other properties which
have a more prominent model-theoretic content, referring to definability and
cardinalities of type spaces.
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Definition 1.10. Let ¢(z,y) € L and n € w. We say that:

¢(x,y) has the n-order property in M |= T if there are two sequences
(ai>i<n C M, and (bi)i<n - My such that

M ): d)(ai,bj) — 1< J.

When we omit the model M it is assumed to be the monster M.

¢(x,y) has the order property (OP) in M if it has the n-order property
in M for every n € w. Otherwise, we say that ¢(x,y) has NOP in M.

T has NOP if no L-formula has the order property.
T has OP if there is an L-formula with the order property.

Remark 1.11. If M, N =T and ¢(z,y) € L, then
¢ hasn-OPin M <= ¢ has n-OP in N.

Indeed, “¢ has n-OP” can be expressed by the formula

S T T8 I AN IR T VY AN O]

1<j<n 1<i<n

Since T' is complete, M and N have the same theory; the conclusion follows.

Hence, the same is true for OP. In other words, (N)OP is a property of
the theory T'. So specifying the model ¢ has (N)OP in is redundant; we will
often omit it or say that “¢ has (N)OP in 77

Lemma 1.12. If an L-formula ¢(x,y) has OP, then for every linear order
I of any small size k > |L| there is a small set of parameters A, a model
N =T of size k and sequences (a;)icr € Ny and (b;)icr € Ny such that
N ): qﬁ(ai,bj) i< .

Proof. Let ¢(x,y) € L have OP. For every i € I, add to the language two
new symbols a;, b; for constants. The theory

Y ={o(ai,b;) :i < j, i,j € I} U{=¢(a;,b;):i>j, i,j €I}

is finitely satisfiable by assumption and then it has a model N, that by the
Loéwenheim—Skolem Theorem 1.4 can be assumed of size k. ]

Recall the following fundamental combinatorial fact that we need to
prove the next result.

Fact 1.13 (Infinite Ramsey Theorem, [Mar(02, Theorem 5.1.1]). Forn,k € w
we have g — (Vo). More explicitly, for any colouring with k colours of
sets in [N]", there is an infinite I C N such that [I]™ is homogeneous.

The no-order property for formulae behaves well with respect to Boolean
combinations and other simple operations.
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Lemma 1.14. If ¢(x,y) and ¢(x, z) have NOP, so do the following:

(i) ¢*(y,x) = o(z,y)
(i) —¢(z,y)
(i) 8z, y2) = 6(2,9) A $(x 2)
(iv) 0(z,y2) = ¢(z,y) vV ¢(x, 2)
(v) 0(z,u) = ¢(z,uc) € Ly, where y =uv and c € ML,.

Proof. We prove the statements by contradiction.

(i): Suppose ¢*(y,z) has NOP. Let < be the inverse ordering on w. By

Lemma 1.12, there are b;, a; € w such that |= ¢*(b;, a;) < i < j. This means
that = ¢(a;,b;) & j < i, against the fact that ¢(z,y) has NOP.

(ii): If = —p(as,bj) < i < j, then |= ¢(ai, b;) < j < i. If af = a;41, then
= ¢*(b;,d}) & j < i, against (i).

(ili): Suppose that = 6(a;,bjcj) < i < j. Then

(& ¢(ai,bj) and = ¢(a;, ¢j)) iff (i < j).

The fact that either ¢(z,y) or ¢(x, z) has OP follows from the fact that the
following propositional sentence is a tautology

(AANB) < C) = (A< C)V (B« 0)).

(iv): Suppose that = ¢(a;, bj) V b(a;, ¢;) iff i < j. For each p € [N]?, let us
name p; = minp and p2 = max p. By assumption, the sets

P = {p € [N]Z : ¢(ap17bp2) hOldS}a Q= {p € [N]2 : w(aplﬁcm) hOldS}

form a colouring of [N]2. Therefore, by Ramsey Theorem, there exists an
infinite 7 C N such that either [I]2 C P or [I]?> C Q. In the first case, ¢ has
OP, in the second, ¥ has OP.

(V): If = ¢(ai, bjc) & i < j, let b; = bjc. Then [= ¢(a;, b)) & i < j. O

We devote the following sections to relate the no-order property to the
size of types spaces and definability of types.
1.3 Size of type spaces

In this section we see how the no-order property is related to the size of type
spaces. We need two new ingredients: a cardinal function related to linear
orders and a combinatorial result of Erdés and Makkai.
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1.3.1 The Dedekind number

Recall the following concept, which for instance can be used to construct
the set of real numbers from the rationals.

Definition 1.15. Let I be a linear order. A Dedekind cut of I is a non-
empty subset C' C I which is closed downwards and without a greatest
element.

Now we define a cardinal function ded: Card — Card related to the
number of cuts, which will be useful to measure the size of type spaces.

Definition 1.16. Let k be a cardinal. Define the cardinal number
ded k = sup{\ : 37 linear order with |I| = A and a dense subset of size k}.

We also give an alternative characterization that is sometimes useful and
involves indeed the concept of Dedekind cuts.

Lemma 1.17. For any cardinal &, the following holds:
ded k = sup{A : 3 linear order with |I| = k and A\-many cuts}.

Proof. Let p be the cardinal on the right hand side of the equation.

(dedx > p): Let I be a linear order with |/| = x and A-many cuts. Without
loss of generality, we can suppose I is dense (i.e. for any two points a < b in
I there is ¢ € I such that a < ¢ < b). Let J be the linearly ordered set of
cuts of I. Clearly, I embeds in J in a dense way and then the order J of
size A has a dense subset of size k, so dedx > A. Since A was arbitrary, it
follows that ded x > p.

(> dedk): Let J be a linear order with |J| = A and a dense subset I of
size k. For every j € J, the set {i € [ : i < j} is a cut on I, and these cuts
are all pairwise distinct by density of I in J. Therefore there are at least
|J|-many (i.e. A-many) of them, and so u > A. Since A was arbitrary, we
obtain that p > ded . O

In general, the value of ded x depends on set-theoretic assumptions.
However, it has both lower and upper bounds.

Proposition 1.18. k < ded xk < 2%.

Proof. We show that there is a linear order I with |/| > x and a dense subset
of size k. Let A be the smallest cardinal such that x* > k. Since k* > &,
then A < k. Let I be the set of functions *k with the lexicographic order
and Iy C I consist of those functions that are eventually zero; Iy is clearly
dense in I. Write Ip = U,y I§, where I§ contains the functions that are
zero for all § > a. By minimality of A, we have [Io| = |Upcr I§| S A -k = K.

To see that ded k < 2%, just observe that if |[I| = k, then there are at
most |P(I)| = 2" many types. O

Since Q is dense in R, from the definition it follows that ded R = 2%,
Similarly, under GCH, ded x = 2" for every k.
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1.3.2 Local types

Now we introduce local types with respect to a fixed formula. This is useful to
formulate a local theory of stability, which can then be quite easily adapted
for theories.

Definition 1.19. Let ¢(z,y) be a fixed formula and M a model. A (com-
plete) ¢-type over B C M, is a maximal finitely satisfiable set of formulae
of the form ¢(z,b) or ~¢(x,b) for b € B. By tp,(a/B), for a € M, we mean
the ¢-type of over B realized by a. We denote by Sy (B) the space of ¢-types
over B.

The next results show that a theory which can ‘encode’ an infinite linear
order necessarily has ‘many’ types.

Proposition 1.20. If an L-formula ¢(x,y) has OP, then for all k > |L|
there is a model M | =T of size k with |Sy(M)| > ded k.

Proof. Let ¢(x,y) € L have OP and fix k > |L|. By Lemma 1.12, let I be a
dense linear order of size k and M a model of size k with (a;);e; € M, and
(bi)icr € M, such that M |= ¢(a;,bj) < i < j. For every cut C C I, the set

®o = {¢(w,b) : j € COYU{=o(w, b)) : j € C}

is by compactness and density a partial ¢-type over M. Let pc be a complete
¢-type over M extending ®c. Clearly if C; # Cy then ®¢, # ®¢, and a
fortiori pc, # pc,. So the map C' +— p¢ is injective. Since I was arbitrary,
our thesis follows. O

We can translate the latter result to obtain an analogue for theories. To
do so we introduce the following concept.

Definition 1.21. For a theory 7', define the cardinal function
ntpp(k) = sup{|S,(M)| : M =T, |M| =k, n € w}
where S, (M) is the set of n-types over M, as in Definition 1.6.

Corollary 1.22. If T has OP, then ntpp(k) > ded k for all k > |L]|.

Proof. Let ¢(x,y) € L have OP in M = T, without loss of generality of size
k > |T'|. Every ¢-type over M, can be extended to an z-type and to distinct
¢-types correspond distinct extensions, hence |S;(M)| > |Sg(M)|. So from
Proposition 1.20 it follows that sup{|S;(M)|: M =T, |M| =k} > dedk.
Since x is a variable in a formula, it is finite. Hence ntpy (k) > deds. O

As a simple corollary we get that if a countable theory T has OP then
ntp,(Ng) = ded Rg = 2%, i.e. its number of types is the maximum possible.
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1.3.3 The Erd6s-Makkai lemma
We need another combinatorial fact in order to prove the next result.

Lemma 1.23 (Erdds-Makkai, [MEG6]). For any n € w, any infinite set A
and any family F C P(A) such that |F| > |A|, the following holds:

(3ai,...,a, € A)(3S0,...,S, € F)(Vi,j) [i < j <= a; € 5j]. (A, F)y,

Proof. The case n = 0 is obvious since the subformula starting with the
universal quantifier is trivially true. Now suppose (A, F), holds up to n
for all A’s and F’s as in the statement. Fix A infinite and F C P(A) with
|F| > |A|. Pick any F' € F and let k = |A|. We separate two cases.

CaseI. {SNF:SeF} >k

Then there is some f € F such that the family G ={SNF: Se F, f ¢ S}

has size |G| > k, otherwise

HSNF:SeF, FSNFEF}={SNF:SeF,IfeF (f¢S)}

=|User{SNF:SeF, ¢S}
< |F|-supsep[{SNF:S€F, f ¢S}
<K-K=K

against the assumption of this case. Applying (F, G),, yields distinct elements

ai,...,an € F and Sy, ...,S, € F such that for all 7,j we have f ¢ S; and

i1<j <<= agecS;NF <<= acbl;.
Hence, adding the elements a,+1 = f and Sy,+1 = F proves (A, F)p41.
Case II. {SNF:S e F} <k.

The family H = {S® N FC : S € F} has size |H| > &, since the map
F 38— (SNF,SNFY) is bijective, |F| > « and [H| = [{SNFC: 5 c F}|.
Now by repeating the same argument of Case I applied to H C P(F E) we
see that there must be some f € F C such that the family

G={S*nFt:Ser, fes}

has size |G| > k. Now (Fc,g)n yields aq,...,a, € FCand Sy,...,S, € F
such that for all 1§i§nanda110§jSnwehavefESiﬂFC and

i1<j = aieSEﬂFC = aieSE. (1.1)
Let apt1 = f and Sp41 = F. Then ay,...,a,+1 and Sg, cee SELH still satisfy

(1.1), since f € Ft = SELH and f ¢ SE for all j < n, whereas a; € SE+1 = FC
for all 1 <+¢ < n. Now we switch the order of the elements. Formally, let

a; = An—i+2 S; = Sn—j+1
and
for1<i<n+1 for0<j<n+1.
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Thus we get ai,...,a,,; € Aand Sy,..., S, € F which, by (1.1), satisfy

aéGSé- < an7i+2€sn7j+1 <— n—it+2>n—7+1
— i<j+1l <= i<y

which proves (A, F)p+1. All cases are thus covered. O

To get a result which is more suitable for our applications we introduce
the following nomenclature.

Definition 1.24. We say that a sequence of pairs of sets (a;, S;)i<n i8

o of <-type if for all i, j < n we have a; € S; & i < j;
o of <-type if for all 4,7 < n we have a; € S; &1 < j.

Remark 1.25. Notice that if (a;,.S;)i<n is of <-type, then (a;t1,5;)i<n—1 is
of <-type; whereas if it is of <-type, then (a;, Si+1)i<n—1 is of <-type.

This allows for a simpler rephrasing of Lemma 1.23:

Corollary 1.26. Let A be an infinite set and F C P(A) a family such that
|F| > |A|. Then for every n € w there are (a;)icn, € A and (Si)i<n C F
such that (a;, S;)i<n 15 a sequence of <-type. Moreover, the same holds for
sequences of <-type.

Proof. By Lemma 1.23, for all n € w there are elements a,...,a, € A and
S0, ..., Sn € F such that (a;, Si)1<i<n is a sequence of <-type of length n—1.
By Remark 1.25, we get also a sequence of <-type of length n — 2. This is
enough. O

In Proposition 1.20 we saw that the presence of a formula with OP
automatically forces the size of type spaces over models to be big. The
following result goes in the other direction, using local types: if the ¢-types
space over an infinite set of parameters is big, then the formula ¢ must have
the order property.

Proposition 1.27. Let ¢(x,y) € L. The following are equivalent:

(i) The formula ¢(x,y) has OP.
(ii) There is an infinite (small) set B such that |Sy4(B)| > |B|.

Proof. (i)=-(ii): Let ¢(x,y) have OP in a small model M |= T, that by
Léwenheim—Skolem can be assumed of size |M| > |L|. From Proposition 1.20
it follows that |Sg(M)| > |M|.
(ii)=(i): Since B is small, every ¢-type over B in realized in the monster
model M so it is of the form tp,(a/B) for some a € M. Moreover, there is
a bijection

tpg(a/B) «— {b € B : ¢(a,b) holds} = S,.
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Define the family F = {S, : a € M, } C P(B). By assumption, |F| > |B],
hence we can apply Corollary 1.26 to obtain for every n € w sequences
(bi)icn € B and (a;)i<n C M, of <-type such that for all 7,j < n we have

IZ qﬁ*(bi,aj) <— ): gi)(aj,bi) < b; € Saj < 1< J.

Hence ¢* has n-OP for every n € w, and by Lemma 1.14(i) so does ¢. This
means that they have OP. O

1.4 Definability of types

It turns out that in the presence of NOP all types are definable. We devote
this section to prove this statement, which for trivial reasons implies that
there are not too many types. We already saw that this latter fact implies
NOP (actually the contrapositive of this implication). Therefore we shall
get a circular equivalence between these three properties.

