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Introduction

Dans cette thèse j'analyse quelques conséquences de l'axiome du forcing propre
PFA sur les propriétés combinatoires des cardinaux in�nis. Le principal résultat
obtenu est le suivant :

Théorème 1 L'axiome du forcing propre implique l'hypothèse des cardinaux
singuliers1.

La preuve de ce théorème mérite l'attention pour plusieurs raisons: Première-
ment on montre que SCH est une conséquence de cet axiome de forcing et pour
cette raison on résout dans le sens attendu un problème classique dans ce do-
maine. La preuve repose sur une propriété des cardinaux non-dénombrables qui
appartient aux cardinaux réguliers au dessus d'un cardinal fortement compact et
qui est une conséquence d' au moins deux principes combinatoires qui découlent
de PFA. Le premier, la dichotomie des P -idéaux, a été isolé par Todor£evic et
Abraham. Le deuxième, introduit par Moore, est le principe de ré�exion MRP.
La preuve demande presque toute la force de consistance connue de PFA ou d'
un cardinal fortement compact parce que on peut aisément la prolonger en une
preuve de la négation du principe du carré.

La thèse est organisée en cinq chapitres et deux appendices:

• Dans le premier chapitre je donne une brève présentation des axiomes du
forcing et des grands cardinaux en prenant inspiration du programme de
Gödel. Je les présente comme une solution plausible d'un grand nombre
de problèmes en théorie des ensembles qui ont été posés au cours du siècle
dernier.

• Dans le deuxième chapitre, je concentre mon intérêt sur la dichotomie des
P -idéaux introduite par Todor£evi¢ en [41] en généralisant les travaux de
lui-même et Abraham parus dans [1]. Ce principe est une propriété com-
binatoire qui découle de PFA mais qui en même temps est compatible avec
l'hypothèse du continu généralisé GCH. Il y a plein de conséquences de PFA
qui peuvent être déduites a partir de PID. En particulier on remarque que
PID implique la non-existence d'arbres de Souslin, la négation du principe

1SCH dans la suite.
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du carré et une représentation très simple de la structure (P (ω)/FIN,⊆∗).
J'analyserai en détail la preuve des deux premiers théorèmes parce que ces
démonstrations suivent un schéma général qui peut être utilisé pour dé-
duire SCH à partir de PID.

• Dans le troisième chapitre, j'introduis le principe de ré�exion MRP présenté
par Moore dans [32] et j'analyse quelques unes de ses conséquences. Ce
principe est l'unique principe de ré�exion qui découle de PFA. On verra
qu'il peut être utilisé comme tous les autres principes de ré�exion pour
démontrer des résultats d'arithmétique cardinale: l'égalité c = ω2 et SCH
sont des conséquences de ce principe. En plus ce principe a été un élé-
ment essentiel pour établir la validité de l'existence d'une base �nie pour
les ordres linéaires non-dénombrables dans les modèles de PFA. Même si
les preuves de SCH a partir de MRP et de PID sont similaires, ces deux
principes sont indépendants parce que MRP est compatible avec l'existence
d'un arbre de Souslin et refuse GCH.

• Dans le quatrième chapitre je présente le résultat principal de cette thèse,
c'est-à-dire la preuve que PFA implique SCH. On introduit une propriété
de recouvrement qu'on appelle CP et qui permet de démontrer SCH d'une
façon similaire à la preuve de ce principe à partir du lemme de recouvre-
ment de Jensen. Mais CP est une hypothèse forte: un argument simple
permet de nier le principe du carré en acceptant CP. Le résultat prin-
cipal du chapitre est la preuve que CP est une conséquence à la fois de
l'existence d'un cardinal fortement compact, de PID et de MRP. Quelques
autres conséquences de ce principe de recouvrement sont montrées. En
particulier on montre qu'une forme faible de ré�exion pour les ensembles
stationnaires découle de PFA.

• Dans le cinquième chapitre on étudie la rigidité des modèles de CP. Récem-
mment Veli£kovi¢ et Caicedo [6] ont montré que deux modèles M ⊆ V de
PFA avec le même ω2 ont les mêmes réels. Dans le but de généraliser ce
résultat à des cardinaux plus grands on montre que si V est un modèle de
CP et M est un modèle interne avec les mêmes cardinaux et les mêmes
réels, alors le plus petit κ tel que κω \ M est non-vide n'est pas régulier
en M . En plus je montrerai que si ℵω est le plus petit κ alors ℵω est
presque un cardinal de Jónsson en M . D'autres restrictions sur κ sont
aussi démontrées.

• Dans le premier appendice je démontre que PFA implique PID.

• Dans le deuxième appendice je prouve que PFA implique MRP et j'esquisse
une démonstration du fait que MRP et PID sont deux principes mutuelle-
ment indépendants.
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Les axiomes de forcing et l'arithmétique des car-

dinaux

L'arithmétique des cardinaux a été un des principaux domaines de recherche à
partir des travaux de Cantor [7] dans la dernière partie du 19-siècle. Au cours
de la dé�nition des propriétés de base des cardinaux in�nis, Cantor introduisait
la notion d' exponentielle des cardinaux. Il s' apercevait rapidement qu' il n'
était pas capable de calculer la valeur de la fonction exponentielle κ 7→ 2κ même
pour le plus petit cardinal in�ni ℵ0. Il a posé donc le problème du continu dans
lequel il demandait la valeur du cardinal 2ℵ0 et a formulé la célèbre hypothèse
du continu CH qui a�rme que 2ℵ0 = ℵ1.

Plus de quatre-vingt ans de recherches ont été nécessaires pour montrer
que CH est indépendante de ZFC, l'habituelle axiomatisation de la théorie des
ensembles. En 1939 Gödel [15] a introduit le modèle minimal de ZFC, le modèle
L des ensembles constructibles et a montré que CH est valide dans ce modèle.
Mais il n' était pas satisfait par son résultat, et ses spéculations successives sur
ce problème aboutiront dans son article de 1947 [16] et [17]2 où il a présenté son
point de vue personnel sur le problème du continu et plus en général sur le statut
ontologique de la théorie des ensembles et des problèmes qui apparaissaient dans
ce domaine. Sur ce sujet il a pris une position platonicienne et a déclaré sur CH:

...if the meaning of the primitive terms of set theory... are accepted
as sound, it follows that the set-theorethical concepts and theorems
describe some well-determined reality, in which Cantor's conjecture
must be either true or false and its undecidability from the axioms
as known today can only mean that these axioms do not contain a
complete description of this reality; ([17], section 3, p. 476)

En e�et il a conjecturé que ZFC était une théorie trop faible pour régler
le problème du continu et a supposé que CH était indépendant des axiomes
de ZFC. Il a proposé aussi quelques arguments heuristiques qui permettaient
de distinguer entre les cardinaux ℵ1 et 2ℵ0 ([17], section 4, pp. 478 − 479).
Il a présenté plusieurs exemples qui marquaient une di�érence entre les deux
cardinaux. Nous en soulignons deux:

1. Le fait que par un résultat de Sierpinski il est possible de déduire à partir
de ZFC l'existence d' un ensemble de réels de taille ℵ1 avec intersection
maigre avec tous les sous-ensemble parfaits de R ([22], p.269), mais aucun
moyen de produire un tel ensemble de taille 2ℵ0 était connu.

2. Le fait que par un résultat de Sierpinski et Luzin [26] CH implique l'existence
d' un ensemble non-dénombrable de mesure fortement nulle, mais aucun
moyen de produire un tel ensemble à partir de ZFC n'était connu 3.

2Il y a deux éditions de cet article, celle [16] et celui de 1964 [17]. J' utiliserai dans la suite
celui de 1964, qui exprime quelque ré�exions supplémentaires que Gödel a fait sur ce sujet
après la publication de [16].

3Laver a montré en utilisant le forcing qu'il y a des modèles de ZFC sans ensemble non-
dénombrable de mesure fortement nulle.
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Il en a tiré la conclusion qu'il était nécessaire de rechercher des nouveaux axiomes
qui pouvaient donner une solution satisfaisante au problème du continu et aux
autres problèmes sans réponse qui étaient apparu en ce domaine.

Gödel a donné plusieurs critères que ces nouveaux axiomes devraient satisfaire
pour être acceptés comme vrais. En particulier, il a souligné que ces axiomes de-
vraient satisfaire une propriété de "maximum" qu' il n'a pas énoncé clairement
mais qu' il a opposé génériquement aux conditions de minimalité satisfaites par
l'univers L des ensembles constructibles ([17], section 4, p.478, note 19). Il
s' attendait au fait que les progrès dans l'étude du problème du continu au-
raient permis d'avoir une intuition plus nette sur la nature de cette propriété
de maximum. Il a pu aussi proposer une classe d' axiomes qui satisfaisaient ces
critères, plus précisément les axiomes forts de l'in�ni ou dans la terminologie
courante, les axiomes des grands cardinaux ([17], section 4, pp. 476 − 477 et
note 16). Approximativement on peut dire que ces axiomes établissent certaines
propriétés combinatoires des cardinaux in�nis qui cherchent à donner une sig-
ni�cation mathématique précise à l'intuition de Cantor et de Gödel qu' on ne
peut pas avoir un ensemble précis de règles qui puisse décrire le processus de
génération de la séquence des cardinaux in�nis. La propriété du maximum est
piégée par ces axiomes dans le sens que l'univers des ensembles est clos par un
quelconque moyen consistant à générer des nouveaux cardinaux in�nis.

Une étape cruciale en théorie des ensembles fut la découverte de la méthode
de forcing en 1963 par Cohen [8]. Cette méthode a permit à Cohen de construire
un modèle de ZFC dans lequel CH est faux. Le forcing est une technique générale
qui permet de construire à partir d'un modèle donné M de ZFC, un modèle N
qui contient strictement M mais qui a les mêmes ordinaux que M . En e�et
le forcing a rapidement permis de construire plusieurs modèles qui ont montré
l'indépendance de ZFC de presque toutes les conjectures encore ouvertes dans
le domaine jusqu'à présent.

A partir des années soixante-dix, la recherche des e�ets des grands cardinaux
d' une part et la maîtrise de plus en plus a�née de la méthode du forcing d'autre
part ont donné de nouvelles idées sur la façon d' approcher le programme de
Gödel.

En poussant vers les limites l'esprit du forcing, une autre interprétation
claire de la propriété du maximum a pu être proposée. Pour cela on a besoin du
concept d' axiome du forcing, qui dit à peu près que si un ensemble satisfaisant
certaines conditions existe dans un modèle produit en utilisant la méthode du
forcing, alors cet ensemble existe vraiment. Cela peut être énoncé comme un
principe de saturation de l'univers par rapport au forcing. Cette formulation
de la propriété du maximum est complémentaire aux axiomes des grands car-
dinaux qui de leur côté postulent l'existence de cardinaux et ordinaux de plus en
plus grands4. Ces axiomes se sont révélés su�samment puissants pour pouvoir
résoudre un grand nombre de problèmes classiques de la théorie des ensembles.
Par exemple il y a plusieurs démontrations à partir des certaines axiomes de
forcing que 2ℵ0 = ℵ2 (voir en particulier [11], [31], [32], [40], [42], [44]).

4En e�et on montrera dans la suite que ces deux types d' axiomes sont strictement liés.
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Il y a une présentation topologique simple de ce type d' axiomes. Le théorème
des catégories de Baire a�rme que pour une grande variété d' espaces topologiques
entre lesquels il y a en particulier les nombres réels, l'intersection d' un ensemble
dénombrable d' ouverts denses est non-vide. Les axiomes du forcing peuvent
être présentés comme un renforcement de cet théorème.

Dé�nition 1 FA(A, κ) est vrai si chaque fois que A est une classe d' espaces
topologiques et pour n'importe quel X ∈ A, F est une famille de moins de κ
ouverts denses de X, alors

⋂
F est non vide.

Le théorème des catégories de Baire peut être formulé comme FA({R}, ℵ1). Au
début des années soixante-dix, Solovay et Martin ont introduit le premier axiome
de forcing non-trivial, l'axiome de Martin (MA). Celui-ci est FA(K, 2ℵ0), où K
est la classe des espaces topologiques compacts qui satisfont aussi la propriété
des antichaînes dénombrables, une classe d' espaces qui inclut les nombres réels
et concerne beaucoup des propriétés topologiques de ces nombres. Au début
des années quatre-vingt, Baumgartner et Shelah [4] ont introduit l'axiome du
forcing propre (PFA), et à la �n des années quatre-vingt, Foreman, Magidor
et Shelah [11] ont présenté Martin' s maximum (MM), l'axiome de forcing dé-
monstrativement plus fort5 au moins pour κ = ℵ2. Entre autre ils ont montré
dans cet article que MM implique c = ℵ2. Quelques années après Veli£kovi¢
et Todor£evi¢ ont obtenu la même conclusion en supposant le plus faible ax-
iome PFA. D'autres preuves que PFA implique c = ℵ2 ont été présentées par
la suite aussi par Todor£evi¢ [40], Moore [32], [31] et Caicedo et Veli£kovi¢ [6].
Ces preuves sont aussi intéressantes pour d' autres raisons: elles ont permis d'
isoler des principes qui ont conduit à des nouveaux théorèmes dans la théorie
combinatoire et descriptive des ensembles6.

