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CARDINAL ARITHMETIC

Since the introduction of the notion of cardinal
and ordinal numbers by Cantor, Cardinal Arith-
metic has been a central subject of research in
Set Theory.

Question 1 What is the value of κλ for car-
dinals κ and λ?

In particular the continuum problem is the in-
stance of this general question to the case:

κ = 2, λ = ℵ0.

The continuum hypothesis CH asserts that:

2ℵ0 = ℵ1.
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In the usual ZFC framework there is no definite
answer to almost all the instances of this ques-
tion.

Up to the seventies, König’s inequality was one
of the sharpest result on cardinal arithmetic.
However this inequality dates back to the be-
ginning of the XX-th century:

Lemma 1 (König 190?) cof(2κ) > κ for
any regular κ.

Soon after the discovery of forcing (mids of the
sixties), Easton showed that this inequality was
the sharpest possible result when we restrict our
attention on the class of regular cardinals.
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The situation for singular cardinals is much dif-
ferent.

When singular cardinals are concerned upper
bounds for the exponential function can be com-
puted in ZFC, in particular:

Theorem 2 (Shelah) ℵℵ0
ω < (2ℵ0)+ + ℵω4

The singular cardinal hypothesis SCH asserts
that λcofλ = λ+ for all singular cardinal λ ≥
2cofλ.

Silver has shown the following:

Theorem 3 (Silver) Let λ be the least sin-

gular cardinal κ ≥ 2cofκ such that λcofλ >
λ+, then cofλ = ω.
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These results are almost optimal for the theory
ZFC. Assuming large cardinals one can build
models of ZFC in which SCH first fails at ℵω.

The failure of SCH has large cardinal conse-
quences. In particular if SCH fails, there is an
inner model with measurable cardinals.

There are models of ZFC in which 2ℵ0 < ℵω

and ℵℵ0
ω > ℵα for any countable ordinal α.

It remains nonentheless open whether (2ℵ0)+ +

ℵω4 is the best possible bound for ℵℵ0
ω if no other

extra axioms are assumed (cfr Magidor, Gitik).

It remains also open what are the possible con-
figurations of the function κcofκ for κ ranging
over all singular cardinals (cfr. Cummings, Gi-
tik).
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FORCING AXIOMS AND LARGE CAR-
DINALS

Starting from the sixties on two kind of ax-
ioms have received considerable attention by the
community of set theorists: large cardinals ax-
ioms and forcing axioms.

These axioms arose naturally in the course of
investigation of Set Theory because forcing and
large cardinals are in fact the only known means
to generate models of ZFC with new sets.
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LARGE CARDINALS

The large cardinals axioms asserts certain com-
binatorial properties of infinite cardinals which
try to capture Cantor’s intuition that the se-
quence of infinite cardinals cannot be described
by a definite set of rules. For example:

• The existence of an inaccessible cardinal as-
serts that the standard ZFC operations can-
not generate all the infinite cardinal just by
iterating the process of set formation starting
from ℵ0.

• The existence of a measurable cardinals im-
plies that V 6= L, i.e. that the universe of
sets cannot be obtained just as the closure of
the class of ordinals by Gödel operations.
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FORCING

Forcing is the unique known method to produce
from a model M a new model N of set theory
with more sets but the same ordinals.

Forcing can be seen as an algebra on sets which
with input P a partial poset and F a family of
dense sets of P provides as output a filter for P
which has non-empty intersection with all the
elements of F .

By an algebra on sets I mean a function which
takes a family of sets as an input and produce
a set as an output.
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Taking this approach, forcing axioms can be
presented as generalizations of the Baire’s cate-
gory theorem:

Theorem 4 (Baire) Let F be a countable fam-
ily of dense open subsets of R then

⋂
F is

non-empty

Forcing axioms are obtained enlarging the class
of topological spaces and the size of the family
of dense sets.

FA(A, κ) holds if whenever A is a class
of topological spaces and for some X ∈
A, F is a family of less than κ dense
open sets of X, then

⋂
F is non-empty.

They are natural combinatorial statements which
decide many of the questions left open by the
usual axioms ZFC of set theory, in particular
we will concentrate on their effects on cardinal
arithmetic.
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SOME HISTORY ON FORCING AX-
IOMS

Late 1960s. Solovay and Tennenbaum intro-
duce iterated forcing. Martin and Solovay for-
mulate Martin’s axiom MA as an abstraction of
Solovay and Tennenbaum’s approach to solving
Suslin’s problem. MA + ¬CH provides a rich
structure theory for the reals.

Early 1980s. Shelah develops the theory of
countable support iterations of proper forcings.
Baumgartner and Shelah formulate the proper
forcing axiom PFA. Very successful in resolving
questions left open by MA. The proof of the
consistency of PFA uses a supercompact cardi-
nal.
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Mid to late 1980s. Shelah develops revised
countable support iteration of semi proper forc-
ings. Foreman, Magidor, and Shelah formulate
Martin’s Maximum MM - the provably maximal
forcing axiom. Resolves questions left open by
PFA such as the saturation of the nonstationary
ideal NSω1, Chang’s Conjecture, etc.