Definition 1.28 (Definability of types).

o Fix ¢(z,y) € L. We say that a type p(z) € S4(A) is definable over B
if there is ¢(y) € Lp such that for all a € A

o(x,a)ep = EYP(a).

o Atypep € S;(A) is definable over B if for every ¢(x,y) € L the ¢-type
plg is definable over B, where

ply ={¢(z,a) ep:ac A}.
e A type is definable if it is definable in its domain.

Remark 1.29. If ¢(x,y) has NOP, then there is a minimal N € w such that
there is no sequence (a;, b;)i«ny € M, x M, such that

|:¢(a2,b])<:>z§] for all 7,5 < N.

In fact, by Remark 1.25, taking < instead of < is not a problem, and it will
come handy in the next proof. Note that trivially N > 0. Let N(¢) be such
a number.

Convention 1.30. We stipulate that empty conjunctions such as A; o ¢i(x)
are tautologies, i.e. true in every model for any interpretation. This is
common practice and it makes sense if we think that a conjunction should
be true when all of its members are true: here we have none so it is trivially
the case.

The next result is crucial to show that if a theory has NOP, then all
types are definable over any model. The key for the proof is that all models
elementarily embed in the monster model.
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Lemma 1.31. Let ¢(z,y) have NOP, a € M, and M be an arbitrary model.
Then there are I,J € w and a§ € M, foralli <1 and j < J such that for
every b € M,

E o(ab) & \/ A\ é(a},0).

i<l j<J
Proof. Let J = N(¢) — 1 with N(¢) as in Remark 1.29.

Claim. Let ¢(z) € tp(a/M). Then there are ag,...,an € My forn < J
realizing 1 (x) and such that for all b € M,

= (A #laib) = 6(a,b). (1.2)

i<n

Proof. For n € w, we say that (a;, b;)icn € My x M, is a (1, n)-sequence if
for all 7,7 < n we have

() = ¢lai,bj) & i<
(i) [=(a) A —g(a,bi).

Trivially there is a (1, 0)-sequence, since it is the empty set. Now suppose
that (@i, bi)i<n is a (¢, n)-sequence. We try to extend it. The Ljs-formula
(x) A Njeyp, "P(x,b;) is realized by a by assumption (by Convention 1.30
also in the case n = 0). Since M is a monster, M < M and so the formula
is realized also by some element a,, € M. If = (A;<,, #(a:,b)) — ¢(a,b) for
all b € M,, then aq,...,a, witness that the Claim holds and thus we are
done. If not, there is b, € M, such that = A,<,, #(ai, by) A —=¢(a,by) and we
can extend our sequence by adding a,, and b,. By definition of N(¢), there
cannot be (1, N(¢))-sequences, hence at some stage n < .J this process must

stop and the Claim must hold. O
Note that if ag, ..., a, satisfy the Claim, we can always add duplicates
to obtain ag, ..., ay still satisfying it. Observe that the formula

QSJ(IE,Z/) :¢J($0,..-,$J,y) = /\ ﬁb(ﬂfz,y)

i<J
has NOP by Lemma 1.14(iii) and so does —¢;(Z,y) by Lemma 1.14(ii). Let
I = N(—¢) — 1. We proceed now in a similar way.
For n € w, we say that (@,b;)i<n, C Mz x M, is a (¢, n)-sequence if for
all 7,7 < n we have
(iii) E ¢s(a@,b) — ¢(a,b) for all b € M,
(iv) | —¢s(@, b)) =i<j
(v) [ ola, b))



CHAPTER 1. STABILITY IN THE CLASSICAL CASE 12

As before, there is a (¢, n)-sequence, since it is the empty set. Now, suppose
(@, b;)i<n is a (¢, n)-sequence. We try to extend it. Again, by Convention 1.30
what we are going to say makes sense also in the case n = 0. Applying the
Claim to the formula ¥(z) = A, ¢(x,b;) yields ao, ...,a; € M, such that

(vi) | NAjen #(ai, b;) for all i < J
(vii) = (Ai<s #(ai, b)) — ¢(a,b) for all b € M,.

If we let @™ = (ag,...,ay), by definition of ¢; conditions (vi) and (vii) can
be restated as follows:

(viil) = Ajcp @s(@" b))
(ix) = o@g(@*,b) — ¢(a,b) for all b € M,.

Now we proceed in a similar way to what we did in the proof of the Claim.
If there is b € M, such that

() F d(a.b)
(xi) | —¢s(a,b) for all i <mn,

by letting b, be such an element, (@, b;);<, is a (¢, n + 1)-sequence. Then
we can proceed in the same way trying to extend it further. Since there
cannot be (¢, N(—¢))-sequences, at some stage n < I we must have a (¢, n)-
sequence (@, b;)j<n and @" satisfying (viii) and (ix) and such that for all
b € M, either = —¢(a,b) or there is i < n such that = ¢,(a@,b), i.e.

i<n
By (iii) and (ix), we have also the converse of (1.3), obtaining that
= (a.0) &\ A\ 6(@b)-
i<nk<J

Again by adding for n < ¢ < I duplicates EL’}C = dy, if needed, we conclude
our proof. O

It is useful to introduce the notion of ‘predicate’, which will be generalized
in the continuous logic setting. The idea is that a predicate is a ‘combination’
of instances of formulae.

Definition 1.32. Let ¢(z,y) € L and B C M. By ¢-predicate over B we
mean a formula ¢ (z) € Lp which is a Boolean combination of formulae of
the form ¢(x,b) for some b € B,,.

With this terminology, we can rephrase Lemma 1.31 in a simpler way.

Corollary 1.33. Let ¢(x,y) have NOP, a € M, and M be an arbitrary
model. Then there is a ¢*-predicate 1, (y) over M such that for all b € M,

|: ¢(avb) — ): ¢a(b)'
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1.5 The fundamental theorem of stability

It turns out that the order property, definability of types and the size of the
types space are deeply connected, namely equivalent.

1.5.1 Local fundamental theorem in FOL

The next result states precisely what this means. To prove it, we just have
to combine the results obtained so far.

Theorem 1.34. For an L-formula ¢(x,y), the following are equivalent:

(i) The formula ¢ has NOP (in T).
(ii) All ¢-types over any M =T are definable (by a ¢*-predicate over M ).
) Forallk > |L| and M =T, if |M| =k then |Sy(M)| < k.

) There exists some k > |L| such that for all M =T, if M| = k then
|Se(M)| < ded &.

(ii

(iv

Proof. (i)=(ii): Fix M =T, let ¢(x,y) have NOP and let p(x) € Sy(M). By
saturation, p = tp,(a/M) for some a € M. Then Corollary 1.33 yields a ¢*-
predicate ¢ (y) € Ly defining p. (ii)=(iii): Over a model of size k, there are
at most K+ |L| = k many Lj/-formulae, thus at most k-many definable types.
(iii)=(iv): Obvious, since k < ded k. (iv)=-(i): By Proposition 1.20. O

Remark 1.35. Note that the implication (i)=-(iii) can also be proved directly
from Proposition 1.27, without referring to definable types. This is in fact
the ‘hardest’ implication in this result, since both possible ways to prove
it include some Lemma whose proof took us a bit long, namely FErdos-
Makkai Lemma 1.23 or Lemma 1.31. We think it is instructive to see how
one can obtain (iii) by means of these two seemingly different approaches:
combinatorial the first and model-theoretic the second. Truth be told, the
latter has some combinatorics going on in its proof, which indeed plays a
big role in many model-theoretic arguments, e.g. ranks, indiscernibles, etc.
Actually, Lemma 1.31 can also be proved using a notion of rank for stable
formulae, as can be seen for instance in [Chel7, Proposition 2.2] or [TZ12,
Theorem 8.3.1].

1.5.2 Global fundamental theorem in FOL
We can translate the local result we have obtained into a global one.
Corollary 1.36. Let T be a complete L-theory. The following are equivalent:

(i) The theory T has NOP.
(ii) All types over any model of T are definable.
(iii) For all k > |L|, we have ntpy(r) < slFl,

)

(iv) There is k > |L| such that ntpp(k) < ded k.
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Proof. We start with the following simple observation.
Claim. (ii) <= For each ¢ € L all ¢-types are definable over any model.

Proof. All ¢(xz,y)-types over A are of the form pl|y4 for some p € S;(A), since
each ¢-type over A can be extended to an z-type over A. A type p € S(M)
is definable (by definition) if for every ¢(z,y) € L the ¢-type p|4 is definable.
The thesis follows by combining these observations. %

(i)=(ii): If 7" has NOP, then by definition each L-formula ¢ has NOP and
by Theorem 1.34 all ¢-types over any model are definable. By the Claim we
conclude.

(ii)=(iii): Let x > |L| and M }=T be a model of size k. By the Claim and
Theorem 1.34 it follows that for all ¢(x,y) € L we have [Sg(M)| < k.

Claim. For all finite variables x, the map

S2(M) 3 p = fp where fo: L= Uger,Ss(M), ¢(x,y) = plo
18 injective.

Proof. If p,q € S, (M) are distinct, then there is ¢(z,y) € L and a € M
such that ¢(z,a) € p\ ¢. So ¢(x,a) € ply \ g4 and then fp(¢) # fo(¢). O

It follows that |S,(M)| < kXl for all 2 and thus ntpy(k) < R - &l = klEL
(iii)=(iv): Take any & > |L| such that s/l = k. Then by (iii) we get that
ntpp(r) < k=K < ded k.

(iv)=-(i): By Corollary 1.22. O

We can finally give the main definition of this chapter.

Definition 1.37. We say that a formula ¢(z,y) € L is stable if it satisfies
one of the equivalent conditions in Theorem 1.34. A theory T is stable if it
satisfies one of the equivalent conditions in Corollary 1.36.

We chose to introduce the word “stable” only after having shown all
properties to be equivalent because different authors attach the word to
different properties among these, and so reading this text or browsing through
the literature could be confusing. The word “stable” is thus not evocative of
a single mathematical idea, it only conveys the vague meaning of tameness.
Moreover, we wanted to make explicit in each result which properties were
linked, without a possibility for misinterpretation.

1.6 Double limit property

Now we give a reformulation of the no-order property that is more suited
for a generalization to the case of formulae taking truth values in an infinite
linear order, as it is the case with the continuous logic we will be considering.
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In such a context, we can properly speak of limits of sequences. To do so,
we regard equality as the discrete distance

0 ifa=0b

d(a.b) = {1 if 0 # b.

?

Fix a model M. Every formula ¢(x) induces a ‘characteristic function
#M: M — {0,1}, defined by

M 0 if ME¢(a)
¢(a) {1 if M W ¢(a).

Definition 1.38. We say that a formula ¢(z, y) has the double limit property
in M if for all sequences (a;)ic € M, and (b;)ic, C M, we have

lim lim ¢(a;, b;)" = lim lim ¢(a;, b;)" (DLP)
[ J J 1

whenever all limits exist.
This is indeed just a rephrasing of the no-order property.
Lemma 1.39. A formula ¢(x,y) has DLP in M iff it has NOP in M.

Proof. In both cases we prove the contrapositives.

(=): Suppose ¢(a;,b;) =0 & i < j for some (a;); C M, and (bj); C M,.
Then lim; ¢(a;,b;) = 0 and lim; ¢(a;, bj) = 1. Hence lim; lim; ¢(a;, bj) = 0
whereas lim; lim; ¢(a;, bj) = 1.

(«<): Suppose ¢ does not have DLP. Without loss of generality there are
sequences (a;); and (bj); such that

i g j i

which means that

31 Vi>1 3J; V5> J; (¢lai,bj)
3J Vj>J 3, Vi> I (¢ai, b))

0) (0.)
1) (1.)

Now we recursively construct a subsequence witnessing that ¢(z,y) has OP.
Use (1.) to find af and bj such that ¢(ap,by) = 1. So there is a sequence
witnessing that ¢ has the 1-order property. Now suppose we have a}, b;- for
i,J < n witnessing that ¢ has the n-order property, namely such that

P(a;, b)) = 0 <=1 < j.

We want to extend these sequences to sequences witnessing that ¢ has the
(n 4 1)-order property. For each k < n, let i; and ji be the indexes such
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that a), = a;, and b = bj,. From (0.) it follows that for all £ < n there is
J;, such that

Let M = max{J;,,...,J;, }. Then

Vi > M ((¢(ai,bj) = - = (¢(as,, bj) = 0).

Now we can repeat this argument with the roles of (0.) and (1.) switched to
obtain a number N such that

Vi >N ((¢(ai,bj,) = - = (d(as,bj,) = 1).

Now fix any j° > M. Condition (1.) yields I such that ¢(a;, bjr) = 1 for
all i > I;;. Fix any ¢ > max{I;,, N}. Finally, let ¢/, ; = b;s and a},,; = ay.
For every n € w we have constructed a sequence witnessing that ¢ has the
n-order property, so by definition ¢ has OP. O



Chapter 2

Compactness and continuous
maps

In this chapter we recall some basic topology and functional analysis notions
and then proceed towards Theorem 2.21, a characterization of compactness
for sets of bounded continuous functions on a compact space. This result
essentially says that weak compactness and pointwise compactness in this
case agree; it subsumes [Gro52, Théoréme 6] of Grothendieck and it is the
key to prove the characterization of stability for continuous logic as done by
Ben Yaacov in [Benl3].

We will see that what is actually needed to prove such a characterization of
stability is only Corollary 2.19, which does not even involve weak compactness,
unlike Grothendieck’s theorem.

Anyway, the key to prove Theorem 2.21 is indeed the double limit property
introduced by Grothendieck in [Gro52], the same paper where he proved his
aforementioned theorem. As noted in [Benl3], this property is strikingly
similar to the classical no-order property in model theory. In fact, we will
see that the latter may be rephrased as a kind of double limit property.

2.1 Preliminary general topology and functional
analysis

We recall some basic topology and functional analysis notions we need. To
find more about these topics the reader may consult for instance respectively
[Eng89] and [Brell]. To start, recall the following basic terminology.

Definition 2.1. If X and Y are topological spaces and F' C V¥ is a family
of functions, the topology on X generated by F is the smallest topology 7 on
X such that all maps in F' are 7-continuous.

Now we introduce the weak and pointwise convergence topologies and
state some remarks regarding their basic properties we will use and their
mutual relationship.