Pendant les années quatre-vingt-dix, l'attention des chercheurs s'est tournée
vers la version bornée des axiomes de forcing en particulier vers le bounded Mar-
tin' s maximum BMM et le bounded proper forcing axiom BPFA. Ces derniers
semblent être une intéressante solution du problème du continu et en partie
l'accomplissement du programme de Gödel. Ceci est du en partie à la caractéri-
sation simple de ces axiomes donnée par Bagaria qui a montré que la version
bornée des axiomes de forcing peut être présentée comme une généralisation au
niveau de H(ℵ2) du théorème d' absoluté de Schoen�eld. Ce théorème a�rme

5Cette assertion a besoin de quelques précisions: PFA, MA et tous les axiomes de forcing
qui peuvent être formulés en accord avec la dé�nition 1 sont une conséquence de MM. En e�et
MM est FA(SSP,ℵ2), où SSP dénote la classe des algèbres de Boole complètes qui préservent
les sous-ensembles stationnaires de ω1. Il a été montrée dans [11] que si X est une algèbre
de Boole complète qui n' est pas SSP alors il y a un ouvert Y de X et une famille F de ℵ1

sous-ensembles ouverts de Y tels que
T
F est vide. Pour cette raison on peut a�rmer que MM

est l'axiome démonstrativement plus fort. Mais par exemple l'axiome (∗) de Woodin peut être
quali�é aussi axiome de forcing même s'il est indépendant de MM. De toute façon je ne sais
pas si dans un quelconque modèle de ZFC, (∗) peut être présenté en accord avec la dé�nition
1.

6Je me réfère en particulier à l'axiome OCA introduit par Todor£evi¢ comme conséquence
de PFA et qui a conduit à la découverte des nouvelles dichotomies en théorie descriptive des
ensembles et à l'axiome MRP introduit par Moore [32] qui a permis de démontrer la consistance
de l'existence d' une base �nie pour les ordres linéaires non-dénombrables (voir [33] et [20]).
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que Lℵ1 ≺1 V . Les axiomes bornés de forcing peuvent être presentés comme
un renforcement de ce théorème de la forme H(ℵ2) ≺1 V P , où P varie dans la
classe appropriée de forcing. D' autre part Moore a montré que le faible BPFA
implique que c = ℵ2 [32].

Finalement les e�orts de plusieurs logiciens, y compris Woodin, ont permis
de combiner le grand nombre des résultats partiels obtenus à partir des axiomes
de forcing avec ceux qui lient la théorie de L(R) et l'axiome de détermination
avec les hypothèses des grands cardinaux. Premièrement Woodin a montré que
l'existence d' une classe propre de cardinaux de Woodin implique que la théorie
de L(R) ne peut pas être modi�ée par le forcing et de cette façon a pu renforcer
le théorème d' absoluté de Schoen�eld aux plus grandes généralités possible en
supposant que les grands cardinaux et le forcing sont les uniques moyens de
produire un témoin d' une propriété projective des nombre réels. En poussant
ces idées au niveau de H(ℵ2), il a introduit la Ω-logique. C'est la logique qui a
comme modèles les univers V B

α où B est une algèbre de Boole complète. Woodin
a montré que la notion de validité pour cette logique est invariante par forcing
(i.e. V |= ”T |=Ω φ” si et seulement si V B |= ”T |=Ω φ” pour tous les algèbres
de Boole complètes B). Il a aussi introduit une notion syntactique de preuve `Ω

qui, d'après les mots de Woodin,�is a natural trans�nite generalization of the
classical notion of proof for �rst order logic" [47]. La Ω-conjecture demande si le
théorème de complétude de Gödel peut être démontré aussi pour la Ω-logique.
Si cette question a une réponse positive, Woodin a montré qu'il y a une forme
forte de l'axiome7 BMM qui décide en Ω-logique toute la théorie de H(ℵ2) (voir
[48], [49] or [3]). Il a ensuite montré que chaque axiome φ avec cette propriété
décidera en Ω-logique que CH est faux. Par rapport à cela, la Ω-logique se
présente comme un renforcement du concept de démontrabilité qui donne une
plausibilité à tous les résultats obtenus jusqu'à maintenant dans le domaine des
axiomes de forcing qui tendent à montrer que c = ℵ2. En reprenant encore une
fois les mots de Gödel sur les e�ets de son théorème d' incomplétude et sur les
remèdes possibles:

It is well known that in whichever way you make [the concept of
demonstrability] precise by means of a formalism, the contemplation
of this very formalism gives rise to new axioms which are exactly as
evident as those with which you started, and that this process can
be iterated into the trans�nite. So there cannot exist any formalism
which would embrace all these steps; but this does not exclude that
all these steps.... could be described and collected together in some
non constructive way. ([14] p. 151)

Par rapport à cela, la Ω-Logic semble être une candidate plausible pour le sys-
tème de preuve non-constructive que Gödel proposait de rechercher.

Après la découverte du forcing, une étude poussée des comportements pos-
sibles de la fonction exponentielle sur les cardinaux non dénombrables a été
poursuivie. Des travaux sur cet argument avaient déjà été réalisés. L'hypothèse

7C' est en e�et son axiome (∗)
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généralisée du continu GCH a�rme que 2κ = κ+ pour tous les cardinaux in�nis
κ. Par exemple Gödel [15] avait déjà montré que GCH est vrai dans L. Mais
dans une des premières applications du forcing Easton [10] a généralisé le résul-
tat de Cohen en montrant qu'il y a très peu de restrictions sur le comportement
de la fonction exponentielle κ 7→ 2κ sur la classe des cardinaux réguliers. La
situation pour les cardinaux singulier est beaucoup plus subtile. On rappelle
que SCH a�rme que κcofκ = κ+ + 2cofκ pour tous les cardinaux singuliers
κ. Premièrement Solovay a montré que SCH est vrai au dessus d' un cardinal
fortement compact (voir aussi le chapitre 4 pour une preuve di�érente de ce
théorème). Peu après Silver [37] a montré que SCH ne peut pas faillir en pre-
mier sur un cardinal singulier de co-�nalité non-dénombrable. Finalement un
des résultats majeurs de Shelah [36] est la preuve que ℵℵ0

ω < ℵω4 + c+ est vrai
en ZFC. Donc contrairement à la situation pour les cardinaux réguliers, il y a
des bornes sur le comportement de la fonction exponentielle sur les cardinaux
singuliers qui peuvent être calculés en ZFC. De toute façon, on sait que SCH
peut faillir8. Le ròle des grands cardinaux en ce contexte est bivalent. D' une
part ils sont nécessaires pour la construction de modèles où SCH est faux, parce
que chacun de ces modèles a un modèle interne avec des cardinaux mesurables
(voir Gitik [12]). D'autre part, comme on l'a déjà souligné, SCH est vrai au
dessus d' un cardinal fortement compact.

MM implique des principes de ré�exions similaires à ceux qui ont été utilisés
dans la preuve de Solovay. En e�et une variation de l'argument de Solovay
montre que SCH est aussi une conséquence de cet axiome de forcing (voir [11]).
Ce résultat a été amélioré par Velickovic [44] peu d' années après, qui montrait
que SCH découle aussi de PFA+ un axiome de forcing un peu plus fort que PFA
mais plus faible que MM. Ce qui a été montré en [44] est que si θ > ℵ1 est
régulier et les sous ensembles stationnaires de [θ]ω sont ré�exifs, alors θω = θ.
Ceci combiné avec le résultat de Silver su�t pour montrer SCH. Le problème
de déterminer si SCH est une conséquence de PFA restait ouvert.

Peu de progrès ont été réalisés pendant plus de quinze années sur ce problème
parce que aucun principe de ré�exion découlant de PFA et ressemblant à ceux qui
avaient été utilisés dans les autres preuves de SCH n'était connu. Les di�cultés
ressemblaient à celles qui avaient rendu complexe une preuve de c = ℵ2 à partir
de PFA. Avant l'argument de Veli£kovi¢ et Todor£evi¢, les preuves connues de
c = ℵ2 à partir de MM utilisaient des arguments de ré�exion qui n' étaient pas
une conséquence de PFA.

Un travail supplémentaire a conduit à isoler des principes découlant de PFA
qui paraissent être utiles dans la recherche d' une preuve de SCH à partir de
PFA. En 2001 Todor£evi¢ [41] en travaillant sur des idées précédents de Shelah,
Abraham et lui-même, a introduit une dichotomie pour les P -idéaux (dans la
suite PID) qui d' une part donne de nouveaux arguments pour prouver que PFA
implique b ≤ ω2, et d'autre part permette d'obtenir une nouvelle preuve de la
négation du principe du carré.

8Ce résultat est du a Magidor, voir [27] et [28], [13] est une monographie des forcings du
type Prikry et des applications possibles a l'étude de la combinatoire des cardinaux singuliers.
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En 2003, Moore a introduit un nouveau principe de ré�exion, le mapping
re�ection principle MRP et l'a déduit à partir de PFA. Il a montré que MRP
implique que le continuum est ℵ2 et la négation de �(κ) pour tous les κ >
ℵ1 et réguliers. MRP partage beaucoup de propriétés avec les principes de
ré�exion qui découlent de MM. Donc il était plausible de s' attendre que MRP
pouvait in�uencer les comportements de la fonction exponentielle sur les autres
cardinaux aussi. En e�et, Moore a montré dans [34] que si MRP est vrai et
κ > ℵ1 est un cardinal régulier contenant un sous-ensemble stationnaire de
points de co-�nalité ω qui ne ré�et pas alors κℵ1 = κ. Ceci combiné avec le
résultat précédent de Veli£kovi¢ et le fait que tous les modèles connus de PFA
sont aussi des modèles de SCH semblait suggérer que PFA implique SCH.

Dans la suite on montrera que MRP et PID peuvent être utilisés pour obtenir
une preuve de SCH à partir de PFA en utilisant une variation de l'argument de
Solovay pour montrer la négation du principe du carré au dessus d' un cardinal
fortement compact.



A brief introduction for the

expert reader

In9 this thesis I analyze some of the e�ects of the proper forcing axiom PFA
on the combinatorial properties of in�nite cardinals. The main result that is
achieved is the following:

Theorem 1 The proper forcing axiom implies the singular cardinal hypothe-
sis10.

The proof of this theorem is interesting in many respects: �rst of all it shows
that SCH is a consequence also of this forcing axiom and thus solves positively
a folklore problem in the area. The core of the proof relies on the isolation
of a property of uncountable cardinals which holds above a strongly compact
cardinal and which is a consequence of at least two very simple combinatorial
principles which follow from PFA. The �rst has been isolated by Todor£evi¢ and
Abraham is the P -ideal dichotomy PID. The second isolated by Moore is the
mapping re�ection principle MRP. Moreover the proof seems to require almost
all of the known large cardinal strength of PFA or of a strongly compact cardinal
since it can be extended without many di�culties to a proof of the failure of
square.

The thesis is organized in �ve chapters and two appendixes:

• In the �rst chapter I give a brief presentation of forcing axioms and large
cardinals and taking inspiration from Gödel's program I present them as
a plausible solution to many of the mathematical problems arising in set
theory in the past century.

• In the second chapter I concentrate my attention on the P -ideal dichotomy
introduced by Todor£evi¢ in [41] developing ideas from him and Abraham
in [1]. This is a very simple combinatorial principle which follows from
PFA but is compatible with GCH and which is already strong enough to

9The nonexpert reader may skip directly to the next paragraph or even to the �rst chapter
which is a more general introduction to the subject of this thesis.

10SCH in what follows.

11
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capture many of the relevant consequences of this forcing axiom. The
most interesting consequences of this dichotomy are the non-existence of
Souslin trees, the failure of square and a very simple picture of the gaps
in (P (ω)/FIN,⊆∗). In particular I will analyze in some details the proofs
of the �rst two results. The reason is that these proofs follow a general
pattern which I will follow in order to show that PID implies SCH.

• In the third chapter I turn my attention to the mapping re�ection princi-
ple MRP recently introduced by Moore in [32] and I analyze some of its
e�ects. This is the only known re�ection principle which is a consequence
of PFA. We will see that it can be used as all other re�ection principles to
prove interesting bounds in cardinal arithmetic. Moreover it has been an
essential tool in establishing the validity of the existence of a �ve element
basis for uncountable linear orders in models of PFA (see [33]). However I
will be interested in this principle mainly for its applications to cardinal
arithmetic. Even if it allows for a proof of SCH in the same fashion as PID
does, it is mutually independent with PID since it is compatible with the
existence of a Souslin tree and it entails that c = ℵ2. However its proof
requires more out of PFA than the proof of PID in order to go trough.