Key questions in cardinal arithmetic left open
by ZFC and resolved by forcing axioms are the
value of the continuum c and the SCH which is
also a consequence of large cardinals.
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In the early seventies Solovay showed that if λ
is strongly compact then κθ = κ for all regular
κ ≥ λ and for all θ < λ.

Combining this result with Silver’s theorem one
obtains that κcof(κ) = κ+ for all singular κ ≥
λ, i.e. the SCH above λ.

Foreman, Magidor and Shelah later showed that
MM implies that c = ℵ2 and the SCH.

Their proof reposes on the fact that in a model
of MM the properties of regular cardinals κ greater
or equal than ℵ2 resembles in many respects to
the properties of regular cardinals κ ≥ λ for
some λ supercompact.

They can show that a variation of Solovay argu-
ments yield that MM implies that κω1 = κ for
all regular κ ≥ ω2.

A further simple argument is needed to obtain
that 2ω > ℵ1. The SCH is once again obtained
combining their theorem with Silver’s theorem.
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THE EFFECTS OF THE PROPER FORC-
ING AXIOM ON CARDINAL ARITH-
METIC.

To obtain the same conclusions from PFA has
demanded different ideas. In fact the models of
PFA loose a great amount of the properties of
the supercompact λ from which they are so far
obtained.

For this reason there are no straigthforward means
to modify Solovay’s argument in order to fit also
with this situation.

However Veličković and Todorčević in the late
eighties were the first to obtain a proof of 2ℵ0 =
ℵ2 from PFA.

Another proof of this result led to isolate a very
interesting combinatorial principle which follows
from PFA, the open coloring axiom OCA.
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Later on another argument yielding a similar
conclusion led to the formulation of the P -ideal
dichotomy PID. Another very successful com-
binatorial principle which is a consequence of
PFA.

These principles deserves a particular interest
because they made apparent an unexpected re-
semblance between the combinatorics of uncount-
able cardinals and certain analytic properties of
the reals.

OCA has an exact counterpart in the context
of analytic sets of reals. It is one of the few
examples of a property of pure set theory which
led to new theorems of descriptive set theory
(cfr. Todorčević).

The PID generalizes to the level of uncountable
cardinals phenomena which were already stud-
ied in the context of descriptive set theory (cfr.
Solecki).
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The P -Ideal Dichotomy

Let Z be any uncountable set. I ⊆ [Z]ω is a
P -ideal if for every family {Xn : n ∈ ω} ⊆ I,
there is X ∈ I which contains every Xn modulo
finite.

Let I be a P -ideal on [Z]ω then one of the fol-
lowing holds:

(i) there is an uncountable Y ⊆ Z such that
[Y ]ω ⊆ I,

(ii) there is a family {An : n ∈ ω} such that
for every n, [An]ω ∩ I = ∅ and

⋃
n An = Z.
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Some facts about the PID (all the results are by
Todorčević):

Theorem 5 PFA implies the PID.

Theorem 6 PID implies that �(κ) fails for
all regular κ ≥ ℵ2.

Theorem 7 PID implies b ≤ ℵ2.

b is the bounding number, i.e. the least cardinal
κ for which there is a family A of subsets of ω
of size κ such that for every X ⊆ ω there is
Y ∈ A with Y \X infinite.

Theorem 8 PID implies that there are no Souslin
tree on ℵ1.

Theorem 9 PID is compatible with GCH.
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This is the result I want to present:

Theorem 10 PID implies κω = κ for all reg-
ular κ ≥ 2ℵ0.

Once again a combination of this result with
Silver’s theorem yields the SCH.

PROOF:

The spirit of the proof is the same of the original
argument of Todorčević and Abraham that PID
implies that every (ω1, ω1) gap on (P (ω),⊆∗)
is an Haussdorff gap.
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For any cardinal κ of countable cofinality,

C = (K(n, β) : n < ω , β ∈ κ+)

is a covering matrix for κ+ if:

(i) for all n and α, |K(n, α)| < κ,

(ii) for all α ∈ κ+, K(n, α) ⊆ K(m, α) for
n < m,

(iii) for all α ∈ κ+, α + 1 =
⋃

n K(n, α),

(iv) for all α < β ∈ κ+, if α ∈ K(n, β), then
K(n, α) ⊆ K(n, β).

(v) for all X ∈ [κ]ω there is γX < κ+ such that
for all β, there is n such that K(m, β)∩X =
K(m, γX) for all m ≥ n.
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Fact 1 For any κ singular cardinal of count-
able cofinality, there is a covering matrix C
on κ+.

Proof: We show it just in the case κ > c,
however appealing to the approachability ideal
I[κ+] we can drop this assumption. Let for all
β, φβ : κ → β be a surjection and (κn)n be a
strictly increasing sequence of regular cardinals
converging to κ.