17
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2.1.1 Weak topology

Let E be a complex normed space and E* its dual space of complex norm-
bounded linear functionals on E. The weak topology on E is the topology
generated by the family of maps E*. We use the symbol

Jo— 1T

to say that a sequence (fy,), converges weakly to f.

Remark 2.2. A basis of open neighbourhoods for zg € E in the weak topology
is given by sets Vi, (fo, ..., fn;€) of the form

{z € E:|fi(z) = fixo)| <€ i <n} = () fi [Be(fi(wo))]
i<n
for fo,...,fn € E* and € > 0.

In the following we will need the following result.

Fact 2.3 (Riesz Representation Theorem, [Brell, p. 4.14]). Let X be a
compact Hausdorff space. Then for every linear functional T: C'(X) — R
there exists a unique Radon measure i on X such that

7(f) = [ fan
for all f € C(X).

2.1.2 Pointwise convergence topology

Let X and Y be any sets and A C YX. The pointwise convergence topology
on A is the topology generated by the family of projections {7, },cx, where
e A=Y, f— f(x). Equivalently, the subset topology inherited from the
product topology of YX. We use the symbol

fn—=f
to say that the sequence (f,), converges pointwise to f.

Usually we will assume Y =C or Y = [0, 1].
Remark 2.4. A basis of open neighbourhoods for fo € A C CX in the

pointwise convergence topology on A is given by sets Vi (xo, ..., Tn;€) of
the form
{f e A:|f(zi) = folzi)| < e i <n} = [ 7y [Be(ma, (fo))]
i<n

for zg,...,xy, € X and € > 0.
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Remark 2.5. This topology is Hausdorff whenever Y is. For the case Y = C,
if fo, f1 € A are distinct, then there is x € X where they do not agree; if
e = |fo(x) — fi(x)] > 0, it is easy to check that the sets Vi, (x;€/2) and
Vi, (x;€/2) are disjoint open neighbourhoods respectively of fy and fi.
Remark 2.6. If E is a normed space, the pointwise convergence topology on
A C CF is weaker than the weak topology on A, since {m,}zcr C A*. In
particular, if (f,)n, € A then

fo=f = fa—=

We state a very particular case of the Dominated Convergence theorem
that we will use later. See for instance [Bar95, Theorem 5.6]) for reference.

Fact 2.7 (Dominated Convergence). Let X be a topological space and let
(fn)n € Cy(X) be a sequence such that f, — f € Cp(X). Then for all Radon
measures on X we have [ fpdu — [ fdpu.

2.1.3 Compactness

First we recall the notion of net, which generalizes the concept of sequence
and is useful to deal with compactness in more general settings.

Definition 2.8. A net in a topological space X is a pair (A, k) where A is
a directed partially ordered set and k: A — X. As with sequences, we use
the notation z, = k(a) and denote k by (z4)aca-

The only result we will use is the (forward implication of the) following
fact. We will not need to know what convergence of nets actually means.!

Fact 2.9 ([Ped89, Proposition 1.4.3]). Let X and Y be topological spaces
and f: X =Y. The following are equivalent:

(i) The map f is continuous.
(ii) For each net (z4)aca C X, if o — x then f(x,) — f(z).

Recall the following characterization of compactness that holds in general
for topological spaces.

Fact 2.10 ([Ped89, Theorem 1.6.2]). For any topological space X, the
following are equivalent:

(i) Ewvery open covering of X has a finite subcovering.

(ii) Each family of closed sets of X with the finite intersection property
has non-empty intersection.

(iii) Every net in X has a cluster point.

(iv) Ewvery net in X has a convergent subnet.

If X satisfies one of the following it is said compact.

! Anyway, the reader may refer to [Ped89, §1.3] for all details regarding nets: subnets,
convergence, cluster points.
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The next simple fact is needed in the following. It says that for Hausdorff
topologies, a compact one is minimal with respect to inclusion.

Lemma 2.11. If (X, 1) is a Hausdorff compact space, then T is the minimal
topology for which X is Hausdorff.

Proof. Let 0 C 7 be an Hausdorff topology on X. We show that 7 C 0. Let
A € 7. Then AL is 7-closed. Since X is T-compact, Al is T-compact and a
fortiori o-compact. Since ¢ is Hausdorft, Al is o-closed and so A € o. O

Let us introduce some obvious terminology to describe various kinds of
compactness. In the next sections we will proceed to analyse what these
notions look like in the very specific case of certain sets of continuous
functions.

Definition 2.12. Let E be a normed space, X any set and Y a topological
space. We say that:

e A C FE is weakly compact if it is compact in the weak topology of F.

o ACYX is pointwise compact if it is compact in the pointwise conver-
gence topology of A.

o ACY is precompact if its closure cl(4) C Y is compact.

o A CY is sequentially precompact if every sequence (an)new € A has a
convergent subsequence.

o A CY is sequentially compact if every sequence (an)ne, C A has a
convergent subsequence whose limit is in A.

Remark 2.13. In general, compactness and sequential compactness are dis-
tinct. For example, the space [0, 1][0’1] with the pointwise convergence
topology is compact by Tychonoff’s Theorem but not sequentially compact.
On the other hand, the ordinal space [0,w;) with the order topology is
sequentially compact but not compact. See [SS78, Examples 105, 43] for
details.

There are indeed spaces where the notions of compactness and sequential
compactness agree, for example metric spaces; in particular, Banach spaces.
As a matter of fact, for Banach spaces the same characterization remains
true even for the weak topology, which need not be metrizable.

Fact 2.14 (Eberlein-Smulian Theorem, [Die84, p. 18]). Let E be any Banach
space and A C E. The following are equivalent:

(i) A is weakly precompact.
(ii) A is weakly sequentially precompact.

(iii) Ewvery sequence in A has a weak cluster point.

Convention 2.15. If X is a topological space, we denote by C(X) the set of
continuous complex-valued functions on X.
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A particular example of Banach space to which we will apply Fact 2.14
is the space C(X) where X is Hausdorff compact, with the uniform norm.

Remark 2.16. Recall that sequences are nets but a subnet of a sequence need
not be a subsequence. So if a topological space X is compact and (z,), C X
is a sequence, we cannot say that it has a convergent subsequence; however,
by Fact 2.10(iii) it surely has a cluster point.

2.2 Double limit property, weak compactness and
pointwise compactness in C'(X)

The proof of the main result of this section (Theorem 2.21) requires two pre-
liminary propositions. The first to pass from DLP to pointwise compactness,
the second to pass from pointwise compactness to sequential pointwise com-
pactness. The other implications are trivial, modulo the Eberlein-Smulian
Theorem 2.14 and the Dominated Convergence Theorem 2.7.

2.2.1 Pointwise compactness and the double limit property

We start by introducing the topological double limit property.

Definition 2.17. Let X and Y be topological spaces. We say that the
double limit property holds for A C YX and X, C X if for all sequences
(fn)n € A and (x,), € Xo we have

limlim f,,(zy,) = lim lim Jn(Tm) (DLP(A, Xy))

n m

whenever all limits exist.

Now we turn to the first of the aforementioned propositions, which shows
how the double limit property is connected with pointwise compactness for
continuous functions.

Proposition 2.18. Let X be a compact Hausdorff space, Xo C X dense and
A C C(X) bounded. If DLP(A, Xo) holds, then A is pointwise precompact
in C(X).

Proof. Since A is bounded, there is r > 0 such that A C cl(By(r))*, which
is compact by Tychonoff’s theorem. So the closed set cl(A) is compact as
well. We only have to prove that cl(4) C C(X).

Suppose there is a function f € cl(A) which is not continuous in a point
x € X. By density of X, there is a neighbourhood U of f(x) such that
every neighbourhood of z contains a point y € Xy satisfying f(y) ¢ U. We
recursively construct sequences (f,,)n, C A and (), C Xo for n > 1. Start
from any f; € A. If we have f1,..., f, and z1,...,2,_1, by continuity of
the f;’s and how we chose U, we can pick x,, € Xy such that
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(i) [fm(2) = fmlzn)| < L forallm=1.n
(i) f(zn) € U.

Now, since f € cl(A) with respect to the pointwise topology, by Remark 2.4
we can pick f,11 € A such that

(111) |fn+1(l‘m) - f(CUm)‘ < % forallm=1..n
(iv) |fat1(z) — f(z)] < L.

Condition (i) ensures that lim,, f,(zm,) = fu(x) for all n € w and (iv) that
lim,, f,(z) = f(x). Thus

Now (iii) yields that lim,, f,,(xm) = f(xm) ¢ U for all m € w. By assumption
A C B,(0) for some r > 0. Then f € cl(A) C cl(B,(0)) and so the image of
f is contained in a compact set. Therefore, there is a convergent subsequence
(f(wm,));- Since f(xm;) € UL for all j, then lim; f(xm;) € A(UY) = UL, We
have obtained that

lim lim fn(mmj) = lim f(xmj) ¢ U,
Jj n J

which contradicts our assumption that the double limits coincide. O

We state a simple corollary that we will crucially use for proving Proposi-
tion 4.16, i.e. how definability of types in continuous logic follows from DLP.
Here we restrict to the case of functions with values in the unit interval.

Corollary 2.19. Let X be a compact Hausdorff space, Xg C X dense and
A C C(X;]0,1]) bounded. If DLP(A, Xg) holds, then every net (f;)icr € A
has a subnet that converges pointwise to some f € C(X).

Proof. Observe that we can view [0,1] € C. Suppose that DLP(A, Xy)
holds. Then by Proposition 2.18 the set A is pointwise precompact in C'(X),
i.e. cl(A) is pointwise compact in C'(X). By Fact 2.10(iv) and A C cl(A) it
follows that each net in A has a subnet which converges in C'(X). O

2.2.2 Pointwise compactness and pointwise sequential com-
pactness

Now we present the second proposition needed for proving the main theorem.
It shows that for certain continuous functions pointwise compactness implies
sequential pointwise compactness. This property plays a major part in the
definition of angelic spaces, of which C'(X) with the pointwise convergence
topology is one of the simplest examples.

Proposition 2.20. Let X be a compact Hausdorff space and A C C(X)
be bounded. If A is pointwise precompact in C(X), then it is pointwise
sequentially precompact in C(X).
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Proof. Let Tx be the topology on X. Call 7, the topology on X of pointwise
convergence. Fix (f,), € A. By assumption, (f,), has a 7,-cluster point
f € C(X). Let 7 be the topology on X generated by the family {f,}n.
Since the f,’s are Tx-continuous, 7 is Hausdorff and weaker than 7x; by
Lemma 2.11, the space (X, 7) is compact.

Claim. The space (X, 7) is pseudo-metric.”

Proof. Let d(z,y) = sup,, 27"|fn(x) — fu(y)l|; it clearly is a pseudo metric.
Let 74 be the topology generated by d. Since both 7 and 7; are Hausdorff
compact, by Lemma 2.11, it suffices to show that 7y C 7. Let x € X
and € > 0. Let L > 0 be a constant bounding A. Pick N € w such that
2L/2N < €/2. Consider the T-open sets

Un = f [Bepa(ful2))] = {y € X = | ful@) — fuly)] < ¢/2}

for n € wand let U = (,<y Un. If y € U, then

d(l‘>y) < sup 2in’fn($) - fn(y)| + sup 2in|fn($) - fn(y)|
<N n>N

< [e/2]+ [27V (sup| fu(@)] + sup| fu()])]
n>N n>N
<€/2+¢€/2=¢.

This means that U C Be(z). O

Compact (pseudo-)metric spaces are separable ([Eng89, Theorem 4.1.18])
so there is Xy = {z;};c, dense in (X, 7).

Since f is a 7-cluster point for (fy,)n, the bounded sequence ( f,,(xo))n € C
has f(z¢) as a cluster point and so by the Bolzano-Weierstrass Theorem
there is a subsequence (fon)n such that fo,(zo) = f(z0). Now (fon(x1))n
has f(x1) as a cluster point and so there is a subsequence (fi,), such
that fi,(x1) = f(x1). Proceeding similarly, at each stage j € w we have
a subsequence (fjn)n such that f;,(z;) — f(x;). Let f,, = fj;. Then
In,;(x5) = fjj(xj) = f(z;) for all j € w; this means that f,, — f on Xo.

The topology 19 on A of pointwise convergence on X is Hausdorff and
weaker than 7,, so it is also compact; it follows from Lemma 2.11 that 7, = 79.
Notice that f is the unique 7,-cluster point of (fy,);. Indeed, if g is a cluster
point, then f and g have to agree on Xo because f,,; — f on Xo; but both
are T-continuous and Xy is 7-dense, so f = g. Therefore f,,;, — f. O

2.2.3 The compactness characterization theorem for C(X)

We are finally ready to prove the main result of this chapter, a way of
characterizing compactness for bounded sets of continuous functions on a

2If one of the f,,’s or f are injective, then (X, 7) is a metric space; anyway, pseudo-metric
is enough for our needs.
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compact Hausdorff space. This is done by combining the last two propositions
with the Eberlein-Smulian Theorem 2.14 and the Dominated Convergence
Theorem 2.7.

Theorem 2.21. Let X be a compact Hausdorff space and A C C(X) be
bounded. The following are equivalent:

(i) A is pointwise precompact in C(X).
(i*) A is pointwise sequentially precompact in C(X).
(ii) DLP(A, Xo) holds for some dense Xy C X.
(iii) A is weakly precompact.

)

*) A is weakly sequentially precompact.

(iii
Proof. First we prove that (iii)<(iii*) < (i*).
(iii) < (iii*): By the Eberlein-Smulian Theorem 2.14.
(iii*)=(i*): By Remark 2.6.
(i*)=(iii*): Let (fn)n € A. By (i*), passing to a subsequence if needed,
there is f € C(X) such that f,, — f. By the Dominated Convergence
Theorem 2.7 we have [ f,dp — [ fdp for all Radon measures p on X,
which are the same as functionals in C'(X)* by the Riesz Representation
Theorem 2.3; hence f, — f.

Now we prove that (i*)<(ii)<(i).

(i*)=-(ii): Take Xo = X. Let (fn)n € A and (z,), C X and suppose the
double limits exist. By (i*) there is f € C(X) such that f, — f. Therefore

hglhgglfn(xm) = h?{bnfn(x) = f(CC) = hnrln f(xm) = llglnhrl;nfn(xm)a

where the first, third and fourth equalities hold by continuity, while the
second because f, — f.