• In the fourth chapter I will present the main result, i.e. that PFA implies
SCH. This will be done isolating a very simple covering property which I
will call CP and which allows for a proof of SCH in the same fashion that
Jensen covering lemma does. However this covering property is a strong
hypothesis. A simple argument will yield that CP implies the failure of
square. The main result of the chapter is that CP is a consequence of the
P -ideal dichotomy, of the mapping re�ection principle and of the existence
of a strongly compact cardinal. Some other simple consequences of CP
are outlined. In particular we prove that a weak form of re�ection for
stationary sets holds under PFA.

• In the �fth chapter I will investigate the rigidity of models of CP. Recently
Veli£kovi¢ and Caicedo [6] have shown that any two models M ⊆ V of PFA
with the same ω2 have the same reals. In an attempt to generalize this
result to larger cardinals I will show that if V is a model of CP and M
is an inner model with the same reals and the same cardinals, then the
least κ such that κω \ M is nonempty is not regular in V . Moreover I
will show that if ℵω is the least such κ, then it is close to be a Jónsson
cardinal. Other interesting restrictions on κ as well as a weakening of the
hypothesis are shown.

• In appendix one I prove that PFA implies PID.

• In appendix two I prove that PFA implies MRP and sketch a proof that
MRP and the P -ideal dichotomy are mutually indipendent principles.
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Chapter 1

Forcing axioms and cardinal

arithmetic

Cardinal arithmetic has been one of the main �elds of research in set theory
since the foundational works by Cantor in the last quarter of the 19-th century
[7]. While giving shape to the theory of cardinal arithmetic, Cantor de�ned
the notion of exponentiation of in�nite cardinals. He soon realized that he was
not able to compute the value of the exponential function κ 7→ 2κ even for the
least in�nite cardinal ℵ0. This led him to formulate the celebrated continuum
problem in which he asked for the speci�c value of 2ℵ0 . This later became the
�rst of the twenty-three Hilbert problems. Cantor's conjecture, known as the
continuum hypothesis (CH), states that 2ℵ0 = ℵ1.

1.1 Gödel's program and the continuum problem

Over eighty years of work have been necessary to show that CH is undecidable
in ZFC, the current axiomatic framework of set theory. In 1939 Gödel [15]
isolated the constructible universe L, the minimal model of ZFC, and showed
that CH holds in this model. However he was not satis�ed by his result and his
subsequent speculations on this problem culminated in his 1947 papers [16] and
[17]1 where he presented his own views on the continuum problem and more
generally on the onthological status of set theory and the issues arising in this
�eld. In this respect, he assumed a platonistic point of view and asserted on
CH:

...if the meaning of the primitive terms of set theory... are accepted
as sound, it follows that the set-theorethical concepts and theorems
describe some well-determined reality, in which Cantor's conjecture

1There are two editions of this paper, the 1947 [16] and the 1964 [17]. I will refer in what
follows to the 1964 revised version, which expresses some of the further speculations Gödel
had on this subject after the publication of [16].

15
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must be either true or false and its undecidability from the axioms
as known today can only mean that these axioms do not contain a
complete description of this reality; ([17], section 3, p. 476)

Subsequently he conjectured that ZFC was too weak to settle the continuum
problem and expected CH to be independent of ZFC. He also gave some heuristic
arguments in which he suggested the possibility of distinguishing between 2ℵ0

and ℵ1 (see [17], section 4, pp. 478 − 479). He presented many examples
outlining a di�erence between the two cardinals, among which we mention two:

1. The fact that by a result of Sierpi«ski it was possible to deduce from ZFC
the existence of a set of reals of size ℵ1 with meager intersection with all
perfect subsets of R (see [22], p.269), however no means of obtaining from
ZFC a set with this property of power continuum was known.

2. The fact that by a result of Sierpi«ski and Luzin [26] CH entailed the
existence of strong measure zero sets of power continuum, however no
means of obtaining an uncountable strong measure zero set of reals from
ZFC alone were known2.

He concluded that it was necessary to seek new natural axioms that could give
a satisfactory solution to the continuum problem as well as to all other natural
problems arising in the �eld. This became later known as Gödel's program.
Gödel gave several criteria that these new axioms should satisfy in order to be
accepted as true. In particular, he stressed that these axioms should satisfy
a maximum property which he could not state clearly but which he opposed
generically to the minimality conditions satis�ed by L (see [17], section 4, p.478,
note 19). He expected that advancements towards a solution of the continuum
problem would give better insights into the nature of this maximum property.
He could also propose a class of axioms that could �t with his requirements,
namely, the strong axioms of in�nity or, in the current terminology, the large
cardinals axioms ([17], section 4, pp. 476−477 and note 16). Roughly speaking,
these axioms assert certain combinatorial properties of in�nite cardinals which
try to capture Cantor's and Gödel's intuition that there cannot be a de�nite
set of rules from which the sequence of cardinals can be generated. Thus,
the maximum property as suggested by these axioms asserts the closure of the
universe of sets with respect to any consistent means of generating new in�nite
cardinals.

A crucial step forward in set theory came in 1963 [8] when Paul Cohen
discovered forcing and used it to produce a model of ZFC where CH fails. This
con�rmed Gödel's original intuition on the undecidability of CH in ZFC. Forcing
is a general method by which one starts with a model of set theory and produces
a larger model with the same ordinals and containing more sets. In fact, the
forcing techniques turned out to be a means of producing a rich variety of models
of set theory and to show the undecidability in ZFC of almost all problems in
the area which were still open at that time.

2Laver has later shown [25] by means of forcing that there are models of ZFC with no
uncountable strong measure zero sets.
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1.2 Forcing axioms

Starting in the seventies, the combined investigations of the e�ects of large cardi-
nals and of the forcing techniques gave new insights into possible ways to attack
Gödel's program, once again con�rming Gödel's idea that any advance towards
the solution of the continuum problem would ultimately result in progress also
in Gödel's program. Pushing the limits in the philosophy of forcing, another
clear meaning of the maximum property can be proposed. For this, one needs
the concept of a forcing axiom, which roughly says that if a set matching a
certain simple description can be shown to exist in an ideal universe obtained
by forcing, then the set actually exists. Thus, in this context, the maximum
property can be formulated as a principle of saturation of the universe of sets
with respect to forcing3. This formulation of the maximum property comple-
ments the large cardinals axioms which on their side assert the existence of ever
larger ordinals and cardinals4. These axioms turned out to be strong enough
to settle many of the central problems in set theory. The most striking e�ect
being that of giving a wide spectrum of arguments to decide that 2ℵ0 = ℵ2 (see
for example [11], [31], [32], [40], [42], [44]).

There is a nice topological characterization of forcing axioms. Baire's Cat-
egory theorem states that in many topological spaces, among which are all
complete second countable spaces (i.e.: the reals), the intersection of countably
many open dense sets is non empty. It turned out that forcing axioms could be
presented as a strengthening of Baire's Category:

De�nition 1.1 FA(A, κ) holds if whenever A is a class of topological spaces
and for some X ∈ A, F is a family of less than κ dense open sets of X, then⋂
F is non-empty.

Thus, the usual Baire's Category theorem is FA({R}, ℵ1). A number of forcing
axioms have been introduced together with proofs of their consistency relative
to large cardinals outlining a duality between these two types of axioms. This
duality establishes a correspondence between the consistency strength of a forc-
ing axiom and the consistency strength of a large cardinal. There is a natural
notion of reduction between logical theories. We say that a logical theory T is
weaker than a theory T ′ if from a model of T ′ one can construct a model of T .
We say that the two theories T and T ′ have the same consistency strength, or
are equiconsistent if T is weaker than T ′ and conversely. The correspondence
between large cardinals and forcing axioms is done using this notion of reduc-
tion. There are many methods which build a model of a large cardinal starting
from a model of a forcing axiom and conversely. Moreover, this correspondence
establishes a nice linear hierarchy between theories in the sense that given any
two theories T and T ′ of a forcing axiom or of a large cardinal axiom, it is

3This is not accurate since not all kind of forcing can be admitted. However it gives an
intuition of what kind of saturation principles this type of axioms try to capture.

4However as we will see below forcing axioms and large cardinals turn out to be strictly
intertwined.
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almost always the case5 that one can show that T ≤ T ′ or T ′ ≤ T .

In the early 1970s, Solovay and Martin presented the �rst non-trivial forcing
axiom, Martin's axiom (MA). This is FA(K, 2ℵ0), where K is the class of com-
pact Haussdor� spaces satisfying the countable chain condition, a class of spaces
which shares many of the essential properties of the reals. In the beginning of
the 1980s, Baumgartner and Shelah [4] introduced the proper forcing axiom
(PFA), while in the late 1980s, Shelah, Magidor and Foreman [11] presented
Martin's maximum (MM), the provably strongest forcing axiom6 and showed
that MM implies 2ℵ0 = ℵ2. Later on Todor£evi¢ and Veli£kovi¢ [44] reached
the same conclusion assuming the weaker PFA. As outlined before, other proofs
that PFA implies 2ℵ0 = ℵ2 have been presented by Todor£evi¢ [40], Moore [32],
[31] and Caicedo and Veli£kovi¢ [6]. Many of these proofs are interesting also
in another respect: they were the means to isolate principles which led to new
theorems in combinatorial and descriptive set theory. For example the open
coloring axiom OCA introduced by Todor£evi¢ as a consequence of PFA has an
exact counterpart in descriptive set theory which has a number of interesting
applications for analytic sets (see [39]). On another side the mapping re�ec-
tion principle MRP has been a key tool in proving that it is consistent that the
uncountable linear orders have a �ve element basis and that this type of basis
exists in models of the proper forcing axiom. This latter result is due to Moore
[33]. Speculating on this König, Moore, Larson, and Veli£kovi¢ were able to
obtain the consistency of the existence of such a basis from much milder large
cardinals assumptions [20].

In the 1990s, attention turned to the bounded forcing axioms and, in par-
ticular, to the bounded Martin's maximum (BMM) and to the weaker bounded
proper forcing axiom (BPFA). The latters are nowadays a promising approach
towards a satisfactory solution of the continuum problem and to a partial com-
pletion of Gödel's program. This is due in part to the nice logical characteriza-
tion provided by Bagaria [2], who showed that bounded forcing axioms can be
presented as a generalization at the level of H(ℵ2) of Schoen�eld's absoluteness
theorem. This theorem asserts that Lℵ1 ≺1 V . Bounded forcing axioms can be
presented as a strengthening of this theorem of the form H(ℵ2) ≺1 V P when-
ever P ranges over the appropriate class of forcing notions. On the other hand,
Moore has shown that already the weak BPFA decides that 2ℵ0 = ℵ2 [32].

Finally the e�orts of many logicians, including Woodin, have been able to
combine the large number of partial results obtained in the area of forcing

5Paul Larson has shown that Woodin's axiom (∗) doesn't follow from MM [23]. Even if it is
natural to consider (∗) as a forcing axiom, it is not known whether it is compatible with MM.
In fact I don't know either whether in some model of ZFC, (∗) can be formulated according
to de�nition 1.1 (see also the next footnotes for further discussion on this point).

6This assertion needs some precisions. PFA, MA and all forcing axioms whose formulation
can be given according to de�nition 1.1 are a consequence of MM. In fact MM is FA(SSP,ℵ2),
where SSP denotes the class of stationary set preserving complete boolean algebras. It has
been shown in [11] that if X is a complete boolean algebra which is nowhere stationary set
preserving, then there is a family of size ℵ1 of dense subsets of X whose intersection is empty.
In this respect MM is the provably strongest forcing axiom. However as pointed out in the
previous footnote MM and Woodin's axiom (∗) may be independent principles.
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axioms with those linking the theory of L(R) and the Axiom of Determinacy
to large cardinals hypothesis. First of all Woodin has shown that the existence
of a proper class of Woodin Cardinals (a certain large cardinal hypothesis)
implies that the theory of L(R) cannot be modi�ed by forcing and thus has
strengthened Schoen�eld's absoluteness theorem to the largest possible extent
at least under the assumption that forcing and large cardinals are the unique
means to produce a witness of a projective property of the reals. Pushing these
ideas to the the level of H(ℵ2) he has come to the analysis of Ω-Logic. This
is the logic whose models range over the boolean valued sets V B

α where B is
any complete boolean algebra. Woodin has shown that the notion of validity
|=Ω for this logic is invariant under forcing (i.e. V |= ”T |=Ω φ” if and only if
V B |= ”T |=Ω φ” for any complete boolean algebra B). He has also introduced a
sound syntactical notion of "proof" `Ω which, according to Woodin,�is a natural
trans�nite generalization of the classical notion of proof for �rst order logic" [47].
The Ω-Conjecture asks whether Gödel's completeness theorem can be proved
also for Ω-Logic. Assuming a positive answer to the Ω-Conjecture, Woodin has
then shown that there is a strong form of BMM which7 combined with ZFC
decides in Ω-Logic the whole theory of H(ℵ2) (see [48], [49] or [3]). Moreover
he has shown, always assuming the Ω-Conjecture, that any axiom φ with this
property will decide in Ω-Logic that CH fails. Thus Ω-Logic appears to be
a suitable strengthening of the concept of demonstrability which gives further
plausibility to all the results obtained so far in the forcing axiom area pointing
to 2ℵ0 = ℵ2. Quoting Gödel again on the e�ects of his incompleteness theorem
and the possible remedies to it:

It is well known that in whichever way you make [the concept of
demonstrability] precise by means of a formalism, the contemplation
of this very formalism gives rise to new axioms which are exactly as
evident as those with which you started, and that this process can
be iterated into the trans�nite. So there cannot exist any formalism
which would embrace all these steps; but this does not exclude that
all these steps.... could be described and collected together in some
non constructive way. ([14] p. 151)

In this respect Ω-Logic appears to be a plausible candidate for the non con-
structive proof system that Gödel suggested.