Define K(n, β) by induction on β as follows:

φβ[κn] ∪ {K(n, γ) : γ ∈ φβ[κn]}
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It is easy to check (i),· · ·,(iv).

To see (v) let X ∈ [κ+]ω be arbitrary.

Since c < κ+ and there are at most c many sub-
sets of X , there is a stationary subset S of κ+

and a fixed decomposition of X as the increasing
union of sets Xn such that X ∩K(n, α) = Xn

for all α in S and for all n.

Now property (iv) of the matrix guarantees that
this property of S is enough to get (v) for X
with γX = min(S). �
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Definition 11 (CP(D)):) Let D be a cov-
ering matrix for κ+. D has the ”Covering
Property” if there is an unbounded subset A0
of κ+ such that [A0]

ω is covered by D.

CP is the statement: CP(D) holds for all cov-
ering matrices D on any κ+ > 2ℵ0 successor
of a singular cardinal of countable cofinality.
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Fact 2 Assume CP. Then λℵ0 = λ, for every
λ ≥ 2ℵ0 of uncountable cofinality.

Proof: We will prove this fact by induction.

The base case is trivial.

If λ = κ+ with cof(κ) > ω, then:

λℵ0 = λ · κℵ0 = λ · κ = λ,

by the inductive hypothesis on κ and using the
Haussdorff formula (κ+)λ = κλ + κ+.

If λ is a limit cardinal and cof(λ) > ω, then:

λℵ0 = sup{µℵ0 : µ < λ & µ regular},
so the result also follows by the inductive hy-
pothesis.
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The only interesting case is when λ = κ+, with
κ singular of countable cofinality for we cannot
apply the inductive hypothesis to κω, since κ
has countable cofinality.

In this case let D be a covering matrix for κ+.

Remark that by our inductive assumptions, since
every K(n, β) ∈ D has size less than κ, |[K(n, β)]ω|
has size less than κ.

So
⋃
{[K(n, β)]ω : n < ω & β ∈ κ+} has size

κ+. Use CP(D) to find A0 ⊆ κ+ unbounded in
κ+, such that [A0]

ω is covered by D.

Then:

[A0]
ω ⊆

⋃
{[K(n, β)]ω : n < ω & β ∈ κ+},

from which the conclusion follows. �
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Here comes the P -ideal dichotomy:

Lemma 12 PID implies CP(D) for every cov-
ering matrix D.

Let κ be a cardinal of countable cofinality and
D be a covering matrix on κ+ and set

I = {X ∈ [κ+]ω : for all n, α
X ∩K(n, α) is finite }

Claim 13 I is a P -ideal.
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Proof of the claim:

Let {Yn : n ∈ ω} ⊆ I. We need to find X ∈ I
containing modulo finite every Yn.

Let Y =
⋃

n Yn. Now appealing to property
(v) of D find γY such that for all β ≥ γY there
is n such that K(m, β) ∩ Y = K(m, γY ) ∩ Y
for all m ≥ n.

Now it is easy to build X ⊆ Y which has finite
intersection with K(n, γY ) for all n and which
contains modulo finite every Xn.

Using properties (iv) for the α < γY and (v)
for the others α it is immediate to check that X
has in fact a finite intersection with all K(n, α).
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To build this X , notice that for every n, m, Yn∩
K(m, α) is finite, set X(n,m) to be the finite
set

Yn ∩K(m, γY ) \K(m− 1, γY )

and let:

X =
⋃
n

⋃
j≥n

X(n, j).

Notice that Xn =
⋃

j X(n, j) and
⋃

j≥n X(n, j) ⊆
X , so we have that Xn ⊆∗ X .

Moreover X ∩K(n, α) =
⋃

j≤i≤n X(j, i), so it
is finite. �
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Now remark that if Z ⊆ κ is any set of ordinals
of size ℵ1 and α ∈ κ+ is larger than sup(Z),
there must be an n such that Z ∩ K(n, α) is
uncountable. This means that I 6⊆ [Z]ω, since
any countable subset of Z ∩ K(n, α) is not in
I.

This forbids I to satisfy the first alternative of
the P -ideal dichotomy.

So the second possibility must be the case, i.e.
we can split κ+ in countably many sets An such
that κ =

⋃
n An and for each n, [An]ω∩I = ∅.

Claim 14 For every n, [An]ω is covered by
D.
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Proof of the claim: Suppose not and find
n and X ∈ [An]ω such that for all α and m,
X 6⊆ K(m, α).

This means that for γX we can find X0 ⊆ X
infinite such that for all m, X0 ∩ K(m, γX) is
finite.

However by property (iv) and (v) of D, X0 has
in fact finite intersection with all K(n, α), i.e.
X0 ∈ I a contradiction. �

Now any An which is unbounded in κ+ wit-
nesses CP(D). This concludes the proof of every-
thing. �
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