(ii)=(i): By Proposition 2.18.

(i)=(i*): By Proposition 2.20.

This completes the proof.? ]
Convention 2.22. We will sometimes use the notation
Cp(X)

for the space C'(X) with the pointwise convergence topology.

3Notice that with the above arguments it is not possible to prove (ii)=-(iii) without
using the starred conditions together with Proposition 2.20, i.e. passing back and forth
to sequences. This is because the Dominated Convergence Theorem 2.7 does not hold in
general for nets; if that were true, the proof of (i*)=-(iii*) would ‘lift up’ to a direct proof
of (i)=-(iii), but this is not the case.
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2.2.4 Grothendieck’s theorem

The assumptions of Theorem 2.21 may be slightly relaxed. It is enough to
demand X to be countably compact and Hausdorff.* Moreover, condition
(ii) automatically forces A to be bounded; this is due to the following result.

Lemma 2.23. Let E be a complex normed space. If a subset A C E is
weakly compact, then it is bounded and weakly closed.

Proof. Let 6: E — E** be the canonical embedding x — §, defined by
dz(f) = f(x). For all f € E* the set f[A] is a continuous image of a (weakly)
compact set. So it is a compact set in C, hence bounded. Then for all
f € E* we have

sup [0z (f)| = sup |f(z)| < oc.
€A €A

The space E* is Banach so we can apply the Uniform Boundedness Principle
([Brell, Theorem 2.2]) to {0, : ¢ € A} C E** and get that sup,c4||dz|| < oo.
It follows from the Hahn-Banach theorem ([Brell, Corollary 1.4]) that
[10z]| = ||x|| for all x € E, and so A is bounded. Since the weak topology is
Hausdorff, the weakly compact set A is also weakly closed. O

The equivalence (ii)<(iii) was originally stated by Grothendieck as
follows, without any assumption on the space X. Recall that if X is just a
topological space, the space Cy(X) of bounded continuous complex-valued
functions on X is still a Banach space (see [HS75, Theorem 7.9]).

Grothendieck’s Theorem ([Gro52, Théoreme 6]). Let X be an arbitrary
topological space, Xg C X a dense subset and A C Cy(X). The following are
equivalent:

(i) A is weakly precompact.
(ii) A is bounded and DLP(A, Xy) holds.

The theorem is proved in [Gro52] by means of the “Cech compactification”

BX of X. It is also quoted werbatim in [Benl3, Fact 2], without a proof.
It seems reasonable to us doubting whether the result holds without any
assumption on X. Aside from the fact that in all the works mentioned in
the footnote some properties are assumed, the reasons for demanding them
seem quite clear:

e The image of X into SX may not be dense if the space X is not at
least Tychonoff (recall that a countably compact Hausdorff space is
regular, hence Tychonoff).

e If X is not countably compact, the proof of Proposition 2.20 does not
work for C(X), hence we cannot pass down to sequences to use the
Dominated Convergence Theorem 2.7, which does not hold for nets.

“This can can be seen in the huge monograph [Tkal5, U.044] on C,(X) and [Fre03,
Proposition 462F]. In [KL16, Lemma D.3] it is stated and proved only in the case of X
Hausdorff compact.



Chapter 3

Continuous logic

In this chapter we introduce Continuous First Order Logic (CFO) from
scratch, describing its syntax, semantics and fundamental theorems. Then
we present types and some topologies on the type space, which will be needed
to deal with stability. In the continuous setting, we will measure the size
of type spaces in two ways: according to their size (as in classical logic)
or to their density character (with respect to a uniform norm in the local
case; with respect to the “logic topology”, a generalization of the usual one
in two-valued model theory, in the global case). Even if it is not strictly
needed in following chapter, we introduce also another topology on global
type spaces, the “metric topology”, which, as the name suggests, is generated
by a metric. We will also analyse some of the relationships between the logic
and metric topologies. We base our exposition mainly on [Yaa+08], and to
a less extent on [BUOS|.

3.1 Syntax

As in classical logic, in every language we include the same fixed logical
symbols, which are:

e An infinite set of variables.

e A symbol d for the distance predicate, which is the continuous coun-
terpart of equality.

e The symbols “inf” and “sup” for continuous quantifiers, corresponding
respectively to 3 and V.

o A symbol for each continuous function u: [0,1]" — [0, 1] for any n € w.
These play the role of connectives.

The interpretation of the distance predicate in a metric structure requires to
have a fixed metric space (M, d™), which we always assume to be complete
and bounded, without loss of generality with d < 1. So here we have a
different class of structures for every such metric space. In each class — as it

26
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is the case with FOL — ‘equality’ has always the same meaning, namely the
concrete metric in the underlying space.

Definition 3.1. A metric language consists of the set of logical symbols,
together with a set of non-logical symbols of the following form:

<Ri7nRi7ARi ‘ 1€ I> @] <fj,nfj,Afj ‘ JjE J) U <Ck ’ ke K>
The cardinality of a language L is the cardinal |L| = |I| + |J| + |K| + Ro.

As in classical logic, these are respectively symbols for relations, functions
and constants, with their arities. In addition, we have symbols for moduli
of uniform continuity, since we will require interpretations of relation and
function symbols to always be uniformly continuous maps, in order to make
the theory work smoothly. We recall what this means.

Definition 3.2. Let (Mj,d;) and (Ms,ds) be metric spaces and take any
f: My — M. A map Ay: (0,1] — (0,1] is called a modulus of uniform
continuity for f if for every € € (0, 1] and every x,y € M; we have

di(z,y) <Aple) = da(f(2), fy)) <e.

We say that the function f is uniformly continuous if it has a modulus of
uniform continuity.

Remark 3.3. Let f: My — Mj be uniformly continuous. Then for each A > 0
and e > 0 such that Ae € (0,1] we have Af(Xe) < (14 X)Ag(e).

Structures are defined in the following natural way, by specifying concrete
meanings for all symbols.

Definition 3.4. Fix L a metric language as above. A metric L-structure
based on a (complete and bounded) metric space (M, d™) consists of

(RM ni, A e DU (M nf A |jeTyulct | ke K),

where cé\/l € M, and the natural numbers n% and n% are the arities of the

uniformly continuous maps (with respect to d*)
M M
RM: M™% — [0,1], MM - M,

with A% and A% their respective moduli of uniform continuity.

Convention 3.5. To keep the notation simple, we usually use the same
symbol M for the domain of the metric space, the metric space itself and
the structure based on it.
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Convention 3.6. Careful readers may have noticed that we have not specified
yet which metric we endow M™ with if n > 1. We can take any product
metric of the form

dp((at,...,an), (b1,...,by)) =||(d(a1,b1),...,d(an,bn))||p

for p € [1,00], since in finite dimensions they are all equivalent and thus
induce the same topology. For simplicity, we take p = co and use the same
symbol d instead of dwo. So for a,b € M™ we have

d(a,b) = max d(a;,b;)

1<i<n

We can define embeddings, isomorphisms and substructures almost as in
the classical case: here we should also demand distances to be preserved.

Definition 3.7. Let M and N be L-structures. An embedding from M to
N is an isometry T: (M,d™) — (N,d") such that for all @ C M we have:

- RY(@) = RN(T(d))
« T(fM(a@) = fN(T(a))

o T(cM)y=¢cN

An isomorphism is a surjective (thus bijective) embedding. We say that M
is a substructure of N if the inclusion map M — N is an embedding, and
with a little abuse of notation we write M C N.

Terms are defined inductively, exactly as in classical logic.

Definition 3.8. Terms of a language L consist of variables and constant
symbols, and if t1,...,t, are L-terms and f is a n-ary function symbol, also
f(t1,...,ty) is an L-term. All terms are built this way. The interpretation
in M of an Lys-term t(x1,...,x,) is the function

M M™ = M, @ tla/7
obtained by replacing every free occurrence of every x; with a;.
Now we define formulae, which are built essentially as in classical logic.

Definition 3.9. Let L be a fixed language. The set of L-formulae consists
of the following expressions:

o Atomic L-formulae, that are expressions of the form R(t,...,t,) or
d(t1,t2), where R is an n-ary relation symbol and ¢4, ...,t, terms.

o u(¢1,...,¢Pn), where u is a connective and ¢1, ..., ¢, are L-formulae.

e sup, ¢ and inf, ¢, where ¢ is an L-formula and z a variable.

All formulae are built this way.
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We define exactly as in classical logic concepts like quantifier-free formula,
subformula, sentence, syntactic substitution, free and bound occurrences of
variables, expansion of a language and so on.

Example 3.10. Some basic examples of metric structures:

A complete metric space (M, d) bounded by 1 with no relations, no
functions and no constants is the minimal example of a metric structure.
The language here is empty.

o Each first order structure can be viewed as a metric structure by taking
the discrete metric

0 ifex=y

dz,y) = {1 ifx#y

and identifying each predicate R with its characteristic function yg.

o Take M to be the unit ball of a real Banach space (E, ||-||), the distance
d(z,y) = ||z — y|| and a function symbol f,; for each a,b € R such
that |a| + |b] < 1, which is interpreted as f,;(x,y) = ax + by.

o More examples (probability spaces, Hilbert spaces, LP spaces) can be
found in [Yaa+08].

3.2 Semantics

It is in its semantic that continuous logic is particularly more refined than
the classical one: in a model M, every sentence ¢ has a truth value

oM e 0,1]

which is defined inductively as follows. As usual, we will just write ¢(a)
instead of ¢[z/a] to denote the sentence obtained by substituting every free
occurrence of x in ¢ with a.

Definition 3.11. Let M be a structure. For all closed Ljs-terms tq,...,t,,
all Lys-sentences o1, ...,0, and all Ly-formulae ¢(x) we define:

d(tr, t2)™ = aM (8, t57)
R(t1, ... tn)M = RM@#M . M)
u(oy,...,o0)M =u(e], ... oM)
(sup, ¢(x))M = supgeps o(a)™
(inf, ¢(2))™ = infacpr @(a)M.

for any n-ary relation symbol R and any n-ary connective u.
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Remark 3.12. Every Lys-formula ¢(x1, ..., x,) yields a uniformly continuous
function

oM M™ = [0,1], @ o(@)M.
This is due to the fact that all interpretations of relations and functions are
taken to be uniformly continuous.’

Convention 3.13. Let M be an L 4-structure. We use the notation
L(A) ={s" | ¢ € La}

for the family of maps induced by L 4-formulae.

Just as in classical logic, two formulae are indeed called logically equiva-
lent if they always have the same truth values.

Definition 3.14. We say that two formulae ¢ and 1 are logically equivalent
if for every structure M the maps ¢™ and ¥™ coincide.

We can define a distance between formulae. Two formulae are logically
equivalent iff the logical distance between them is zero.

Definition 3.15. The logical distance between two L-formulae ¢, is
do(¢,v) = sup{|¢(a)™ — ¢(a)M|: M is an L-structure, a € M}.

It is clearly a pseudo-metric; it is a metric if formulae are considered up to

logical equivalence.

In classical logic, having only two truth values, we can identify without
harm every sentence o with the statement “o is true”. In continuous logic
we can do the same but the identification is much ‘stronger’: we pick the
somehow natural value 0 among the infinitely many possible ones, and we
say that a sentence o is true in a model M when o™ = 0. More formally:
Definition 3.16. Let M be an L-structure and o an L-sentence. We define

MEo <+— o¥=0

and say that o is true in M. If ¢(zx) is an L-formula, we say that a € M
realizes () if ¢(a)™ = 0, and we write M = ¢(a).

Remark 3.17. Note that the map
[07 1]2 — [Oa 1]) (.’E,y) = |IL' - y|

is a connective. Since we can regard every r € [0, 1] as a constant connective,
expressions of the form |¢(z) — r| are formulae, which we abbreviate by
¢(x) — r. Therefore, we have

MEoc—r — o¥=r

for all sentences o.

Tt can be checked by induction on the complexity of formulae, using basic analysis
tools about uniform continuity. For details see [Yaa+08, §2].
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A different approach to define the satisfaction relation could be to
introduce the concept of conditions, i.e. formal expressions of the form o = r
where o is a sentence and r € [0, 1], and define theories as sets of conditions.
Satisfaction of conditions is defined in the obvious way: a model M satisfies
the condition o = r if o™ = r.

From a certain perspective, this would indeed be a more intuitive ap-
proach, because it avoids the identification between sentences and statements
asserting they are ‘true’. Moreover, allowing a generic value r € [0, 1] makes
the ‘translation’ trick mentioned in Remark 3.17 unnecessary.

On the other hand, there are two important reasons that make us lean
towards discarding the approach with conditions. Firstly, most theories are
naturally axiomatized by conditions of the form ¢ = 0, in which case there is
no need for other values. Secondly and most importantly, defining theories
as just sets of sentences is precisely what we do in classical logic and in the
proofs it is simpler to handle a sentence ¢ than a condition ¢ = 0, which is
anyway completely determined by o itself.

Definition 3.18. An L-theory is a set of L-sentences. A structure M
satisfies a theory T, in symbols M |= T, if M |= o for every o € T. The
theory of M is the set Th(M) of L-sentences realized by M. Theories of this
form are called complete.

The concept of elementariness can be readily adapted to continuous logic
in a natural way. Indeed, two structures are elementary equivalent if they
are indistinguishable by considering their continuous first order properties.

Definition 3.19. Let M and N be L-structures. We say that:

e M and N are elementarily equivalent, in symbols M = N, if for every

sentence o € L we have oM = oV,

e A substructure M of N is elementary, in symbols
M <N

if for every ¢(#) € L and @ C M we have ¢(a)M = ¢(a)V.

o A partial function F': M — N is elementary if for every ¢(Z) € L and
every @ C dom(F) we have ¢(@)M = ¢(F(@))"N. We say that F' is an
elementary embedding if it is also total.

As in classical logic, isomorphisms are elementary embeddings but the
converse need not be true. Notice also that elementary maps are distance
preserving.

3.3 Fundamental theorems

Ultraproducts of metric structures can be defined as in classical logic and are
well-defined due to the fact that we work only with complete and bounded
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metric spaces. They can indeed be used to prove a continuous version of
t.08’ theorem, which in turn easily implies the following continuous version
of the Compactness Theorem.”

Fact 3.20 (Continuous Compactness Theorem, [BUOS, Theorem 2.16]). Let
L be any metric language. If an L-theory is finitely satisfiable, then it has a
model.