1.3 Forcing axioms, large cardinals and the sin-

gular cardinal problem

Soon after the discovery of forcing attention has been devoted to the study of
the behavior of the exponential function on uncountable cardinals. Some works
in this direction had been already done. The generalized continuum hypothesis
GCH states that 2κ = κ+ for all in�nite cardinals κ. For example Gödel [15]

7This is in fact his axiom (∗).
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had already shown that GCH holds in L, while it is a folklore result that if κ is
measurable and GCH holds below κ, then 2κ = κ+ ([19] is a reference text for
the historic development of the theory of large cardinals). However in one of
the �rst applications of the forcing techniques, Easton [10] generalized Cohen
result and showed that the exponential function κ 7→ 2κ on regular cardinals
can be arbitrary modulo some mild restrictions. Nonetheless the situation for
singular cardinals turned out to be much more subtle.

Recall that SCH states that κcofκ = κ+ for all singular cardinals κ > 2cofκ.
First of all Solovay proved [38] that SCH holds above a strongly compact cardinal
(see also chapter 4 for a di�erent proof of this theorem). Soon after Silver
[37] showed that the singular cardinal hypothesis SCH cannot fail �rst at a
singular cardinal of uncountable co�nality. Finally one of the main achievement
of Shelah is that ℵℵ0

ω < ℵω4 + c+ holds in ZFC [36]. Thus, contrary to the
situation for regular cardinals, there are interesting bounds on the behavior of
the exponential function on singular cardinals which can be computed in ZFC.
Moreover, by Solovay's theorem, under suitable large cardinals assumptions, the
value of 2κ for a large enough singular cardinal κ is completely determined by
the behavior of the exponential function on smaller cardinals.

However, it is known that SCH can fail �rst even at ℵω (Magidor, see [27]
and [28]). The role of large cardinals in this context is twofold. On one hand
they are necessary for the construction of models of the negation of SCH since
any such model has an inner model with measurable cardinals (see [13] for a
survey of Prikry type forcings and applications to SCH). On the other hand as
we mentioned above SCH holds above a strongly compact cardinal.

MM implies re�ection principles similar to the one used in Solovay's proof
and in fact a variation of Solovay's argument shows that SCH is a consequence
of this forcing axiom [11]. This was later improved by Veli£kovi¢ [44] who also
showed that SCH follows from PFA+ a forcing axiom sligthly stronger than PFA
and weaker than MM. In fact, what is shown in [44] is that if θ > ℵ1 is regular
and stationary subsets of [θ]ω re�ect to an internally closed and unbounded set,
then θω = θ. This, combined with Silver's theorem, implies SCH. At this point,
it was left open whether SCH is a consequence of PFA.

Very little progress was made on this problem for over �fteen years since
no re�ection principle resembling those used in the above proofs was known to
follow from PFA. The situation appeared close to the one that made it di�cult
to prove that PFA implies c = ℵ2. Before Veli£kovi¢ and Todor£evi¢'s argument,
the known proofs of c = ℵ2 from MM used re�ection's arguments which could
not be derived from PFA.

Further work led to the isolation of some consequences of PFA which could
be of interest in the search for a solution of this problem. In 2001 Todor£evi¢
[41] elaborating on previous works by Shelah [35], Abraham and himself [1]
introduced a dichotomy for P -ideals (in the sequel PID) that on one side gave
a new argument for a proof that PFA implies b = ℵ2, on the other side allowed
for another proof of the failure of square under PFA which is reminiscent of
Solovay's argument that square fails above a strongly compact cardinal (which
also appeared in [38]).
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In 2003, Moore [32] introduced a new re�ection principle, the mapping re-
�ection principle MRP and deduced it from PFA. He showed that MRP implies
the continuum is equal to ℵ2 and the failure of �(κ), for all κ > ℵ1. MRP has
many features in common with the re�ection principles which follow from MM,
so it should be expected that MRP could a�ect the behaviour of the exponential
function also on higher cardinals. In fact, Moore showed in [34] that if MRP
holds and κ > ω1 is a regular cardinal with a non-re�ecting stationary set con-
sisting of points of countable co�nality, then κω1 = κ. This, combined with the
above result of Veli£kovi¢ and the fact that all the known models of PFA are
models of SCH, strongly suggested that PFA implies SCH. In the sequel we will
show that MRP and PID can be used to obtain a proof of SCH from PFA using a
variation of Solovay's proof that square fails above a strongly compact cardinal.

1.4 Notation and de�nitions

In this section we introduce the technical de�nitions and the main notational
conventions which will be relevant in what follows. The reader may not be
acquainted with forcing and still be able to understand the relevant parts of this
thesis and the proofs of the main results. For this reason we feel free to omit any
introduction to forcing and we refer the reader to [18] for a presentation of this
subject and as a source for the standard notational conventions. For a regular
cardinal θ, we use H(θ) to denote the structure 〈H(θ),∈, <〉 whose domain is
the collection of sets whose transitive closure is of size less than θ and where
< is a predicate for a �xed well ordering of H(θ). For cardinals κ ≥ λ we let
[κ]λ be the family of subsets of κ of size λ. In a similar fashion we de�ne [κ]<λ,
[κ]≤λ, [X]λ, where X is an arbitrary set. If X is an uncountable set, E ⊆ [X]ω

is unbounded if for every Z ∈ [X]ω, there is Y ∈ E containing Z. E is bounded
otherwise. E is closed if whenever X =

⋃
n Xn and Xn ⊆ Xn+1 are in E for

all n, then also X ∈ E . It is a well known fact that C ⊆ [X]ω is closed and
unbounded (club) i� there is f : [X]<ω → X such that C contains the set of
all Y ∈ [X]ω such that f [Y ]<ω ⊆ Y . S ⊆ [X]ω is stationary if it intersects all
club subsets of [X]ω. The f -closure of X is the smallest Y containing X such
that f [Y ]<ω ⊆ Y . Given f as above Ef is the club of Z ∈ [X]ω such that Z is
f -closed. If X is a set of ordinals then X denotes the topological closure of X
in the order topology. For regular cardinals λ < κ, S≤λ

κ denotes the subset of
κ of points of co�nality ≤ λ, in similar fashion we de�ne Sλ

κ and S<λ
κ . We say

that a family D is covered by a family E if for every X ∈ D there is a Y ∈ E
such that X ⊆ Y .

De�nition 1.2 (Shelah [35]) P is a proper forcing notion if every S stationary
subset of [X]ω for some uncountable X ∈ V is stationary in V [G], where G is
a P -generic �lter.

Let P be a forcing notion and M ≺ H(θ) be a countable model such that
P, p ∈ M . q ≤ p is an M -generic condition below p if for all D ∈ M dense
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subset of P and for all r ≤ q there is s ∈ D ∩ M such that s and r are
compatible conditions.

Theorem 2 (Shelah [35]) The following are equivalent:

• P is proper

• There is C club in [H((2|P |)+)]ω such that for all M ∈ C and for all p ∈ M
there is q ≤ p, M -generic condition below p.

For a proof see theorem 31.7 of [18]. �

De�nition 1.3 (Baumgartner [4]) PFA: The proper forcing axiom holds if
whenever {Dα : α < ω1} is a family of dense open subsets of a proper poset
P , there is G ⊆ P �lter on P with non-empty intersection with all the Dα.

De�nition 1.4 λ is a strongly compact cardinal if for every κ ≥ λ there is U
λ-complete ultra�lter on [κ]<λ such that {Y ∈ [κ]<λ : X ⊆ Y } ∈ U for all
X ∈ [κ]<λ.

De�nition 1.5 SCH: The Singular cardinal Hypothesis holds if κcof(κ) = κ++
2cof(κ) for all in�nite cardinals κ.

Theorem 3 (Silver [37]) Assume κ has uncountable co�nality and λcof(λ) =
λ+ + 2cof(λ) for all λ < κ. Then κcof(κ) = κ+ + 2cof(κ).

De�nition 1.6 (Shelah [36]) Let κ be an uncountable cardinal. I[κ] is the
family of S ⊆ κ such that there is {aα : α < κ} such that for all α ∈ S,
otp(aα) = cof(α) and for all γ < α, aα ∩ γ ∈ {aξ : ξ < α}.

Fact 1.7 (Shelah [36]) I[κ] is a normal ideal. �

Theorem 4 (Shelah [36]) Assume κ and λ are regular uncountable cardinals
with λ+ < κ. Then there is S stationary subset of Sλ

κ in I[κ]. �



Chapter 2

The P -ideal dichotomy

The purpose of this chapter is to introduce the reader to an interesting combi-
natorial principle which captures many of the essential features of the proper
forcing axiom but nonetheless is still consistent with CH.

Let Z be an uncountable set. I ⊆ [Z]≤ω is a P -ideal if it is an ideal and for every
countable family {Xn}n ⊆ I there is an X ∈ I such that for all n, Xn ⊆∗ X
(where ⊆∗ is inclusion modulo �nite).

De�nition 2.1 (Todor£evi¢, [41])
The P -ideal dichotomy (PID) asserts that for every P -ideal I on [Z]≤ω for

some �xed uncountable Z, one of the following holds:

(i) There is Y uncountable subset of Z such that [Y ]≤ω ⊆ I.

(ii) Z =
⋃

n An with the property that An is orthogonal to I (i.e. X ∩ Y is
�nite for all X ∈ [An]ω and Y ∈ I) for all n.

As we will see below PID is a principle strong enough to rule out many of the
standard consequences of V = L, like the existence of a Souslin tree or the
existence of a square sequence. Due to this latter fact the consistency strength
of this principle is considerable. Nonetheless this principle is consistent with
CH. This shows that the standard pattern to obtain a model of PID can be
undertaken taking into account only a fragment of the class of proper forcing
notions. The current strategy to obtain a model of PID is to organize a countable
support iteration of proper forcings Pα such that at each successor stage α + 1,
for some P -ideal I on [Z]≤ω for which (ii) fails, Pα+1 adds an uncountable
Y ⊆ Z such that [Y ]ω ⊆ I. Todor£evi¢ has shown that these forcing notions are
not only proper, but have the property that any countable support iteration of
such kind of forcings does not add reals1. Some of the nice properties of these
forcing notions will be analyzed in more details in the appendix where we will
give a proof that PID follows from PFA.

1This generalizes a result of Abraham and Todor£evi¢ in [1].
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Recall that (T,<T ) is a tree if <T is a well founded partial order on T such that
for all t0, t1, t2 ∈ T , if t0 ≤T t2 and t1 ≤T t2, then t0 ≤T t1 or t1 ≤T t0. For
any t ∈ T , we let prc(t) be the set {s <T t : s ∈ T} and htT (t) be the ordinal
type of (prc(t), <T ). For any α < |T |+ we let Tα = {t ∈ T : htT (t) = α} and
ht(T ) = supt∈T htT (t).
T is normal if the set of t such s ≤ t has cardinality |T | for every s ∈ T .

Z ⊆ T is an antichain if for every s 6= t ∈ Z neither s <T t, nor t <T s. Z ⊆ T
is a branch if (Z,<T ) is a total order.

De�nition 2.2 A Souslin tree is a normal tree of size ℵ1 with no uncountable
antichains and no uncountable branches.

Theorem 5 (Abraham, Todor£evi¢ [1]) PID implies that there are no Souslin
trees.

Let X be an in�nite set of ordinals and A and B two orthogonal families in
[X]ω. They form a gap if there is no c ∈ [X]ω such that a \ c is �nite for all
a ∈ A and c ∩ b is �nite for all b ∈ B. A (κ, λ)-gap on [X]ω is a gap where A
has size κ and B has size λ.

IfA and B are orthogonal families of size ω1 which form a gap andA is countably
directed (i.e. for all X ∈ [A]ω there is a ∈ A such that d \ a is �nite for all
d ∈ X) the gap is Haussdor� if for all n and for all b ∈ B the set of a ∈ A such
that a ∩ b ⊆ n is �nite.

Classical results are that there are Haussdor� gaps and (b, ω)-gaps on [ω]ω,
where b is the smallest size of an unbounded family in [ω]ω i.e. a family A such
that for all b ∈ [ω]ω there is an a ∈ A such that a \ b is in�nite.

Theorem 6 (Todor£evi¢ [41]) PID implies that there are only Haussdor� gaps
and (κ, ω)-gaps on [ω]ω.

In particular from this result it is possible to show2 that b ≤ ω2

De�nition 2.3 Let κ be an in�nite cardinal. �κ asserts the existence of a
sequence (Cα : α < κ+) with the following properties:

(i) for every limit α, Cα is a closed unbounded subset of α of order type at
most κ,

(ii) if α is a limit point of Cβ, Cβ ∩ α = Cα,

(iii) Cβ+1 = {β}.

De�nition 2.4 Let κ be an in�nite regular cardinal �(κ) asserts the existence
of a sequence (Cα : α < κ) with the following properties:

2See section 29 of [18] pp. 574 − 578 and in particular the proof of theorem 29.8 for this
latter result and some informations on gaps. The part on Haussdor� gaps already appeared
in [1].
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(i) for every limit α, Cα is a closed unbounded subset of α,

(ii) if α is a limit point of Cβ, Cα = Cβ ∩ α,

(iii) there is no club C in κ such that for all α there is β ≥ α such that
C ∩ α ⊆ Cβ,

(iv) Cβ+1 = {β}.

Sequences satisfying de�nitions 2.3 and 2.4 are called square sequences. Clearly
�κ implies �(κ+) and �ω is true as witnessed by any sequence (Cα : α <
ω1) satisfying (i) and (iii) of def. 2.3. Moreover V = L implies �(κ) for
all regular cardinals κ, while the existence of a strongly compact cardinal λ
entails the failure of �(κ) for all regular κ ≥ λ. In fact the existence of square
sequences is compatible with considerably strong large cardinals assumptions
(i.e. hypothesis which contradicts V = L), for example it is possible to have
a model of ZFC in which �κ holds for a measurable cardinal κ. Thus asking
whether the failure of �κ follows from a certain combinatorial principle is a
very useful question to test the consistency strength of this principle. There are
plenty of interesting constructions that can be performed in ZFC assuming that
�κ holds, in particular when κ is a singular cardinal. For example �ℵω entails
the existence of an Aronszjain tree and of a Kurepa tree on ℵω+1. We refer the
interested reader to [43] for a survey of many of these results.

Theorem 7 (Todor£evi¢) PID implies �(κ) fails for every regular κ > ω1.

Other interesting applications of PID by Abraham, Todor£evi¢ and Veli£kovi¢
are outlined in [45], [41] and [1]. I will give below in many details a proof of
theorems 5 and 7. This will give a general idea on how to apply the dichotomy.

2.1 PID implies that there are no Souslin trees

In this section I prove theorem 5. Assume PID and let (T,<T ) be a Souslin
tree. We will reach a contradiction. Since T is Souslin we have that Tα is at
most countable for all α < ω1, since for any α, Tα is an antichain. Thus we
can enumerate Tα as {tαn : n ∈ ω} for all α < ω1. Now we can set for n ∈ ω
and α ∈ ω1, K(n, α) =

⋃
m≤n{t : t ≤T tαm}. In this way we de�ne a matrix

(K(n, β) : n ∈ ω, β ∈ ω1) with the following crucial coherence property:

Claim 2.5 For every n, α < β, there is m such that K(n, α) ⊆ K(m,β) and
{t ∈ K(n, β) : htT (t) ≤ α} ⊆ K(m,α).

Proof: To see this, �x n, α < β and let {s1, · · · , sn} ⊆ Tα be such that for

every i ≤ n, si <T tβi . Now it is enough to take m large enough in order that
{s1, · · · , sn} ⊆ {tαj : j ≤ m} and that for every i ≤ n, there is a j ≤ m such

that tαi <T tβj . �
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We will use this coherence property to show that the ideal I ⊆ [T ]≤ω of X
such that X ∩K(n, β) is �nite for all n and β is a P -ideal. Then we will apply
PID to obtain with some further work that option (i) of the dichotomy gives an
uncountable antichain, while option (ii) can be used to obtain an uncountable
branch trough T . In any case the tree T cannot be Souslin, a contradiction with
our assumption.

Claim 2.6 I is a P -ideal.

Proof: Let {Xn : n ∈ ω} ⊆ I, we need to �nd X ∈ I containing each Xn

modulo �nite. Let α be large enough in order that
⋃

n Xn ⊆
⋃

α Tξ. Let
Xm

n = Xn ∩K(m,α) \K(m− 1, α). Set

X =
⋃
n

⋃
m≥n

Xm
n .

Then it is immediate to check that Xn ⊆∗ X for all n. Moreover

X ∩K(n, α) =
⋃

j≤m≤n

Xm
j

and thus is �nite for all n. Now we can use the coherence properties of the matrix
to conclude that X∩K(n, β) is �nite for all n and for all β. To see this notice that
if β ≤ α we have that for each n there is m such that X∩K(n, β) ⊆ X∩K(m,α)
which is �nite for every m. Now if β > α, we have that X ⊆

⋃
γ≤α Tγ . Now

for every n there is m such that
⋃

γ≤α Tγ ∩ K(n, β) ⊆ K(m,β). Thus we can
conclude that for every n there is an m such that X ∩K(n, β) ⊆ X ∩K(m,α)
which is �nite. This shows that X ∈ I and concludes the proof of the claim. �

Now assume that (i) of PID applies to this I and �nd an uncountable Y ⊆ T
such that [Y ]≤ω ⊆ I. Consider the tree (Y, <T ).

Claim 2.7 ht(Y ) ≤ ω

Proof: Notice that if t ∈ Y , the set At = {s ∈ Y : s <T t} is �nite. If not,
At would be a countable subset of Y which is not in I, since if α = htT (t) and
t = tαn in the enumeration of Tα, we have that At ⊆ K(n, α) and thus At cannot
be in I since it has countable intersection with K(n, α). �

This means that for some n < ω, {t ∈ Y : htY (t) = n} is uncountable. But this
is an uncountable antichain in Y and in fact it is still an antichain also in T .
This is not possible since we supposed T to be Souslin.
To complete our proof we will show that option (ii) for I is also not possible.
For suppose that T =

⋃
l Zl and for each l, [Zl]ω ∩ I = ∅. Then for some l Zl is

uncountable, since T is uncountable. Fix such an l.

Claim 2.8 For each α, there is mα such that Zl ∩
⋃

γ≤α Tγ ⊆ K(mα, α).
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Proof: Suppose not, then we can �nd X ⊆ Zl countable and such that for
some �xed α, X ∩K(m,α) is �nite for all m. Due to the coherence properties
of the matrix exactly as in the proof that I is a P -ideal we can see that X ∈ I
contradicting the de�nition of Zl. �

Now let for any α, mα be such that Zl ⊆ K(mα, α) and �nd an uncountable
W ⊆ ω1 such that mα = m for all m ∈ W . By induction, re�ne W to an
uncountable W0 in order that for each β < α ∈ W0, there is sα ∈ Zl such that
for some j ≤ m, sα ≤T tαj and ht(sα) > ht(sβ). Let U be a uniform ultra�lter
on ω1 (i.e. an ultra�lter with no countable elements) which concentrates on W0.

For each α ∈ W0 and i ≤ m, let W (α, i) = {β ∈ W0 : sα <T tβi }. Let for each α,
iα be such that W (α, iα) ∈ U . Finally let W ∗ ∈ U be such that for all α ∈ W ∗,
iα = i. Now if α < β ∈ W ∗, W (α, i) ∩W (β, i) ∈ U , so there is γ > β, α and in
W (α, i)∩W (β, i). Thus sα, sβ <T tγi . This means that sα <T sβ . Thus we can
conclude that {sα : α ∈ W ∗} is an uncountable branch through T contradicting
the fact that T is Souslin. This concludes the proof of theorem 5. �

2.2 PID implies the failure of square

In this section we will prove theorem 7. We will follow exactly the same pattern
of the previous proof, i.e. we will assume PID and that for some regular κ > ℵ1,
�(κ) holds. We will then reach a contradiction. To this aim we will use the
square sequence �(κ) to de�ne a matrix (K(n, β) : n ∈ ω, β < κ) of subsets
of κ with coherence properties similar to the ones of the matrix considered in
the previous theorem. We will use these coherence properties to show that the
ideal I of X ∈ [κ]≤ω which have �nite intersection with all K(n, β) is a P -
ideal. Finally we will show that both the alternatives provided by PID lead to a
contradiction. To achieve this we are going to analyze some of the ρ-functions
introduced by Todor£evi¢ in order to describe the combinatorics of uncountable
cardinals. The reference text for what follows is [43].

2.2.1 Some properties of the ρ-functions provided by a

square sequence.

Let (Cα : α < κ) be a square sequence (see def. 2.4) De�ne for α ≤ β < κ, the
trace function tr(α, β) and the code of the walk function ρ0(α, β) by induction
as follows:

(i) tr(α, α) = ∅,

(ii) tr(α, β + 1) = tr(α, β) ∪ {β + 1},

(iii) if β is limit, tr(α, β) = {β} ∪ tr(α, min(Cβ \ α)).

(i) ρ0(α, α) = ∅,

(ii) ρ0(α, β + 1) = 〈0〉ˆρ0(α, β),
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(iii) if β is limit, ρ0(α, β) = 〈otp(Cβ ∩ α)〉ˆρ0(α, min(Cβ \ α)).

Now set the number of steps function ρ2(α, β) to be equal to |ρ0(α, β)|. We
refer the reader to sections 6 and 8 of [43] which is our source in what follows.
We �rst remark the following crucial relation between ρ0 and tr:

Claim 2.9 Assume that α ≤ β ≤ γ. Then ρ0(α, γ) = ρ0(β, γ)ˆρ0(α, β) i�
β ∈ tr(α, γ).

Proof: The right to left direction is not di�cult to show. For the other impli-
cation assume that ρ0(α, γ) = ρ0(β, γ)ˆρ0(α, β) and let ξ = min(tr(α, γ) \ β).
If ξ > β, then otp(Cξ ∩ β) = otp(Cξ ∩ α) since ρ0(β, γ) is an initial segment of
ρ0(α, γ) and ξ ∈ tr(β, γ). Thus min(Cξ \β) = min(Cξ \α). But this contradicts
the minimality of ξ. �

We also outline the following simple property of tr:

Claim 2.10 Assume α ≤ β ≤ γ and β ∈ tr(α, γ). Then tr(α, γ) = tr(α, β) ∪
tr(β, γ). �

Let for α < β, Λ(α, β) be the largest limit point of Cβ ∩ α + 1. Now set by
induction on α ≤ β:

(i) F (α, α) = {α},

(ii) F (β, α) = F (α, β) = F (α, min(Cβ\α))∪
⋃
{F (ξ, α) : ξ ∈ [Λ(α, β), α)∩Cβ}

Lemma 2.11 For all α ≤ β ≤ γ:

(a) ρ0(α, β) = ρ0(min(F (β, γ) \ α)), β)ˆρ0(α, min(F (β, γ) \ α))

(b) ρ0(α, γ) = ρ0(min(F (β, γ) \ α)), γ)ˆρ0(α, min(F (β, γ) \ α))

Proof: The proof is by a simultaneous induction and is interesting just when
γ is limit. We will prove (a) for the triple α ≤ β ≤ γ assuming (a) and (b) for
all smaller triples. Then we will prove (b) for the triple α ≤ β ≤ γ assuming (b)
for all smaller triples and (a) for all triples including the triple α, β, γ.

Let λ = Λ(β, γ), γ1 = min(Cγ \ α), α1 = min(F (β, γ) \ α). Pick ξ ∈ {min(Cγ \
β)} ∪ (Cγ ∩ [λ, β)) such that α1 ∈ F (ξ, β) (or α1 ∈ F (β, ξ) if ξ = min(Cγ \ β)).
Then by the inductive hypothesis (b) on the triple α ≤ ξ ≤ β or (a) on the
triple α ≤ β ≤ ξ:

ρ0(α, β) = ρ0(min(F (ξ, β) \ α, β))ˆρ0(α, min(F (ξ, β) \ α)) =
= ρ0(α1, β)ˆρ0(α, α1)

In any case:
ρ0(α, β) = ρ0(α1, β)ˆρ0(α, α1) (2.1)

This proves (a) for the triple α ≤ β ≤ γ assuming (a) and (b) for all smaller
triples.
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We now prove (b) for the triple α ≤ β ≤ γ assuming (b) for all smaller triples and
(a) for all triples including the triple α, β, γ. First assume λ ≥ α. Now F (λ, β) ⊆
F (β, γ). So α2 = min(F (λ, β) \ α) ≥ α1. By our inductive assumptions on (a)
and (b):

ρ0(α, β) = ρ0(min(F (λ, β)\α), β)ˆρ0(α, min(F (λ, β)\α)) = ρ0(α2, β)ˆρ0(α, α2)
(2.2)

ρ0(α, λ) = ρ0(min(F (λ, β)\α), λ)ˆρ0(α, min(F (λ, β)\α)) = ρ0(α2, λ)ˆρ0(α, α2)
(2.3)

By equations (2.1) and (2.2) and appealing to claim 2.9, we get that α1 ∈
tr(α, β) and α2 ∈ tr(α, β). In particular α1 ∈ tr(α, α2), since α2 ≥ α1. We
can conclude that:

ρ0(α, α2) = ρ0(α1, α2)ˆρ0(α, α1) (2.4)

Thus equation (2.3) can be written as:

ρ0(α, λ) = ρ0(α2, λ)ˆρ0(α1, α2)ˆρ0(α, α1) = ρ0(α1, λ)ˆρ0(α, α1) (2.5)

Now Cλ = Cγ ∩λ, thus ρ0(α, λ) = ρ0(α, γ) and ρ0(α1, γ) = ρ0(α1, λ), so we can
conclude that ρ0(α, γ) = ρ0(α1, γ)ˆρ0(α, α1). This proves (b) in the case that
λ ≥ α.