Continuous versions of the Lowenheim-Skolem theorems also hold, but
in the statements the concept of cardinality has to be replaced with that of
density character. Recall the density character of a topological space X is
the smallest cardinality of a dense subset of X. We will use the symbol

[1X]
to denote it. Note that ||X|| < |X| and if A C X then ||4|] < ||X]|.

Fact 3.21 (Continuous Downward Lowenheim-Skolem Theorem, [Yaa+08,
Theorem 7.3]). If M is an L-structure and A a subset of M, then there
exists A C N <X M with ||N|| < ||A|| + |L|. In particular, if ||A|| > |L| then
IV = [lAl].

For the upward version, the assumption that the structure is infinite is
replaced with demanding it to be non-compact as a metric space.

Fact 3.22 (Continuous Upward Léwenheim-Skolem Theorem, [BU08, Theo-
rem 2.18]). Let M be an L-structure whose underlying metric space is not
compact. Then for every cardinal k > ||M|| + |L| there exists N = M with
IV = &

The concepts of saturation and homogeneity are defined exactly as in
the classical case.

Definition 3.23. Let M be an L-structure. We say that:

o M is k-saturated if for every A € [M|<", any set I' of L4-formulae is
finitely satisfiable in M4.

e M is k-homogeneous if every partial elementary map F': M — M with
|F'| < Kk can be extended to an automorphism of M.

Elementary superstructures with these properties always exist also in
continuous logic.

Fact 3.24 ([Yaa+08, Theorem 7.12]). Let M be an L-structure. For every
infinite cardinal K there exists a k-saturated and k-homogeneous elementary
L-superstructure N = M.

So also in continuous logic we can always work in some big monster
model. This will be useful to deal with stability.

2The proofs are essentially the same and can be found in [Yaa+08, §5].
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3.4 Types in continuous logic

Global types in continuous logic are defined exactly as in the classical case.
This is made possible by how we defined the satisfaction relation and we
hope it may result pleasant to the reader.

Definition 3.25. Fix an L-structure M and A C M.

o A partial type over A (in M) is a set ® of L 4-formulae which is finitely
satisfiable in M 4.

o A partial type p over A is complete if it is maximal finitely satisfiable
in My. For b € M, the complete type of b over A is

™ (b/A) = {¢(x) € La: M |= ¢(b)}.

The set of complete types over A (in M) is denoted by SM(A).

o We define n-types and z-types as in the classical case and use the same
notation.

We start with a simple observation which is nonetheless important and
allows a simple characterization of types.

Lemma 3.26. Let p(x) € S(A). If p is realized in the model M by b € M,
then for all ¢(x) € La the value v = ¢(b)M is the unique r € [0, 1] such that
o(x) —r € p.

Proof. Uniqueness: if ¢(z) —r1 and ¢(x) —ro are in p, then r; = ¢(b)M = ro.
Existence: the model M witnesses that p U {¢(x) — r} is consistent, and so
by maximality ¢(x) —r € p. O

In other words, in continuous logic a complete type p assigns to every
formula ¢ exactly one truth value r € [0, 1].

Convention 3.27. Since the number r depends only on ¢ and p, we will use
the symbol

o
to denote it. We can think of it as the value of ¢ according to p.
Remark 3.28. Note that each p € S(A) is completely determined by the
values ¢ for ¢ € L4. In other words, p(x) = {p(x) — ¢P | ¢ € La}.
Remark 3.29. For realized types, we have (;StpM(b/ 4 = ¢(b)M and when the
context is clear we may denote this number just by ¢°.

In the two valued-case, each type induces a {0, 1}-valued Keisler measure,
i.e. a probability measure on the Boolean algebra of definable sets. Here we
cannot do the same since sets of the form ¢(M) ={be M : M = ¢(b)} do
not behave well with respect to set-theoretic difference. Instead, in CFO
each type p € S(A) induces a functional

Tp: (La,do) = [0,1], ¢ — @P.



CHAPTER 3. CONTINUOUS LOGIC 34

3.5 The logic topology

Now we define a topology on S, (A) in a natural way, similar to what is
normally done in classical logic.

Definition 3.30. The logic topology on S, (A) has basic open neighbour-
hoods for p € S,(A) of the form

[0 <r]={p € Sn(A): ¢’ <r}
for ¢ € p and r € [0,1]. We denote it by 7.

It is useful to introduce also the notation [¢ < r| defined in the obvious
way. This set is closed since its complement can be written as [1 —¢ < 1 —7].
Similarly, [¢ > r] is open and [¢ > r] is closed.

Remark 3.31. Note that the map
x—y=max{x —y,0}
is a binary connective.

Lemma 3.32. Closed subsets of Sy,(A) in the logic topology are exactly the
sets of the form Cr = {p € Sp(A) : T C p}, where I' is a set of L a-formulae.

Proof. Since Cr = (\yer[¢ < 0], these sets are closed. Take now a closed set
C and let p ¢ C. Since p € S, (A) \ C which is open, by definition of logic
topology there is ¢ € p and 7 > 0 such that p € [¢ < 7] € S,(A) \ C. Then
CClp>r]=[r=¢<0]. Let I be the set of all formulae of the form r — ¢
obtained this way. It is clear that C' = C. O

This topology has some nice properties that spaces of types in classical
logic have. They indeed follow from the Compactness Theorem 3.20.

Proposition 3.33. The space (Sp(A),70) is Hausdorff compact.

Proof. Hausdorff: Let p # g and pick without loss of generality ¢ € p\ g. For
r = ¢? > 0, we have the disjoint open sets p € [¢ < r/2] and ¢ € [¢p > r/2].
Compact: Let {CT, }ics be a family of closed sets with the finite intersection
property. Then for all ig,...,1, € [

0# () Cr, = {peSa4): Ty, Cp}.
7=0 7=0

This means that the set of L 4-formulae (J;c; I'; is finitely satisfiable, since
its finite portions are contained in a type. By the Compactness Theorem, it
is satisfiable and so there is a type p extending it. Then p € ();c; Cr,. O

The next fact is a useful topological criterion to show that a substructure
is elementary.
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Lemma 3.34 (Continuous Tarski-Vaught Test). Let M be an L-structure
and A C M a closed subset. The following are equivalent:

(i) A is (the domain of) an elementary substructure of M.

(ii) For every L-formula ¢(x,y) and every @ C A we have
. M - WM
inf ¢(b,@)" = inf ¢(b,a)".

(iii) The set of realized types {tp™ (a/A) | a € A} is dense in (S1(A),To).

Proof. (i)=(ii): By definition of elementary substructure applied to the
formula inf, ¢(x, 7).
(ii)=(i): First we show that A is (the universe of) a substructure; it suffices
that it is closed under function symbols, i.e. f(@) € A for each @ C A. For
any @ C A, applying (ii) to the formula d(y, f(Z)) yields

= .. M . M
which means that f(a@) € cl(A) = A, since A is closed. Now (ii) can be used
to show by induction on the complexity of formulae that (i) holds, exactly
as in classical logic.
(iii)=(ii): Fix an L-formula ¢(x, ) and @ C A and 7 = (inf, ¢(z,a)). Fix
e € (0,1 — 7). By density, we can pick tp™(c/A) in the non-empty open set
[p(x,d) <1+ €] for some ¢ € A. Then

: AM M _ -\ tpM (c/A) _ M )
inf ¢(b,@)" < ¢, @)™ = o(x,d) <rte= inf ¢b,a)" +e

Since € was arbitrary, this means that infye 4 ¢(b, @)™ < infpenr ¢(b, @)™,
The other inequality is trivial.

(ii)=-(iii): It suffices to show that each non-empty basic open set [¢(x, @) < 7]
contains some tpM (b/A) for b € A. By (ii) we can rewrite this as follows:

Jbe A (tpM(bJA) € [d(z,@) <7]) = Tbe A (¢(ba)M <r)
< infbeA gf)(b, Ei)M <r
<~ infpeps (;5(1), CT)M <.

In order to show that the last inequality holds, pick any p € [¢(z,d) < r].
Let t = ¢(x,a)? < r so that ¢(x,ad)? —t € p. By definition, p is finitely
satisfiable in M4, so there is b € A such that ¢(b, @)™ = t. It follows that
infyens ¢(b, @)™ <t < r, hence our thesis. O

It follows that M is dense in S, (M) for the logic topology, just as in
classical logic.

Corollary 3.35. For every L-structure M, the set {tpM(a/M) | a € M}
of realized types is dense in (Sp(M),T0).
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Proof. The set A = M is obviously closed and an elementary substructure
of itself. From Lemma 3.34(iii) the thesis for n = 1 directly follows. For
n > 1 it can be obtained by a simple induction, by seeing formulae of the

form ¢((z1,...,2n), (Y1,---,Ym)) as ¢((x1, -, Tn-1), (Tn,Y1,---+Ym)). O

Combining the last result with the fact that spaces of types are compact
we get that S, (M) is a compactification of M.

Proposition 3.36. Leti: (M,d) — (S,(M), o) be the map a — tp™ (a/M).
Then (Sy (M), 10,%) is a compactification of (M,d).

Proof. The space (S, (M), 1y) is compact by Proposition 3.33 and (M, d) is
mapped densely in it by Corollary 3.35. The only things left to check are
the properties of the map i.

Injective: if a,b € M are distinct, then d(a,b) > 0 and so
d(x,a) € tp(a/M) \ tp(b/M).
Continuous: for basic mp-open sets we have

i <)) ={aeM|tpla/M) e[p<r]} ={aecM]|oPM <}
={aeM|p@ <r}=0¢7"0,r)].

The last set is open because formulae are (uniformly) continuous.
Open on its image: on basic balls we have

i[Br(a)] = {tp(b/M) : d(a,b) < r} = [d(z,a) < r] Ni[M]

which is by definition open for the logic topology restricted to i[M]. O

3.6 The metric topology

Now we define another natural topology on S, (A), which is induced by
the metric d on M. It refines the logic topology and agrees with it on
realized types. We will use the same symbol d to denote it. It is particularly
useful since this way S, (A) becomes a metric space, allowing us to import
techniques from functional analysis.

Convention 3.37. Throughout this section we fix a model M and A C M
such that M realizes every type in S, (A) for all n > 1. When the model is
omitted as a superscript, we implicitly assume we are working in M.

Definition 3.38 (The metric on types). For p,q € S,,(A) define

d(p,q) = inf{d(b,c) : M = p(b), M k= q(c)}

where d(b, ¢) is in the sense of Convention 3.6.
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Notice that the definition of the metric does not depend on the choice of
the model M since it realizes all n-types over A.

Remark 3.39. For all a,b € M we have
d(tp(a/A), tp(b/A)) < d(a,b).

In general, we cannot hope for the equality; for instance, if a,b € M satisfy
a # b but tp(a/A) = tp(b/A), then d(tp(a/A),tp(b/A)) = 0 < d(a,b).?

The next result is crucial to show that this map actually defines a metric
on the type space and gives also us a way to easily handle computations.

Lemma 3.40. For any types p,q € Sp(A) there are b|=p and ¢ = q in M
such that d(p,q) = d(b,c).

Proof. Consider the set of L-formulae

®(z,y) = p(x) Uq(y) U{d(z,y) = (D +1/n):n e w}
where D = d(p, q).
Claim. The set ® is finitely satisfiable.

Proof. Take a finite subset, i.e.
Do (2, y) = po(2) Ugo(y) U {d(z,y) = (D +1/n):n € S}
where pg C p and gg C ¢ and S C w are all finite. For each n € S we have
D +1/n > D =inf{d(b,c)™ : M |= p(b), M = q(c)},

and so there exist by, ¢, € M with b, = p(z) and ¢, = ¢(y) such that
d(by, cn) < D+1/n, which means that M = d(b,, ¢,) = (D+1/n). Therefore
we have (b, ) = argmin, g d(by, cn) = Po(z,y). O

By compactness, ® is a partial type, i.e. ®(x,y) € S2,(0) C S2,(A). By our
assumptions on M, it is realized in M, so there are b,c¢ € M with b = p and
¢ = ¢ such that d(b,c) < D = d(p,q). It follows from the definition of the
metric on types that d(p,q) = d(b, c). O

Corollary 3.41. The function d(p,q) is a metric on Sy (A).

Proof. Clearly it is a pseudo-metric. Now suppose that d(p,q) = 0. Then
by Lemma 3.40 d(b,c¢) = 0 for some b |= p and ¢ |= ¢. Since d is a metric on
M, it follows that b = ¢. So p = tp(b) = tp(c) = q. O

So the metric d(p, ¢) induces a topology on S, (A), which we will call the
metric topology. We can compare it the our logic topology.

3Notice that such elements cannot be in A, because if a,b € A and a # b, then
tp(a/A) # tp(b/A), since d(z,a) € tp(a/A) \ tp(b/A).
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Proposition 3.42. The logic topology on S, (A) is weaker than the metric
topology. Moreover, they coincide on the subset of realized types.

Proof. Let [¢ < r] be a neighbourhood of p € S,,(A); in particular we have
¢ € p, ie. ¢ = 0. It is enough to check that it contains a d-ball. Take any
q € Sp(A) with d(p,q) < Ag(r) = R. By Lemma 3.40, there are b,c € M"
such that d(p, ¢) = d(b,c) with b |=p and ¢ = ¢. Since d(b,c) < Ay(r), we
get

0 = [¢% = 67 = 6()™ — ¢(c)"| <.

We obtained that Br(p) C [¢ < 7].

Now the moreover part. Let j: M — S, (A) be the map b — tp(b/A). It
follows directly from the definition of the metric on types and Remark 3.29
that

By (tp(b/A)) N j[M] 2 [d(w,b) < r] N j[M]

which implies that in j[M] the metric topology is weaker than the logic
topology, hence they coincide on realized types. O

Remark 3.43. One can wonder whether the logic topology is strictly weaker
than the metric topology. On this topic, in [BUOS, p. 24] it is said that

By a theorem of Henson (for Banach space structures in positive
bounded logic, but it boils down to the same thing), for a complete
countable theory T', the metric on S, (T") coincides with the logic
topology for all n if and only if T is separably categorical, i.e., if
and only if it has a unique separable model up to isomorphism.

So in general the two topologies are distinct.