Now assume λ < α, then Λ(α, γ) = Λ(β, γ) = λ. Now assume γ1 = min(Cγ \ β)
or γ1 ∈ [λ, β)∩Cγ . In any case F (γ1, β) ⊆ F (β, γ) and thus γ2 = minF (γ1, β) ≥
α1. Then by the inductive hypothesis (b) on the triple α ≤ γ1 ≤ β or (a) on
the triple α ≤ β ≤ γ1:

ρ0(α, γ1) = ρ0(min(F (γ1, β) \ α), γ1)ˆρ0(α, min(F (γ1, β) \ α)) =
ρ0(γ2, γ1)ˆρ0(α, γ2)

In any case we get that:

ρ0(α, γ1) = ρ0(γ2, γ1)ˆρ0(α, γ2) (2.6)

Since (a) holds for the triple α, β, γ we can appeal to equation (2.1) and claim
2.9 to infer that α1 ∈ tr(α, β). Now applying (b) on the triple α ≤ γ1 ≤ β or
(a) on the triple α ≤ β ≤ γ1:

ρ0(α, β) = ρ0(min(F (β, γ) \ α), β)ˆρ0(α, min(F (β, γ) \ α)) =
= ρ0(γ2, β)ˆρ0(α, γ2)

Appealing again to claim 2.9, we can infer that γ2 ∈ tr(α, β). So since α1 ≤ γ2

and also α1 ∈ tr(α, β) by our previous remark, we get that α1 ∈ tr(α, γ2), and
so we can conclude that:

ρ0(α, γ2) = ρ0(α1, γ2)ˆρ0(α, α1) (2.7)

Finally, by the inductive hypothesis (b) on the triple α1 ≤ γ1 ≤ β or (a) on the
triple α1 ≤ β ≤ γ1:

ρ0(α1, γ1) = ρ0(min(F (γ1, β) \ α1), γ1)ˆρ0(α1,min(F (γ1, β) \ α1)) =
= ρ0(γ2, γ1)ˆρ0(α1, γ2)
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So we obtain that:

ρ0(α1, γ1) = ρ0(γ2, γ1)ˆρ0(α1, γ2) (2.8)

Now combining together equations (2.6), (2.7), (2.8), we get that:

ρ0(α, γ) = 〈otp(Cγ ∩ α)〉ˆρ0(α, γ1) =
= 〈otp(Cγ ∩ α)〉ˆρ0(γ2, γ1)ˆρ0(α, γ2) = 〈otp(Cγ ∩ α)〉ˆρ0(γ2, γ1)ˆρ0(α1, γ2)ˆρ0(α, α1) =
= 〈otp(Cγ ∩ α)〉ˆρ0(α1, γ1)ˆρ0(α, α1) = ρ0(min(F (β, γ) \ α), γ)ˆρ0(α, min(F (β, γ) \ α))

This concludes the proof of lemma 2.11. �

Lemma 2.12 For all α < β < κ+, supξ<α |ρ2(ξ, α)− ρ2(ξ, β)| < ω.

Proof: ρ2(α, β) = |ρ0(α, β)|. Using the previous claim we can conclude that
for all ξ < α, |ρ2(ξ, α) − ρ2(ξ, β)| ≤ max{|ρ2(η, β) − ρ2(η, α)| : η ∈ F (α, β)}.
This is an integer which depends only on α and β. �

Here is another crucial property of the function ρ2:

Theorem 8 Let (Cα : α < κ) be a square sequence and A, B be unbounded
subset of κ on a regular κ. Then for every n there are α ∈ A and β ∈ B such
that ρ2(α, β) > n.

Proof: Let
−→
C = (Cα : α < κ) witness �(κ). We prove the following stronger

statement:

For every A and B unbounded subsets of κ and every n there are
a tail subset A′ of A and an unbounded subset B′ of B such that
ρ2(α, β) > n for all α ∈ A′ and β ∈ B′.

We proceed by induction over n. So we assume the above staement holds for
n−1 and we prove it for n. To this aim, �x A, B arbitrary unbounded subsets of
κ and a continuous ∈-sequence (Mξ : ξ < κ) of submodels of H(κ+) containing
all relevant informations and such that Mξ ∩ κ ∈ κ for all ξ. Now consider the
club C of ξ such that Mξ ∩ κ = ξ and using (iii) of def. 2.4 �nd ξ such that
C ∩ ξ 6⊆ Cη for all η ≥ ξ. Pick β ∈ B \ ξ and η ∈ C ∩ ξ such that η 6∈ Cβ . Then
α0 = sup(Cβ ∩ η) < η. Since β ∈ B \ Mη, Mη models that for all α ∈ A \ α0

there is β(α) ∈ B \ (α+1) such that sup(Cβ(α)∩α) = α0. Thus by elementarity
the latter is true in the universe. Now let A0 = A \ α0 and

D = {min(Cβ(α) \ α) : α ∈ A0}.

They are both unbounded subsets of κ so by our inductive assumptions there is a
tail subset A′ of A0 and an unbounded subset D′ of D such that ρ2(α, γ) > n−1
for all α ∈ A′ and γ ∈ D′. Now let

B′ = {β(α) : min(Cβ(α) \ α) ∈ D′}.
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Then for all β ∈ B′ and α ∈ A′:

ρ0(α, β) = 〈otp(Cβ ∩ α)〉ˆρ0(α, min(Cβ(α) \ α)).

So:
ρ2(α, β) = ρ2(α, min(Cβ(α) \ α)) + 1 > n− 1 + 1 = n.

This concludes the proof. �

2.2.2 Proof of theorem 7

We are now ready to prove theorem 7. We will use ρ2 to de�ne the matrix. Set
for all n ∈ ω and β < κ+, K(n, β) = {α ≤ β : ρ2(α, β) ≤ n}.

Claim 2.13 For every α < β and for every n, there is m such that K(n, α) ⊆
K(m,β) and K(n, β) ∩ α ⊆ K(m,α).

Proof: This follows from lemma 2.12. �

By the same argument of the proof of theorem 5 (in particular see the proof of
claim 2.6), we can conclude that the ideal I ⊆ [κ+]≤ω of X which have �nite
intersection with all K(n, β) is a P -ideal.

Alternative (i) of PID cannot hold for I since, if Z ⊆ κ+ is of size ℵ1 and
α > supZ, then there is n such that Z ∩ K(n, α) is uncountable. Thus any
countable X ⊆ Z ∩K(n, α) is not in I.
We show that alternative (ii) of PID is also not possible. Assume that κ =

⋃
n An

with each An orthogonal to I. Then there is some n such that An is unbounded
in κ.

Claim 2.14 For all β there is mβ such that An ∩ β ⊆ K(mβ , β).

Proof: Suppose not and �nd α such that for all m, An 6⊆ K(m,α). In particular
take Y to be a countable subset of α with �nite intersection with all K(m,α).
Then Y ∈ I by the same argument of claims 2.6 and 2.8. Thus [An]ω ∩ I 6= ∅
which is a contradiction. �

Pick A unbounded subset of An such that mβ = m for all β ∈ A. This means
that ρ2(α, β) ≤ m for all α < β ∈ A. However this contradicts theorem 8. The
proof of theorem 7 is now completed. �
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Chapter 3

The mapping re�ection

principle

Almost all known applications of MM which do not follow from PFA are a con-
sequence of some form of re�ection for stationary sets. These types of re�ection
principles are the fundamental source in order to obtain proofs of all cardinal
arithmetic result that follows from MM. In particular SCH and the fact that
c ≤ ω2 are a consequence of many of the known re�ection principles which holds
under MM. However up to a very recent time there was no such kind of principle
which could be derived from PFA alone. This has been the main di�culty in the
search for a proof that PFA implies c = ω2, a result which has been obtained by
Todor£evi¢ and Veli£kovi¢ appealing to combinatorial arguments which are not
dissimilar from the P -ideal dichotomy. Later on this has also been the crucial
obstacle in the search for a proof of SCH from PFA.
In 2003 Moore [32] has found an interesting form of re�ection which can be
derived from PFA, the mapping re�ection principle MRP. He has then used this
principle to show that BPFA implies that c = ℵ2 and also that this principle
is strong enough to entail the non-existence of square sequences. He has also
shown in [34] that MRP could be a useful tool in the search of a proof of SCH
from PFA. I �rst obtained my proof of this latter theorem elaborating from [34].
Many other interesting consequences of this re�ection principle have been found
by Moore and others. A complete presentation of this subject will be found in
[5]

De�nition 3.1 Let θ be a regular cardinal, let X be uncountable, and let M ≺
H(θ) be countable such that [X]ω ∈ M . A subset Σ of [X]ω is M -stationary if
for all E ∈ M such that E ⊆ [X]ω is club, Σ ∩ E ∩M 6= ∅.

Recall that the Ellentuck topology on [X]ω is obtained by declaring a set open
if it is the union of sets of the form

[x,N ] = {Y ∈ [X]ω : x ⊆ Y ⊆ N}
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where N ∈ [X]ω and x ⊆ N is �nite.

De�nition 3.2 Σ is an open stationary set mapping if there is an uncountable
set X and a regular cardinal θ such that [X]ω ∈ H(θ), the domain of Σ is a club
in [H(θ)]ω of countable elementary submodels M such that X ∈ M and for all
M , Σ(M) ⊆ [X]ω is open in the Ellentuck topology on [X]ω and M -stationary.

The mapping re�ection principle (MRP) asserts that:

If Σ is an open stationary set mapping, there is a continuous ∈-chain
~N = (Nξ : ξ < ω1) of elements in the domain of Σ such that for all
limit ordinals 0 < ξ < ω1 there is ν < ξ such that Nη ∩X ∈ Σ(Nξ)
for all η such that ν < η < ξ.

If (Nξ : ξ < ω1) satis�es the conclusion of MRP for Σ then it is said to be a
re�ecting sequence for Σ.
We will analyze in some detail the following two theorems to give an idea of
how to apply1MRP.

Theorem 9 (Moore [32]) Assume MRP. Then there is a well ordering of
P (ω1)/NSω1 in type ℵ2 de�nable in H(ω2) by a ∆2-formula with parameter
a subset of ω1. In particular MRP implies that 2ℵ1 = ℵ2.

A simple argument will then yield that BPFA |= c = 2ω1 = ω2, while a detailed
analysis of the proof2 of this theorem will show that also MRP implies that
c = ω2.

Theorem 10 (Moore [32]) Assume MRP. Then �(κ) fails for all regular κ ≥
ℵ2.

Other interesting consequences of MRP are the following:

Theorem 11 (Caicedo, Veli£kovi¢ [6]) Assume MRP. Then there is a well-
ordering of the reals which is ∆1-de�nable in H(ℵ2) using as parameter a subset
of ℵ1.

Elaborating some more on their argument, they can obtain as a corollary the
following:

Theorem 12 (Caicedo, Veli£kovi¢ [6]) Assume M ⊆ V are models of BPFA
with the same ω2 then P (ω1) ⊆ M .

A folklore problem in combinatorial set theory for the last twenty years has
been the consistency of the existence of a �ve element basis for the uncountable
linear orders, i.e. the statement that there are �ve uncountable linear orders
such that at least one of them embeds in any other uncountable linear order.

1P (ω1)/NSω1 denotes the quotient of P (ω1) by the ideal of non-stationary subsets of ω1.
2The interested reader is referred to [32].
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Theorem 13 (Moore [33]) Assume BPFA and MRP. Then there is a �ve ele-
ment basis for the uncountable linear orders.

De�nition 3.3 A Kurepa tree is a tree of height ℵ1 with countable levels and
at least ℵ2-many branches.

Theorem 14 (König, Larson, Moore, Veli£kovi¢ [20]) MRP implies that there
are no Kurepa trees.

We now turn to the proofs of theorems 9 and 10.