We assumed at the beginning that a metric structure (M, d) is always
complete. The set M can be mapped to the space S,,(A) via the function
j: b tp(b/A). We defined a metric on S,(A), thus showing that it is
metrizable; Proposition 3.42 implies that this metric actually coincides with
the logic topology on realized types. Assume that A < M is closed. Then
J[M] is dense in (S, (A),79) by Lemma 3.34. We can summarize all this
information in the following picture.

S GIMLd) s (Su(4),d)

(M, d)

complete \7

3.42

(J[M], 7o) 2% (S,(A), 7o)

It is then somewhat natural to think that the metric space (S, (A),d) may
also be complete. It is actually the case, as the next result shows. This is
true in general for spaces that are called in [BUOS, p. 25] topometric spaces,
i.e. spaces (X, 7,d) where 7 is a compact Hausdorff topology on X, d a



CHAPTER 3. CONTINUOUS LOGIC 39

metric refining 7 and for each closed set F' C X and each ¢ > 0 the closed
e-neighbourhood of F' is also closed in X (see [BUO8, Lemma 4.13]). Anyway,
we provide a direct proof in our specific case.

Proposition 3.44. The metric space (Sp(A),d) is complete.

Proof. Let (pi)i<w be a Cauchy sequence in (S,(A),d).
Claim. For every a = p; there exists b |= pi+1 such that d(a,b) = d(p;, pit1).

Proof. By Lemma 3.40, d(p;, pi+1) = d(c,e) for some ¢ |= p; and e = p;t1.
So tpM(a/A) = tp™(c/A), i.e. the map c — a is elementary in M. By
w-homogeneity there is f € Aut(My) such that f(c) = a. Thus

d(pi; pir1) = d(c,e) = d(f(c), f(e)) = d(a, f(e)),
hence we may take b = f(e) = pit1- O

So we can recursively construct a sequence (b;)i<w € M such that for
each i < w we have b; = p; and d(b;,bi+1) = d(pi,pit+1). Since (p;); is
Cauchy sequence, by Corollary 3.41 we get that (b;); is Cauchy in M, which
is complete. Then b; — b for some b € M. Finally,

d(tp(b/A),pi) = d(tp(b/A), tp(bi/A)) < d(b, b;) — 0.
This means that p; — tp(b/A) € S, (A), which concludes our proof. O

Remark 3.45. For p € S,,(A), define the set of realizations of p as

Sp={be M:bEp()} = {be M:voep (M k= o)} = () 6~ {0}

pEp

It is closed because formulae are (uniformly) continuous. It can be thought
as a set determined by an infinite number of ‘equations’; such sets are usually
indeed closed. The distance between types can be understood as the distance
between two sets:

d(p,q) = d(Sp, Sq) = inf{d(a,b) : a € S, b € S,}.

In a complete metric space, when two sets are compact, their distance is
always attained for some points, but when they are only closed this need not
be true, even if they are bounded* (though not in R”, where the Heine-Borel
theorem ensures it). Combining Lemma 3.40 and Proposition 3.44 provides
an interesting example of a distance between bounded closed (in general
non-compact”) sets in a complete metric space which is always attained.

“For instance, consider the two sets S1 = {y = 0} and Se = {1/z = 0} in R? and the
metric d(z,y) = min{||z — y||,1}. They are still closed since d is equivalent to the usual
metric and clearly now they are bounded. However, the distance d(S1,S2) = 0 is not
attained.

®For instance, take a non-compact metric structure (M, d) in the empty language; then
SM (@) = {p}, hence S, = M is not compact.
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3.7 Predicates and functions induced by formulae

Consider the usual topology 79 on S,,(A) in classical logic. Each L 4-formula
é(z1,...,r,) induces the clopen set [¢] = {p € SM(A) : ¢ € p} and also the
map

0 ifpep

1 itogp

which is continuous, since its preimages are precisely the basic open sets
[¢] and [—~¢]. With some abuse of notation we denote this map also by ¢.
This is legitimate since obviously two formulae are logically equivalent if
and only if their associated maps are equal. It is not hard to see that every
continuous map in 252" (4) {5 the map induced by (an equivalence class of)

SM(A) = {0,1}, p— {

a formula. So the correspondence [¢] — ¢ € 25" (4) between clopen sets
and continuous maps is bijective. Moreover, the topology 7 generated by
these maps is exactly 9. Since they are continuous for 7y, by minimality
7 C 719. For the converse, just observe that for every basic 7g-open set we
have [¢] = ¢~ 1[{0}], which is T-open by definition.

Remark 3.46. The situation in continuous logic is similar to some extent:
every L-formula ¢(x1,...,x,) induces a map

Syl (A) = (0,1, prs ¢P

also denoted by ¢ for the same reason as before. Often we omit the superscript
M when there are no ambiguities. The map ¢ is continuous for the logic
topology, since ¢~ L[(r,t)] = [¢ > r] N [¢ < t] for any r,t € [0, 1].

Again, maps induced by formulae actually generate the logic topology
by a similar argument, namely because they are continuous and for every
basic open neighbourhood of p we can write [¢ < r] = ¢~ 1[[0,7)].

This indeed gives motivation to how we defined the logic topology in the
first place: if we think (as we may) of the usual topology on types in classical
logic as being the topology generated by (maps induced by) formulae, then
what we did is just using the exact same definition in continuous logic.

Convention 3.47. Let M be an L-structure and A C M. We denote by
£M(A) the family of maps on spaces SM(A) induced by L 4-formulae. So
now we have the three families:
Ly={¢:¢isan Ly-formula}

LY(A) = {¢: M" = [0,1] | ¢ € La}

eM(A) = {6: $;/(4) = [0,1] | ¢ € La}.
Remark 3.48. By Remark 3.29, the map ¢: SM(A) — [0,1] is an extension
of the (uniformly) continuous function ¢: M™ — [0, 1].

We already saw that this extension is continuous for the logic topology.
Now we shall see that it is also uniformly continuous for the metric topology.
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Lemma 3.49. Maps ¢: SM(A) — [0, 1] induced by formulae are uniformly
continuous for the metric topology.

Proof. As noticed in Remark 3.12, there is a modulus Ay of uniform con-
tinuity for ™. Now we show that it is a modulus of uniform continuity
also for ¢: SM(A) — [0,1]. Let ¢ > 0 and suppose that p,q € SM(A)
satisfy d(p,q) < Ag(€). By Lemma 3.40, there here are a,b € M"™ realizing
respectively p, ¢ such that d(p,q) = d(a,b). Then by Remark 3.48 we get

[6(p) — d(a)| = |6(tp(a/A)) — ¢(tp(b/A))| = [$(a) — ¢(0)"] < €
where the inequality holds because d(a,b) < Ay(e). O

We summarize what we obtain so far in the following result.

Corollary 3.50. Let ¢ be an L-formula. Then the map ¢: SM(A) — [0,1]
extends ¢: M™ — [0,1] and is continuous for the logic topology and uniformly
continuous for the metric topology.

Proof. Directly by Remark 3.46, Remark 3.48 and Lemma 3.49. 0

This yields a nice characterization for continuity. To prove it we need
the following result.

Fact 3.51 (Corollary of the lattice version of the Stone-Weierstrass Theorem,
[BUO8, Proposition 1.4]). Let X be a compact Hausdorff space containing at
least two points and F C C(X;1[0,1]) such that:

o Forall f,g € F also the following maps are in F:
z—1— f(x), z— f(z) = g(z), x— f(z)/2.
o For all distinct x,y € X there is f € F such that f(x) # f(y).
Then F is dense in C(X;10,1]) with the uniform convergence topology.
Let us introduce some notation for this topology.
Definition 3.52. The uniform distance of ®,¥: SM(A) — [0,1] is

d(@,0) = ||o - V)M = sup |®(p) — U(p)|.
peSM(A)

Moreover, for formulae ¢, € L4 we let
doo (¢, 1) = sup{d™ (¢,4) | M an L-structure}.
The metrics dy and ds, coincide.

Lemma 3.53. For each ¢, € Ly we have dy(¢,1) = doo(¢,v). In partic-
ular, the spaces (L(A),do) and (£(A),dx) are isometric.
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Proof. The < part is due to Remark 3.29 and the fact that we can see
elements of any structure M as realized types in S (A). Now the > part.
Let p € SM(A). By 1o-density of realized types, we can fix a net (b;);er C M
which is 7g-convergent to p. By Remark 3.46 the map p — [P — ¢P| is
Tp-continuous, hence we have

¢ = ¥P| = lim (i)™ — (i) "] < do(6, ).
This concludes the proof. O

We obtain the following characterization, which proves that in the con-
tinuous logic setting it is much more interesting to study continuous maps
Sp(A) — [0, 1], since they usually do not precisely correspond to (equivalence
classes of) formulae: this holds only up to uniform approximation.

Proposition 3.54. For any function ®: SM(A) — [0, 1] the following are
equivalent:

(i) @ is continuous for the logic topology.
(ii) @ is the dM-limit of a sequence (¢1)r C £M(A).
(iii) @ is continuous for the logic topology and uniformly continuous for the
metric topology.

Proof. (i)=(ii): Suppose that ® is continuous for the logic topology. Maps
induced by formulae separate points: if p # ¢, then there is ¢ which belongs
to one of them and not to the other, hence by Lemma 3.26 ¢? # ¢?. The
maps z — 1 —z and (z,y) — = —y and = — /2 are all continuous, hence
connectives. So the set of formulae is closed with respect to them. Therefore,
we can apply Fact 3.51 to the set of maps induced by formulae and get
a sequence which uniformly converges to ®. (ii)=-(iii): Maps induced by
formulae are continuous for the logic topology and uniformly continuous
for the metric topology. These properties are preserved under uniform
convergence. (iii)=-(i): Trivial. O

Uniform limits of (maps induced by) formulae, equivalently continuous
maps for the logic topology, are important for the following and thus deserve
a name.

Definition 3.55. A function ®: SM(A) — [0, 1] satisfying one of the equiv-
alent conditions in Proposition 3.54 is called an n-predicate over A (in M).
We denote by

P (4)
the family of predicates over A and we set M (A) = |J,, BM (A). Sometimes
we also use the notation P2 (A) for the predicates SM(A) — [0,1].

Using Corollary 3.50, i.e. the fact that maps induced by formulae are
continuous for the logic topology, we can rephrase Proposition 3.54(ii) as
follows.

Corollary 3.56. The set £M(A) is dM -dense in BM(A).
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3.8 Restricted formulae

The problem with taking as connectives all uniformly continuous maps
[0,1] — [0,1] is that there are continuum-many of them. This number could
be bigger than the cardinality of the language L, for instance when L is
countable; this prevents many arguments from working smoothly. However,
we can overcome this issue by restricting the class of connectives to families
that ‘approximate well’” all formulae. We will see that there is a simple case
of such a smaller class which is sufficient for our needs.

Definition 3.57 (Systems of connectives).

A system of connectives is a family C = {C), : n € w} where each C),

is a set of m-ary connectives u: [0,1]" — [0, 1].

e The closure C of C is the smallest system of connectives containing C,
all projections and closed under composition. We say that C is closed
if C=C.

e We say that C is full if C is uniformly dense in the set of all connectives,

i.e. for any € > 0 and any connective u(t1,...,t,) there is an n-ary

connective v € C such that for all ¢, ...,t, € [0,1] we have

u(ts, o tn) — 0(t, - t0)| < €.

e The set of C-restricted formulae consists of formulae built using only
connectives in C.

The importance of a full system of connectives is that C-restricted formu-
lae are dense in the set of all formulae with respect to the logical distance.

Lemma 3.58. If C is a full system of connectives, then for every e > 0
and every L-formula ¢(x) there is a C-restricted L-formula ¥(x) such that
do(¢, ) < €, where dy is the logical distance defined in Definition 3.15. In
other words, the set of C-restricted formulae is dyg-dense in L.

Proof. By induction on the complexity of ¢. Fix € > 0.

¢ is atomic: There is nothing to prove as we may take ) = ¢.

¢ =u(b1,...,0,): By inductive hypothesis, there are d1,...,d, C-restricted
formulae such that dy(0;, ;) < Ay(e/2)/nforall 1 < i < n. Let us abbreviate
0= (01,...,0,) and § = (01,...,0,). It follows by Convention 3.6 that

do(6,6) < A"(ne/”n = Au(e/2). (3.1)

Since C is full, there is some v € C,, € C such that
do(u(d),v(d)) < €/2. (3.2)

Let ¢ = v(dp, ..., 0,), a C-restricted formula. By (3.1) and (3.2) respectively,
we get that

do(¢, ) = do(u(0),v(9)) < do(u(8),u(9)) + do(u(d),v(9)) < €/2+€/2=e.
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¢(z) = inf, 6(x,y): By inductive hypothesis, there is a C-restricted formula
d(x,y) such that do(0,0) < e. Let ¢(x) = infy 6(z,y), a C-restricted formula.
We show that dy(¢,1) < e. For each structure M and each a € M we have:

[¢(a)™ — (a)M| = |infpenrr 0(a, b)M — infpenrs 6(a, b)M|
< supyepr|0(a, )M — §(a, b)M|
< d0(975) <,
where the first inequality holds for the general fact that for any functions
f,9:Y —[0,1] we have
linfy f — infyg| < supy[f — g];

in this case f(y) = 0(a,y) and g(y) = é(a,y). It follows that dy(¢, ) < e.
¢(x) = sup, 0(z,y): Observe that

¢(z) = sup,0(z,y) = 1= infy[1 = 0(z,y)]
and use the inductive hypothesis. All cases are thus covered. O

It turns out that there is a very simple full system of connectives, in
particular a finite one.

Definition 3.59. Let Cyp = {C), : n € w} be the system of connectives with
Co={0,1}, C1 = {z/2}, Cy = {=} and all other C,, empty. We say that a
formula is restricted if it is Co-restricted. Finally, we write

¢ € Lo(A)
to say that ¢ is a restricted L 4-formula and we use the notations

LY(A) = {oM: M™ —[0,1] | ¢ € Lo(A)}
L01(A) = {8: SY(A) = [0,1] | ¢ € Lo(A)}

for the families of induces maps.
Fact 3.60 ([Yaa+08, Proposition 6.6]). The system of connectives Cy is full.

Proof. Based on the fact that Cy contains many simple fundamental connec-
tives and using Stone-Weierstrass Theorem. We omit it. It can be found in
the textbook from which this result is taken. O

Remark 3.61. The importance of Cy lies in the fact that it is countable; hence
|Lo| = |L|. Moreover, |Lo(A)| < |A]+ |L|. By Fact 3.60 and Lemma 3.58 it
follows that

I(£(A), do)|| < [Lo(A)| < [A] + [L].

The bottom line is that there are as many restricted formulae as the cardi-
nality of the language and approximating with them is often sufficient.
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We have two notions of ‘approximation’: one regarding elements in a
structure M with respect to the metric d™, the other given by restricted
formulae. Since density is transitive, we can combine them to obtain formulae
which still approximate nicely.

Lemma 3.62. Let M be an L-structure and D C M dense. Then we have
the do-dense inclusion Lo(D) C L(M).

Proof. We show that each dyp-ball in £(M) contains some map in Ly(D).
Fix ¢(x,a) an Lys-formula with a € M the tuple of its parameters and € > 0.
We have to find ¥(x,c) € Lo(D) with do(p(z,a), ¥ (x,c)) < e.

Let ¢(x,y) be the L-formula obtained by substituting to a some fixed
tuple y of new variables. By Remark 3.3 we can find € < e such that
infpens Ag(py)(€') > 0. Since D is dense in M, there is ¢ € D such that

. /
d(a,c) < blenj\% Ay (€)
so that for all b € M we have |¢™ (b, a) — ¢™ (b, c)| < €, i.e.

do(¢p(z,a), d(z,c)) < €.

By Lemma 3.58, there is 1(z,y) € Lo with do(é(z,y),¢(z,y)) < e—€;in
particular

do((a, ), (,0)) < e — €.

Therefore the Lo(D)-formula v (z,c) is such that do(¢(z,a),(z,c)) < e,
which concludes our proof. O

Combining Lemma 3.62 with Lemma 3.53 and Corollary 3.56 yields:

Corollary 3.63. Let M be an L-structure and D C M be dense. Then we
have the dM -dense inclusions

£'(D) ¢ eM(M) < pM(M).



Chapter 4

Stability in continuous logic

In this chapter we work in the continuous logic setting we have just presented
to eventually prove also here the ‘fundamental theorem of stability’, following
the main idea of [Benl13], but using Corollary 2.19 instead of Grothendieck’s
theorem.

Convention 4.1. Throughout this chapter we fix a metric language L, a
complete L-theory T' and a monster model M |= T' of size x(M) bigger than
any other cardinality we will encounter. So “model” means “model of T

4.1 No-order property and double limit property

First we define the double limit property and the order property essentially
as we did in the classical case. The DLP is defined exactly in the same way.

Definition 4.2. A formula ¢(x,y) has the double limit property in M =T
if for all sequences (a;); € M and (b;); € M the following holds

lim lim ¢(a;, b;)" = lim lim ¢(a;, b;)" (DLP)
1 7 J 1

whenever all limits exist. A theory T has DLP if all L-formulae do.
The no-order property needs to be slightly adjusted.

Definition 4.3. Let M be a model. We say that an L-formula ¢(x,y)
has the order property in M = T if there are distinct r,s € [0,1] and two
sequences (a;)i<w € My and (b;)i<., € M, such that for all 4, j < w we have

if i < j
oM =" opP
$(ai, b;) {s if i > j. (OP)

Otherwise, we say that ¢(z,y) has NOP in M. As usual, a theory T has
NOP if no L-formula has the order property in M, while it has OP if there
is an L-formula with the order property in M.

46
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By taking the proof of Lemma 1.39 and just exchanging r and s in the
place of 0 and 1 we obtain the following.

Lemma 4.4. Let ¢(x,y) € L and M |=T. Then ¢ has DLP in M iff ¢ has
NOP in M.

It follows that the same observations made in Remark 1.11 apply here.

4.2 Local types in CFO

In this section we introduce local types and the logic topology on them in
the obvious way. We will then import results already obtained to get the
usual properties on their type space.

Definition 4.5. Let ¢(x,y) be a fixed formula and M a model. A (complete)
¢-type over B C M, (in M) is a set of formulae of the form

{¢(x,b) —ry | b e B, m, €10,1]}

which is maximal finitely satisfiable in M. For a € M, the ¢-type over B
realized by a is

tpgf(a/B) = {¢(x,b) — p(a,D)M : b € B}

We denote by S (Q/f (B) the space of ¢-types over B (in M). Often we omit
the superscripts M.

What are the numbers r, in the definition? Suppose we have a maximal

finitely satisfiable set ®(x) = {¢(x,b) — rp : b € B} and pick any p € S, (B)
extending ®(x). Then for each b € B we have r, = ¢(x,b)P. So we can think
of local types as restriction of global types to their subset of formulae of the
specific form ¢(z,b) — 7.
Remark 4.6. Another way to define local types in continuous logic is as
quotients of global types in S;(B) by the family of functions p — ¢(x, b)?
induced by the formulae ¢(z,b) for b € B. This means that we define the
equivalence relation on S, (B)

pr~q <= ¢(x,b)P = ¢(x,b)? for all b € B.
The two approaches are equivalent, since it easily checked that the map
{d(x,b) —rp: b€ B} — [p]~

where p € S,(B) is any type extending {¢(x,b) — 1 : b € B}, is well-defined
and bijective. We have chosen our approach because it avoids having to deal
with quotients and thus every local type is set-theoretically included in a
global one, just as in classical logic.
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4.2.1 Size of type spaces in CFO

We can easily mimic the proof of Proposition 1.20 to obtain an analogous
result for continuous logic.

Proposition 4.7. If an L-formula ¢(z,y) has OP, then for all k > |L|
there is a model M =T of size k with |Sy(M)| > ded k.

Proof. Let ¢(x,y) € L have OP and fix M = T of size k > |L|, as witnessed
by two distinct 7, s € [0,1]. As in Lemma 1.12, let I be a dense linear order
of size k and (a;)ier € M, and (b;)ier € M, such that for all i,j € I we
have

¢m'bﬂ4—{r if i < j
1Y)

s ifi>
For every cut C C I, the set
Sc = {p(z,bj) —r:j ECC}U{¢(x,bj)—S:j eC}

is by compactness and density a partial ¢-type over M. Let pc be a complete
¢-type over M extending ®c. Clearly if C; # Cy then ®¢, # ®¢, and a
fortiori pc, # pc,. So the map C +— pc is injective, hence our thesis. O

4.2.2 The logic topology on local types

We can endow the space S4(B) with a logic topology in the same vein of
the case of global types, using the characterization in Remark 3.46 or a
restriction of the open basic open sets in the global case.

Definition 4.8. Let ¢(x,y) be an L-formula, M an L-structure and B C M,,.
The logic topology on S4(B) is the topology 1y generated by the family of
(maps induced by) Lp-formulae of the form ¢(x,b) for b € B, i.e. the maps

¢(z,b): Sp(B) = [0,1], p— é(z,b)",
or equivalently, the topology on S,(B) generated by sets of the form

[o(z,0) <r] ={p € Sy(M): ¢(x,b)? <r}
for r € [0,1] and b € B.

With the same type of arguments we used in Section 3.5 it is easy to
show that also S4(B) is topologically well-behaved, as it shares the same
properties of S, (B).

Proposition 4.9. The space (S4(B),10) is Hausdorff compact.

We can use what we have already proved for global types to prove that
also realized local types are dense for the logic topology.
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Corollary 4.10. The set {tps(a/M):a € M} C Sg(M) of realized types is
dense for the logic topology.

Proof. Let [¢(z,b) < r] be a basic open set of Sy(M). By Corollary 3.35,
we can pick tp(a/M) € [¢(x,b) < r]. This means that ¢(a,b)™ < r, which
implies that tpy(a/M) € [¢(z,b) < 7]. O

4.2.3 Local predicates

‘Local predicates’ are defined exactly as in the global case, as continuous
maps on the local type space.

Definition 4.11. A ¢-predicate over B is a map ®: Sé\/[(B) — [0, 1] which
is continuous for the logic topology. We denote by

By (B)
the family of ¢-predicates over B (in M).

Remark 4.12. Using this definition in classical logic, a ¢-predicate over A
would be a continuous map ®: S4(B) — {0, 1}, equivalently a clopen set in
Sy(B), i.e. a Boolean combination of sets of the form [¢(z, b)] for b € B. So ®
is (the map induced by) a ¢-predicate over B, in the sense of Definition 1.32,
hence the two definitions agree.

In the continuous case, by Proposition 3.54, the above definition is almost
always more general, i.e. except when the set of L-formulae is closed under
uniform limits.

4.3 Definability of types from DLP

Introducing definable types in continuous logic requires a careful definition,
which is semantic in nature since predicates need not be formulae and so
they could have no syntactic meaning.'

Definition 4.13 (Definability of types).

» Fix ¢(x,y) € L. We say that a type p(z) € SéM(A) is definable if there
isa ®, € ‘B%(A) such that for all @ € A we have

$(z, a)? = By(tpge (a/A)) = Dp(a). (4.1)

! Actually it is possible to give predicates syntactic meaning by introducing a device
called forced limit of a sequence (see [BUOS, §3.2]) or to represent them as ‘formulae’
by extending the notion of formula by allowing also infinitary maps [0,1]Y — [0, 1] as
connectives (see [Yaa+08, Proposition 9.3]). Both approaches go beyond the scope of this
work.
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o Atypep € Sy(A) is definable over B if for every ¢(x,y) € L the ¢-type
ple is definable over B, where

ple ={o(z,a) — ¢(z,a)’ :a € A} Cp.
e A type is definable if it is definable in its domain.

Remark 4.14. This definition is indeed (almost) a generalization of the
classical one. In fact, by Remark 4.12, the ¢*-predicate ®, over A in the
above definition is (the map induced by) a ¢*-predicate 1) over A in the
sense of Definition 1.32, which is in particular an L 4-formula. Hence, by
Remark 3.48 we have ¢ (tpy-(a/A)) = ¢(a)*. So equation (4.1) becomes
the equivalence

¢(z,a) ep <= EP(a),

which is exactly how we defined definable types in Definition 1.28, except for
the fact that the L 4-formula v (y) was there not required to be a ¢*-predicate.
However, this is the form we actually obtained in Corollary 1.33.

The next simple fact will be needed in the following proof.

Lemma 4.15. Let M be a model, A C M and ¢(x,y) an La-formula. Then
o(x, b)tp¢(“/A) = ¢*(y, a)Pe* ®/4) for all a € M, and b € M,.

Proof. ¢*(y, )"/ = ¢*(b,a)™ = ¢(a, b)M = ¢(x, b)*Pe (/). O

We are ready to prove definability of types from DLP, using Corollary 2.19.
The next result and its proof are the culmination of the results in this thesis.

Proposition 4.16 ([Benl3, Theorem 3]). If a formula ¢(x,y) has DLP in
the model M, then every type p € Sé)\/[(M) is definable by a (unique) predicate

®, € PLL(M).

Proof. Fix the model M. Let p(z) € Sg(M). Since by Corollary 4.10 realized
local types are 1p-dense, there is a net (a;);e; € M such that

tpg(ai/M) — p.

Let X = Sy« (M) and let Xo C X be the set of ¢*-types realized in M, which
is 7o-dense. For a € M, let ¢o: X — [0, 1] be the 7p-continuous map induced
by the L-formula ¢*(y,a), which is defined by

¢a(q) = ¢*(y, a)".

Let A= {¢s|a€ M} CC(X). It follows respectively from the definition
of ¢q, Lemma 4.15 and Remark 3.48 that for all sequences (¢,), C M, and
all (bp)n € M, we have

Pen (tDgs (bin /M) = ¢*(y, ) P O/ = (2, b )P (/M) = g5(cyy, by, ) M
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Since ¢ has DLP, this implies that
liqgn hnrln ¢)Cn (tp¢>* (bm/M)) = hnIln 1171111 ¢Cn (tp¢* (bm/M)

whenever all limits exist. Therefore, all the assumptions for applying Corol-
lary 2.19 to A, X, X are satisfied, so we can assume without loss of generality
that the net (¢,,); C A converges pointwise to some ®, € C(X) = YB%(M)
We obtain that

¢(x,b)P = lim ¢(x, b)Pe @ /M) = lim ¢* (y, a;)"Pe~ /M)

= lim ¢, (tpg- (b/M)) = ®p(tpy- (b/M)) = Pp(b)

where the equalities hold respectively for the following reasons: by 7g-
continuity of p — ¢* and Fact 2.9, by Lemma 4.15, by definition of ¢, and
by the fact that ¢4, — ®,. So p is defined by the ¢*-predicate ®, over M.
The uniqueness of ®,, is by 7o-density of realised types: two ¢*-predicates
over M defining p are mp-continuous maps on X agreeing on the 7y-dense set
Xo. Therefore they must coincide. O

4.4 The fundamental theorem of stability for CFO

In this section we prove the ‘fundamental theorem of stability’ in continuous
logic. In this setting, there are two ways of measuring the ‘size’ of a type
space: via cardinality or via density character with respect to the following
uniform metric.

4.4.1 The metric topology on local types

Definition 4.17. Fix an L-formula ¢(z,y). The ¢-distance of p,q € S4(B)
in M is
dg(p,q) = [Ip — dlls = sup|o(z, b)’ — d(x, ).
beM
We endow Sy (B) with the topology generated by this metric.

As in the global case we define the uniform distance. For simplicity we
denote it with the same symbol.

Definition 4.18. The uniform distance of @, W Séw(B) — [0,1] in M is

d (@, 0) = || - 0| = sup [®(p) — T(p)l.
peS) (B)

Often we omit the superscript M.

The metric dg on the subset of definable types essentially coincides with
the metric do, on ¢-predicates.
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Lemma 4.19. If p,q € S4(B) are defined respectively by ®,, @, € Py(B),
then
dg(p, @) = doo(Pp, Dy).

Proof. We have
dg(p,q) = sup|o(z,b)” — ¢(x,b)7| = sup|Ppy(b) — Dg(b)]
beM beM
doo(Pp, @g) = sup [Py(r) — y(r)].
reS,(B)

Now proceed as in Lemma 3.53, by using the fact that predicates are 7p-
continuous and realized types are mp-dense. O

4.4.2 Local fundamental theorem in CFO

Measuring the ‘size’ of Sg(M) via cardinality or density character is essen-
tially the same, as the next theorem shows. It is the continuous analogue of
Theorem 1.34. First, let us state two simple observations that we will use in
the next proofs.