3.1 MRP implies that 2ℵ0 = 2ℵ1 = ℵ2

We will just prove that assuming MRP there is a �rst order de�nable injection
of P (ω1)/NSω1 into ω2. We will also explain why this is enough to obtain that
2ℵ1 = ℵ2. A proof of the other parts of the theorem can be found in [32].

Fact 3.4 |P (ω1)/NSω1 | = |P (ω1)|

Proof: Clearly |P (ω1)/NSω1 | ≤ |P (ω1)|. To see the other direction �x {Aξ :
ξ < ω1} partition of ω1 in disjoint stationary sets. Now let

φ : P (ω1) → P (ω1)/NSω1

be de�ned as follows:
φ(A) = [

⋃
{Aξ : ξ ∈ A}]

It is immediate to check that φ is injective. So |P (ω1)/NSω1 | ≥ |P (ω1)| �

We now turn to the interesting part of the theorem. Fix {Cη : η < ω1} such
that for all limit η, Cη is a co�nal sequence in η of type ω. We show that MRP
allows to de�ne an injection of P (ω1)/NSω1 into ω2 de�nable in H(ω2) by the
parameter {Cη : η < ω1}.
Let Y ⊆ X be countable sets and πX be the transitive collapse of X. Set
αX = sup(X ∩ ω1) and βX = sup(X ∩ ω2), n1(Y,X) = |αY ∩CαX

|, n2(Y, X) =
|otp(βY ∩X) ∩ Cotp(βX∩X)|.
Now let A be a subset of ω1 and [A] denote its equivalence class in P (ω1)/NSω1 .
We say that δ codes A if δ =

⋃
ω1

Xξ with the property that:

(i) Xξ is countable for all ξ,

(ii) if ξ < η, Xξ ⊆ Xη

(iii) Xη =
⋃

ξ<η Xξ for all limit η,

(iv) for all η such that Xη ∩ ω1 = η, η ∈ A if there is γ < η such that
n1(Xξ, Xη) ≤ n2(Xξ, Xη) for all ξ ∈ (γ, η) and η 6∈ A if there is γ < η
such that n1(Xξ, Xη) > n2(Xξ, Xη) for all ξ ∈ (γ, η).
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Claim 3.5 If δ codes A and B, then [A] = [B].

Proof: Let {Xξ : ξ < ω1} witness that δ codes A and {Yξ : ξ < ω1} witness
that δ codes B. Find C club in ω1 such that for all ξ ∈ C Xξ = Yξ and
Xξ ∩ ω1 = ξ. Then for all η ∈ C, η ∈ A, if for some γ < η and for all ξ ∈ (γ, η),
n1(Xξ, Xη) ≤ n2(Xξ, Xη), if η ∈ B. η 6∈ A, if for some γ < η and for all
ξ ∈ (γ, η), n1(Xξ, Xη) > n2(Xξ, Xη), if η 6∈ B. So A∩C = B∩C, i.e. [A] = [B].
�

Thus φ : P (ω1)/NSω1 → ω2 which sends [A] to the least δ such that δ codes
A is injective on its domain and is de�nable by a �rst order formula3 in H(ω2)
with parameter the sequence {Cη : η < ω1}. We will complete the proof of the
theorem once we show the following:

Lemma 3.6 Assume MRP. Then for all A ⊆ ω1 there is δ which codes A.

Proof: Let M ≺ H(θ) be a countable model containing all relevant information.
Let Σ0(M) be the set of Y ⊆ M ∩ ω2 such that n1(Y,M) ≤ n2(Y, M) < ω and
Σ1(M) be the set of Y ⊆ M ∩ ω2 such that ω > n1(Y,M) > n2(Y,M).
Let ΣA(M) = Σ0(M) if αM ∈ A and ΣA(M) = Σ1(M) if αM 6∈ A.

We will show that ΣA(M) is open and M -stationary for all the relevant M .
Assume that this is the case and let {Mη : η < ω1} be a re�ecting sequence for
ΣA and let δ =

⋃
η Mη ∩ ω2. It is immediate to check that {Mη ∩ ω2 : η < ω1}

witnesses that δ codes A. So the proof of the lemma will be completed once we
show the following claim:

Claim 3.7 Σi(M) is open and M -stationary for i = 0, 1.

Proof: First we show that both Σi(M) are open subsets of [ω2]ω. So assume
that X ∈ Σi(M). Let γ = max(CαM

∩ αX) and η = max(otp(βX ∩ M) ∩
Cotp(βM∩M)). Then γ < αX and η < otp(βX ∩ M). So there are α0 ∈
X∩(γ, αX ] and ν ∈ (η, otp(βX∩M)]∩πM [X]. Let β0 = π−1

M (ν). It is immediate
to check that α0 ≤ αY ≤ αX and β0 ≤ βY ≤ βX for all Y ∈ [{α0, β0}, X]. So
n1(Y, M) = n1(X, M) and n2(Y, M) = n2(X, M) for all Y ∈ [{α0, β0}, X]. Thus
Y ∈ Σi(M) i� X ∈ Σi(M).
We turn to the proof that both Σi(M) are M -stationary sets. We �rst prove
that Σ0(M) is M -stationary. So let f : [ω2]<ω → ω2 be in M . Let for all α ∈ ω1

Eα = {sup(X) : X is countable and f -closed &αX = α}

Then there is α such that Eα is unbounded in ℵ2. Otherwise if δ = supω1
(Eα) <

ω2, there is X f -closed and countable such that δ + 1 ∈ X. Then sup(X) >
δ which is a contradiction. Moreover by elementarity there is α ∈ M such
that Eα is unbounded. Now let n1(α, αM ) = m and �nd β ∈ M such that
|otp(M ∩ β) ∩ Cotp(M∩β)| = l > m. Find X ∈ M countable and such that

3A closer inspection of the formula will show that it is a ∆2-formula.
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αX = α and βX > β. Then n1(X, M) = m < l ≤ n2(X, M) so X is f -closed
and X ∈ Σ0(M).
We now prove that Σ1(M) is M -stationary. So let f : [ω2]<ω → ω2 be in M .
Let for all β ∈ ω2:

Fβ = {αX : X is countable and f -closed &βX = β}.

We prove that there is β < ω2 such that Fβ is unbounded in ℵ1. Otherwise
there is a stationary set B of β such that sup(Fβ) = α for all β ∈ B. Now
let C = {δ : f [[δ]<ω] ⊆ δ}. Find δ ∈ C ∩ B and let X be the f -closure of
{α + 1} ∪ Z, where Z is a co�nal countable subset of δ. Then sup(X) = β and
αX > α. This contradicts the fact that α = sup(Fδ). By elementarity there is
β ∈ M such that Fβ is unbounded in ω1. Now let n2(β ∩M,M) = m and �nd
α ∈ M such that |α ∩ CαM

| = l > m. Find X ∈ M countable and such that
βX = β and αX > α. Then n1(X, M) ≥ n1(α, M) = l > m = n2(X, M). So
X ∈ Σ1(M). This concludes the proof of the claim. �

The lemma and the part of the theorem relevant for our purposes are now
proved. �

3.2 MRP implies that square fails

Assume MRP and towards a contradiction let {Cα : α < κ} witness �(κ) for
a regular κ > ω1 (see de�nition 2.4). Let M ≺ H(θ) be a countable model
containing all relevant information and for all countable X, let δX = sup(X∩κ).
Set Σ(M) to be the family of all X ⊆ M such that δX is not a limit point of
CδM

. We will show that ΣM is open and M -stationary. Assume this is the
case and apply MRP to obtain a re�ecting sequence {Mξ : ξ < ω1} for Σ. Let
δ = supω1

δMξ
. Find S stationary in ω1 such that for some γ and for all η ∈ S,

Mξ ∩ κ ∈ Σ(Mη) for all ξ ∈ (γ, η). Finally �nd η < β ∈ S such that δMη and
δMβ

are limit point of Cδ. Then Cδ ∩ δMη = CδMη
and Cδ ∩ δMβ

= CδMβ
. So

δMη
is a limit point of CδMβ

. However Mη ∩ κ ∈ Σ(Mβ) since η ∈ (γ, β), i.e.
δMη

is not a limit point of CδMβ
, a contradiction.

We are left with the proof that Σ(M) is open and M stationary. To see that
Σ(M) is open let X ∈ Σ(M). Since δX is not a limit point of CδM

and CδM

is closed in δM , max(CδM
∩ δX) = γ < δX . Now pick ξ ∈ X ∩ (γ, δX ]. Then

[{ξ}, X] ⊆ Σ(M) since any Y ∈ [{ξ}, X] is such that γ < δY ≤ δX so δY is not
a limit point of CδM

.

To see that Σ(M) is M -stationary, suppose that this is not the case and let
f : [κ]<ω → κ be a function in M such that for all X which are f -closed
X 6∈ Σ(M). Let C = {δ : f [[δ]<ω] ⊆ δ} ∈ M . Now for all α ∈ C ∩ M of
countable co�nality pick X ∈ M , countable, f -closed and such that δX = α.
Since X 6∈ Σ(M), α = δX is a limit point of CδM

. So CδM
∩ α = Cα for all

α ∈ C ∩ M of countable co�nality. In particular we can conclude that for all
α < β ∈ C ∩ M and of countable co�nality Cα = Cβ ∩ α. So M models that
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for all α < β ∈ C of countable co�nality, Cα = Cβ ∩ α. By elementarity of
M this is true in H(θ). Set D =

⋃
{C ∩ Cα : α ∈ C ∩ Sω

κ }. Then D is a
club in κ since if {ξη : η < δ} ⊆ D with δ < κ and {αη : η < δ} ⊆ C ∩ Sω

κ

witnesses this, we can pick α > sup{αη : η < δ} in C ∩ Sω
κ . Then since

Cα ∩ αη = Cαη for all η we get {ξη : η < δ} ⊆ C ∩ Cα which is a closed set
and thus sup{ξη : η < δ} ∈ C ∩ Cα ⊆ D. Now D is a club which contradicts
property (iii) of def. 2.4. This is the desired contradiction. Theorem 10 is now
proved. �



Chapter 4

A covering property

In this section we introduce the main original concept of this thesis. In fact a
careful analysis of Solovay's proof that �(κ) fails for all regular κ ≥ λ, where λ
is a strongly compact cardinal, lead to the isolation of a covering property CP
which one side is strong enough to entail both SCH and the failure of square,
on the other side is weak enough to be a consequence either of the existence of
a strongly compact cardinal, or of PID or of MRP.

De�nition 4.1 For any cardinal κ, D = (K(n, β) : n < ω, β ∈ κ) is a covering
matrix for κ if:

(i) For all α, α + 1 =
⋃

n K(n, α),

(ii) for all α and n, |K(n, α)| < κ.

(iii) for all α, K(n, α) ⊆ K(m,α) for n < m,

(iv) for all α < β and for all m there is n such that K(m,α) ⊆ K(n, β).

(v) for all X ∈ [κ]ω there is γX < κ such that for all β and n there is m such
that K(n, β) ∩X ⊆ K(m, γX)

βD ≤ κ is the least such that for all n and β, otp(K(n, β)) < βD

The matrices D that we considered in the other applications of the PID (see
theorems 7 and 5) satis�ed (i), (ii), (iii), (iv) and a much stronger form of (v).
In fact they satis�ed the requirement that for all α < β and for all n, there is
m such that K(n, β) ∩ α ⊆ K(m,α). However we will see below that (v) is a
requirement on D which still allows for a proof that the family of X ∈ [κ]≤ω

with �nite intersections with all K(n, β) ∈ D is a P -ideal. The proof that PFA
implies SCH will be a fruitful application of this fact.

Lemma 4.2 Assume that κ is a singular cardinal of countable co�nality. Then
there is a covering matrix C for κ+ with βC = κ.
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Proof: The lemma holds without any cardinal arithmetic assumption and in
fact the matrices we are going to de�ne satisfy (i),· · · ,(iii) and a stronger co-
herence property than what is required by (iv) and (v) of the above de�nition.
They will satisfy the following properties (iv*) and (v*) from which (iv) and (v)
immediately follow1:

(iv*) For all α < β there is n such that K(m,α) ⊆ K(m,β) for all m ≥ n.

(v*) For all X ∈ [κ+]ω there is γX < κ such that for all β ≥ γX , there is n such
that K(m,β) ∩X = K(m, γX) ∩X for all m ≥ n.

We �rst �x some notation. Let φη : κ → η be a surjection for all η < κ+.
Fix also {κn : n < ω} increasing sequence of regular cardinals co�nal in κ with
κ0 ≥ ℵ1. We prove the lemma �rst assuming that κ > c since in this case the
proof is simpler2. In this case let

K(n, β) =
⋃
{K(n, γ) : γ ∈ φβ [κn]}.