Remark 4.20. We may embed

— Sx(B)

via the map p — P, where p € S;(B) is any z-type such that p|, = p. This
map is clearly injective. Similarly, by the universal property of quotient
spaces, any continuous map ®: %B) — [0, 1] has a continuous extension to
®: S;(B) — [0,1]. So we may think of Sy(B) C S, (B) and Py (B) C B (B).
Remark 4.21. A metric space (M, d) is first-countable: every a € M has the
system of neighbourhoods {B,(1/n) : n € w} given by the open balls. If
D C M is dense, then for each a € M we can pick a sequence (a,)n, C D
converging to a; the map a — (ay), is injective by the uniqueness of limits
and so |M| < |D[*. Tt follows that |M| < ||M|[Mo.

Theorem 4.22. For an L-formula ¢(x,y), the following are equivalent:
(i) The formula ¢ has NOP (in T ).
(ii) All ¢-types over any M =T are definable (by ¢*-predicates over M ).
(i) For all k > |L| and M =T, if ||M|| < k then |[Ss(M)|| < k.
) There exists some k > |L| such that for all M =T, if |M| < k then
|Se(M)| < ded k.
Proof. (i)=(ii): By Lemma 4.4 and Proposition 4.16.
(ii)=(ii): Let k > |L| and fix D C M dense of size |D| < k. Respectively
by (ii), Remark 4.20, Corollary 3.63 and Remark 3.61 we get that

[1(Sg= (M), dg ) || = [[ (B (M), doo) || < [[(By (M), doo)|
< I(B(M), doo)|| < [£0(D)] < [D| + |L] < k.

It follows easily that [|(Sy(M),dy)|| < K.

(iv
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(iii)=(iv): Let & = |L|®0. Pick M |= T with |M| = . Then by (iii) we get
that |[Ss(M)|| < k. By Remark 4.21 we get that |Sy(M)| < £%0 = k < ded k.
(iv)=(i): By Proposition 4.7. O

4.4.3 Global fundamental theorem in CFO

We can translate what we have obtained to the case of a complete theory, in
the very same vein of what we did for the classical case. This time we have
two ‘counting’ cardinal functions associated to a theory, counting respectively
the number and the density of types.

Definition 4.23. For a theory T define the cardinal functions:
ntpr(k) = sup{|Su(M)|: M =T, [M| =k, n € w}
dtpr(r) = sup{||Sp(M)[[ : M =T, [[M]| = &, n € w},
where S, (M) is endowed with the logic topology.
The global fundamental theorem follows.

Corollary 4.24. Let T be a complete theory. The following are equivalent:

(i)

(ii) All types over any model of T' are definable.
(iii) For all k > |L|, we have dtpp(k) < Xl
(iv) There is k > |L| such that ntpp(k) < ded k.

Proof. As in the proof of Corollary 1.36, we have that (ii) holds if and only
if for each ¢ € L all ¢-types are definable over any model.

The theory T has NOP.

(i)=(ii): By what we just observed and Theorem 4.22.

(ii)=-(iii): Suppose all ¢-types are definable for every ¢ € L. Fix k > |L|
and M = T with ||M|| = k. By Theorem 4.22, for all ¢(z,y) € L we have
|1S4(M)]|| < k; by Remark 4.21 we get that |Ss(M)| < 0 < wlZ.

Claim. For all finite variables =, let My = {tp(a/M) : a € My} be the set
of realized x-types over M. Then the function

Mzo>p= fp where fp: Lo — U¢€LOS¢(M), d(x,y) — plg
18 injective.

Proof. Let p,q € M be respectively realized by a, b and suppose that f, = f,,
i.e. for every ¢(z,y) € Lo we have p|gy = ¢|s. This means that for every
é(x,y) € Lo and every ¢ € M, we have ¢(a,c)™ = ¢(b,c)M; equivalently
d(a)M = p(b)M for every ¢(x) € Lo(M).
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The function P: (L(M),dg) — [0,1], ¢ — ¢ = ¢(a)™ is continuous:

PH[0,r)] = {¢ € L(M) : 6(a)™ € [0,7)}
2{¢ € LIM) : do(¢,(z =) <}

is clearly open; the same holds for the map @ induced by g. These continuous
maps coincide on the set Lo(M) by our assumption, which by Lemma 3.58
is dense, hence so they do on £(M). By Remark 3.28 we have p = q. ¢

By Corollary 3.35, M, is 19-dense in S, (M). By Remark 3.61, the family
of Lo-formulae has size at most |L| < k. Hence from the Claim it follows
that ||S,(M)|| < [M,| < k!! for all finite variables z. Therefore we obtain
that dtpy(k) < Vg - &lH = &lEL

(iii)=(iv): Let x = 2/X1. Suppose that |M| < k. Then by (iii) we get that
dtpy(k) < kPl = k. By Remark 4.21, ntpy(k) < 680 < kIt = k < ded k.
(iv)=-(i): Let ¢(z,y) € L. By Remark 4.20 |Sg(M)| < |Sz(M)|, hence by
Theorem 4.22 the formula ¢ has NOP in M. Since ¢ was arbitrary, also T
has NOP. O

4.5 Comparison of different proofs of definability
of types

In this section, we try to compare the different proofs of Proposition 4.16
(i.e. how definability of types follows from the double limit property) with
particular emphasis on the reasons for the amazing simplicity of Ben Yaa-
cov’s proof in [Benl3, Theorem 3]. We make some remarks regarding the
mathematical, heuristic and historical meaning of these different approaches.

Consider the following three proofs of Proposition 4.16:

(i) Via Corollary 2.19 (i.e. DLP = pointwise compactness).

This is the way we have proved it in this thesis.
(i*) Via Grothendieck’s Theorem (i.e. DLP = weak compactness).

This is the way Ben Yaacov proves it in [Ben13].
(ii) ‘Mimicking’ the FOL proof of Lemma 1.31.

This is the method employed in [BU0S, §7].

We proceed to compare and analyse these proofs.

4.5.1 Weak compactness is overkill

It is clear from the proof of Proposition 4.16 (which is based on [Benl3,
Proposition 3]) that weak compactness is not needed at all to get definability
of types. As a matter of fact, what is really needed is pointwise compactness.
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The point is that weak compactness trivially implies pointwise compactness
by Remark 2.6.

So the reason why Ben Yaacov quoted and then used Grothendieck’s
theorem instead of Corollary 2.19 must simply be historical: what is crucial
to link stability and compactness is the double limit property, and most
importantly the easy yet smart observation that it is just a rephrasing of the
no-order property, which is a familiar tool in model theory. The double limit
property had been introduced by Grothendieck himself in [Gro52], where
he proved his aforementioned theorem. This makes it somewhat natural to
use that theorem in its full force, not bothering to observe that actually a
weaker version would be sufficient.

But how much weaker? Even not considering the fact that — as we
have already discussed — the original Grothendieck’s theorem had weaker
assumptions, its proof (of the backward direction, i.e. direction (ii)=-(iii) of
Theorem 2.21) is considerably harder than that of Corollary 2.19: it requires
Proposition 2.20 (i.e. the fact that in this case pointwise compactness implies
pointwise sequential compactness), the Dominated Convergence Theorem
2.7 and the Eberlein-Smulian Theorem 2.14.

So if we try to read Proposition 4.16 as a ‘corollary of functional analysis’
as Ben Yaacov implicitly does in [Benl3], then this claim of his is made
even stronger, since Corollary 2.19 is weaker (and easier to prove!) than
Grothendieck’s theorem. Moreover, the notions involved are also conceptually
simpler (pointwise topology instead of weak topology); one might also say
that Corollary 2.19 is not even functional analysis but just general topology.

4.5.2 Working in CFO is not a crucial factor

Ben Yaacov’s discussion in [Benl3] of his discovery takes into account
its purely historical importance: he argues that the concept of stability
essentially originated in Grothendieck’s work, way earlier than Shelah’s work
in classification theory in the 70s. This fact in itself is already striking.

But there is another implication which might possibly amaze even more:
the hardest direction of the ‘fundamental theorem of stability’ — whose
‘classical’ proofs, as our proof of Lemma 1.31 shows, are all quite clunky, even
in FOL — is made simpler (in CFO!) by importing techniques from functional
analysis, and most importantly by realizing that a suitable ‘translation’ can
be naturally carried out.

Continuous logic generalizes considerably classical logic; one could natu-
rally expect the proofs of those result which (appropriately adjusted) still
hold in CFO to be more complicated, or at least not less, as it seems to be
the case here. Truth be told, it is not rare in mathematics to find simplicity
and generality walking hand in hand.? After all, it is much more common

2This is quite interestingly a feature that is often attributed to Grothendieck’s work
itself. In an obituary David Mumford and John Tate wrote: “Although mathematics
became more and more abstract and general throughout the 20th century, it was Alexander
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in functional analysis to consider functions with values in [0, 1] instead of
{0,1} so it is not so strange that Ben Yaacov’s paper [Benl3] blossomed
from the CFO setting.

In [Pil18], Pillay made a further attempt to interpret Grothendieck’s
theorem in a model-theoretic fashion (in FOL). The double limit property
obviously corresponds to the no-order property. More interestingly, weak
compactness (equivalently, pointwise compactness) corresponds to “generic
stability” of types; a type p over M is generically stable if it has an extension
to a type p’ over some N which is satisfiable in N and definable in N.

This is interesting in its own right. Anyway, the ‘downgrade’ in [Pil18]
of the setting from continuous to two-valued also allows to see clearer if —
once the heuristic component of working with CFO has given its fruits —
translating Ben Yaacov’s proof back to FOL sheds some light on the alleged
higher simplicity of Ben Yaacov’s proof compared to the traditional one. In
particular, the direction (b)=-(a) of [Pill8, Proposition 2.2] is essentially the
two-valued model-theoretic version of our Proposition 2.18. It seems clear
for us that the proof is not simpler; actually it is essentially the same.?

The bottom line is that it appear to us that the translation to FOL
may improve only the understanding of the model-theoretic content of
Grothendieck’s theorem and not of the reason why the proof of definability
of types from NOP is made so smoother by its use.

4.5.3 Simplicity comes at a price

While the proof of Lemma 1.31 (definability of types in FOL) and (the
translation to FOL of) Proposition 4.16 could perhaps be seen as not much
different in terms of difficulty, we believe the same cannot be said in the
continuous setting, as we try to sketch below.

There is a quite natural way to translate our classical proof of Lemma 1.31
to CFO.* The ingredients to ‘lift up’ the proof essentially are:

e Introducing an “e-order property”, which weakens the usual order
property and is more suitable for the continuous setting.

e Singling out a new “median value” connective, which morally plays
the role of the stacked conjunctions and disjunctions in the proof of
Lemma 1.31.

Grothendieck who was the greatest master of this trend. His unique skill was to eliminate
all unnecessary hypotheses and burrow into an area so deeply that its inner patterns on
the most abstract level revealed themselves — and then, like a magician, show how the
solution of old problems fell out in straightforward ways now that their real nature had
been revealed.” [MT14]

30n a side note, in the proof of (a)=(b) — which is deemed as “easy” — there is an
implicit (unnoticed?) use of the fact that for those functions pointwise compactness implies
sequential pointwise compactness (our Proposition 2.20), a fact which does not seem to be
trivialized by the simplified context.

“This is what is done in [BU0S, §7] by Ben Yaacov and Usvyatsov (years before the
publishing of [Ben13]).
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e Developing the theory of imaginaries and canonical parameters: this
is because in CFO a continuous map may be the uniform limit of
countably-many formulae, thus it may depend on an infinite number of
parameters; it is then necessary to ‘shrink’ those relations to imaginary
elements.

¢ Introducing the concept of “forced limit” of a sequence, a way to be
able to treat predicates as syntactic objects.

It should now seem quite clear that the proof of Proposition 4.16 is easier
than that of [BUO8, Lemma 7.4] (the translation to CFO of Lemma 1.31).

Does the latter proof really have no advantage at all? Actually, there
is one, namely the fact that it proves uniform definability, i.e. that if ¢
has e-NOP for all € > 0 then all types are definable by the same predicate
(modulo the parameters). Our proof of Lemma 1.31 can actually be adapted
to get the same in FOL.> So perhaps the increased difficulty reflects this
gain obtained by using what is de facto a syntactic approach.

4.5.4 Continuous logic and functional analysis

In this final part, we look at the relationship between Proposition 2.18 and
Proposition 4.16 from a higher perspective.

One of the greatest qualities of logic is its presence at all levels of language.
In this case we have:
o The (formal) language which CFO deals with.

o The (semi-formal) meta-language of mathematics. Here both CFO and
FA belong and this is where Proposition 2.18 lives.

o The (informal) meta-meta-language of ordinary speech.%

Consider the following scheme summarizing the aforementioned results.

‘Functional analysis (FA) ‘ ‘ Continuous logic (CFO) ‘
Proposition 2.18: Proposition 4.16:
DLP = pointwise compactness (PC) NOP = definability of types (DT)

What we did (after Ben Yaacov’s [Benl3]) to prove Proposition 4.16 can be
represented by:

NOP = DLP 22 PC = DT. (*)

The argument (*) is comprised of two ingredients:

°Tt is done for instance in [Chel7, Proposition 2.22].

5To our knowledge, no philosopher has ever doubted that some amount of ‘intuitive
logic’ (or rationality, which is embodied in the very term Aoyos from which “logic” comes
from) is found in ordinary language.
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e The first and the third implication are made possible by the fact
that formulae — formal syntactic objects in CFO — come with an
attached semantic object (a function) which is sufficiently well-behaved
(continuous). This is because of how CFO was built in the first place.

o The second implication — the core of (*) — is given by Proposition 2.18,
a result which takes place in FA.

As discussed in Subsection 4.5.1, the argument (*) may be interpreted as
showing an instance where CFO is a ‘corollary’ of FA. Seeing a result in
CFO, a sub-branch of model theory (itself a branch of mathematical logic),
as a corollary of a result in ‘ordinary mathematics’ (FA, or even general
topology) may seem curious; one may then be tempted to try to see clearer
why this is the case. One possible way of investigating this issue could be
trying to use continuous model-theoretic techniques to dig deeper into the
(model-theoretic formalization of the) space Cp,(X).” The problem is that in
general® it is not metrizable, hence not treatable as a metric CFO structure.
Is there a logic which is able to formalize C),(X)?

"The subscript indicates the pointwise convergence (equivalently, weak) topology.
8For instance when X is uncountable.
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