It is immediate to check that D = (K(n, β) : n ∈ ω, β < κ+) satis�es (i),
(ii), (iii) of de�nition 4.1, property (iv*) and that βD = κ. To prove (v*), let
X ∈ [κ+]ω be arbitrary. Now since c < κ+ and there are at most c many subsets
of X, there is a stationary subset S of κ+ and a �xed decomposition of X as
the increasing union of sets Xn such that X ∩K(n, α) = Xn for all α in S and
for all n. Now properties (i)· · · (iv) of the matrix guarantees that this property
of S is enough to get (v*) for X with γX = min(S).
We now prove the lemma without assuming c < κ. Thus let S be a stationary
set of points of co�nality ω1 in I[κ+] and3 {aα : α < κ+} ⊆ [κ+]<κ witness
that S ∈ I[κ+], i.e. such that for all α ∈ S, otp(aα) = cof(α) = ω1 and for all
γ < α, aα ∩ γ ∈ {aξ : ξ < α}. Assume that (K(n, α) : n ∈ ω, α < β) have been
de�ned for all n and α < β. If β 6∈ S, let φβ : κ → β be a surjection and set:

K(n, β) = {β} ∪ φβ [κn] ∪
⋃
{K(n, γ) : γ ∈ φβ [κn]}

∪
⋃
{aη : η ∈ φβ [κn] & |aη| ≤ κn}

∪
⋃
{K(n, γ) : γ ∈ aη & η ∈ φβ [κn] & |aη| ≤ κn}.

1We decided to use the weaker (iv) and (v) in the de�nition of a covering matrix in order
to include among these matrices the one produced by a square sequence using the ρ2-function
(see section 2.2), since this matrix satis�es (iv) and (v), but neither (iv*) nor (v*). This is
made in order to have a simple criterion to evaluate the consistency strength of the covering
property CP that we are going to introduce below. It remains open whether the restriction of
the covering property to matrices satisfying (i),. . .,(iii) and (iv*), (v*) has any large cardinal
strength at all. We felt free to adopt this weakening, since properties (i),. . .,(v) on a matrix
are the minimal requirements we isolated up to now in order to run all the applications of the
PID that we know of.

2The only relevant application of the existence of such matrices D that we have found up
to now is the proof of SCH from PFA. In this situation c = ℵ2. So the assumption c < κ is
trivially satis�ed.

3All the properties of this ideal that will be used can be found in section 1.4. The reference
text is [36].
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If β ∈ S set:

K(n, β) = {β} ∪
⋃
{K(n, α) : α ∈ aβ}.

We show that D = {K(n, β : n ∈ ω, β ∈ κ+} is a covering matrix with β = κ.
First of all, it is easy to show by induction on α, that |K(n, α)| ≤ κn for all n.
Now we prove by induction on α < β that:

(a) If α ∈ K(n, β), then K(n, α) ⊆ K(n, β).

First suppose β 6∈ S. If α ∈ K(n, β), then:

• α ∈ φβ [κn]. In this case K(n, α) ⊆ K(n, β).

• For some γ ∈ φβ [κn], α ∈ K(n, γ). In this case we can apply the inductive
hypothesis on α < γ to get that K(n, α) ⊆ K(n, γ) ⊆ K(n, β).

• There is η ∈ φβ [κn] such that |aη| ≤ κn and α ∈ aη. By de�nition of
K(n, β), K(n, α) ⊆ K(n, β).

• There is η ∈ φβ [κn] and γ ∈ aη, such that |aη| ≤ κn and α ∈ K(n, γ).
In this case we can apply the inductive assumption to get that K(n, α) ⊆
K(n, γ) ⊆ {K(n, ξ) : ξ ∈ aη} ⊆ K(n, β).

Now suppose β ∈ S. In this case if α ∈ K(n, β), either α ∈ aβ and in this
case K(n, α) ⊆ K(n, β) by de�nition of K(n, β) or there is γ ∈ aβ such that
α ∈ K(n, γ). Now we can apply the inductive hypothesis on α < γ to get that
K(n, α) ⊆ K(n, γ) ⊆ K(n, β), so we are done once again. Thus D satis�es (i),
(ii), (iii), (iv*) and βD = κ.

We now show that D satis�es also (v*). So �x X ∈ [κ+]ω. For any β ∈
S \ sup(X), we have that

K(n, β) =
⋃
{K(n, η) : η ∈ aβ}.

Since β ∈ S has uncountable co�nality, there is ξ < β such that

K(n, β) ∩X ⊆
⋃
{K(n, η) : η ∈ aβ ∩ ξ}.

Since β ∈ S there is η < β such that aβ ∩ ξ = aη. Now pick γβ ∈ (η, β) and not
in S. Then aη ⊆ K(m, γβ) for eventually all m. Now for all such m and for all
ξ ∈ aη, K(m, ξ) ⊆ K(m, γβ), from which it follows that for eventually all m:

K(m,β) ∩X ⊆
⋃
{K(m, ξ) : ξ ∈ aη} ⊆ K(m, γβ).

Find A stationary subset of S such that for all β ∈ A, γβ = γX . Now let ξ be
any ordinal below κ+ and let β ≥ ξ be in A. If ξ ∈ K(n, β) then by (a) above
for all m ≥ n, K(m, ξ) ⊆ K(m,β). Now for eventually all m, K(m,β) ∩ X ⊆
K(m, γX). We can conclude that for eventually all m, K(m, ξ)∩X ⊆ K(m,β)∩
X ⊆ K(m, γX) ∩ X. However if γX ∈ K(l, β) the inclusion K(m, γX) ∩ X ⊆
K(m, ξ)∩X for all m ≥ l. Thus for eventually all m, K(m, ξ)∩X = K(m, γX)∩
X. Since X is arbitrary, this shows that D satis�es also (v*) and concludes the
proof of the lemma. �
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De�nition 4.3 CP(κ): κ has the covering property if for every D covering
matrix for κ there is an unbounded subset A of κ such that [A]ω is covered by
D. CP is the statement that CP(κ) holds for all regular κ > c.

Fact 4.4 Assume CP(κ+) for all singular κ of countable co�nality. Then λℵ0 =
λ, for every λ ≥ 2ℵ0 of uncountable co�nality.

Proof: By induction. The base case is trivial. If λ = κ+ with cof(κ) > ω,
then λℵ0 = λ · κℵ0 = λ · κ = λ, by the inductive hypothesis on κ. If λ is a limit
cardinal and cof(λ) > ω then λℵ0 = sup{µℵ0 : µ < λ}, so the result also follows
by the inductive hypothesis. Thus, the only interesting case is when λ = κ+,
with κ singular of countable co�nality. In this case we will show, using CP, that
(κ+)ℵ0 = κ+. To this aim let D be a covering matrix for κ+ with βD = κ.
Remark that by our inductive assumptions, since every K(n, β) has order type
less than κ, |[K(n, β)]ω| has size less than κ. So

⋃
{[K(n, β)]ω : n < ω &β ∈ κ+}

has size κ+. Use CP to �nd A ⊆ κ+ unbounded in κ+, such that [A]ω is covered
by D. Then [A]ω ⊆

⋃
{[K(n, β)]ω : n < ω &β ∈ κ+}, from which the conclusion

follows. �

The following theorems motivate our attention for this property:

Theorem 15 Assume λ is strongly compact. Then CP(κ) holds for all regular
κ ≥ λ.

Theorem 16 Assume PID. Then CP holds.

On the other hand MRP allows us to infer a slightly weaker conclusion then the
one of the previous theorems4.

Theorem 17 Assume MRP and let D be a covering matrix for κ such that
K(n, β) is a closed set of ordinals for all K(n, β). Then there is A unbounded
in κ such that [A]ω is covered by D.

In particular we obtain:

Corollary 1 PFA implies SCH.

Proof: PFA implies PID and PID implies CP. In particular PFA implies that
κω = κ for all regular κ ≥ c. By Silver's theorem the least singular κ > 2cofκ

such that κcofκ > κ+ has countable co�nality. Now assume PFA and let κ have
countable co�nality. By fact 4.4, κcof(κ) ≤ (κ+)ω = κ+. Thus assuming PFA
there cannot be a singular cardinal of countable co�nality which violates SCH.
Combining this fact with Silver's result we get that SCH holds under PFA. �

Before proving all the above theorems we analyze in more details the e�ects of
CP.

4Moore has �rst noticed that a similar covering property followed from MRP reading a
draft of [46].
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4.1 Some simple consequences of CP(κ)

Fact 4.5 Let D = {K(n, β) : n ∈ ω, β < κ} be a covering matrix on a regular
κ > c, λ < κ have uncountable co�nality and A be an unbounded subset of κ.
The following are equivalent:

(i) [A]ω is covered by D.

(ii) [A]λ is covered by D.

Proof: (ii) implies (i) is evident. To prove the other direction, assume (i)
and let Z ⊆ A have size λ. We need to �nd n, β such that Z ⊆ K(n, β).
For X ∈ [Z]ω let by (i) nX , βX be such that X ⊆ K(nX , βX). By fact 4.4,
λω = λ + c < κ. For this reason β = supX∈[Z]ω βX < κ. Now by property (iii)
of D, we have that for all X ∈ [Z]ω, X ⊆ K(mX , β) for some mX . Let Cm be
the set of X such that mX = m. Now notice that for at least one m, Cm must
be unbounded, otherwise [Z]ω would be a countable union of bounded subsets
which is not possible since Z is uncountable. Then Z ⊆ K(m,β), since every
α ∈ Z is in some X ∈ Cm because Cm is unbounded. This completes the proof
of the fact. �

If we restrict ourselves to ℵω we do not have to make any assumption on the
size of c to obtain a similar conclusion.

Fact 4.6 Let D = {K(n, β) : n ∈ ω, β < κ} be a covering matrix on a regular
κ ≤ ℵω+1, and A be an unbounded subset of κ. The following are equivalent:

(i) [A]ω is covered by D.

(ii) [A]λ is covered by D for all regular λ < κ.

Proof: We just need to show that (i) implies (ii). So let κ = ℵj with j < ω
or j = ω + 1. We proceed by induction on m < j − 1 to show that [A]ℵm+1 is
covered by D. If X is any subset of A of size ℵm+1, let X =

⋃
{Xη : η < ℵm+1}

with each Xη of size ℵm and for all η < ξ, Xη ⊆ Xξ. Then by our inductive
assumptions for each η there are l and γη < ℵn such that Xη ⊆ K(l, γη). Let
γ = supℵm+1

γη. Then γ < ℵj . Find l such that for an unbounded S ⊆ ℵm+1,
Xη ⊆ K(l, γ) for all η ∈ S. Then X ⊆ K(l, γ). �

A covering matrix D for κ+ with βD = κ is an object simple to de�ne when
κ has countable co�nality. If κ ≥ ω1 does not have countable co�nality the
existence of a covering matrix D for κ+ with βD < κ+ is not compatible with
PFA. This is a simple consequence of the above facts:

Fact 4.7 Assume κ has uncountable co�nality, CP(κ+) and that either κ ≥ c
or κ < ℵω. Then there is no covering matrix D on κ+ with βD < κ+.

Proof: Assume not and let D be a covering matrix for κ+ with βD < κ+. By
CP(κ+) there should be an A unbounded in κ+ such that [A]ω is covered by D.
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Appealing to fact 4.5 if κ ≥ c, or to fact 4.6 if κ < ℵω we can conclude in any case
that [A]κ is covered by D. Take β large enough in order that otp(A∩ β) > βD.
Since A ∩ β has size at most κ there are n, γ such that A ∩ β ⊆ K(n, γ). Thus
βD < otp(A ∩ β) ≤ otpK(n, β) < βD a contradiction. �

Fact 4.8 Assume κ is regular and either κ > c or κ < ℵω. Then CP(κ) implies
that �(κ) fails.

Proof: This is so because assuming �(κ), the matrixD, whose entries K(n, β) =
{α < β : ρ2(α, β) ≤ n} are de�ned using the square sequence, is a covering ma-
trix for κ, however it has a much stronger coherence property: for every α < β
and n there is m such that K(n, α) ⊆ K(m,β) and K(n, β) ∩ α ⊆ K(m,α).
Using CP(D) �nd A unbounded in κ and such that [A]ω is covered by D. Using
this coherence property of D one gets that for all β ∈ A, A ∩ β ⊆ K(mβ , β) for
some mβ . Thus one can re�ne A to an unbounded B such that for a �xed m,
B ∩ β ⊆ K(m,β) for all β ∈ B. This contradicts theorem 8. �

The main di�culty towards a proof that PFA implies SCH has been the fact
that all standard principles of re�ection for stationary sets do not hold for PFA.
In particular PFA is compatible with the existence on ℵ2 of a never re�ecting
stationary subset of Sω

ℵ2
. However the following form of re�ection holds:

Fact 4.9 Assume CP and let κ > c or ℵ1 < κ < ℵω be regular and D be a
covering matrix for κ with all K(n, β) closed. Let λ < κ be a regular cardinal
and let (Sη : η < λ) be an arbitrary family of stationary subsets of S≤λ

κ . Then
there exist n and β such that Sη ∩K(n, β) is non-empty for all η < λ.

Proof: By CP(κ) and facts 4.5 and 4.6, there is X unbounded in κ such that
[X]λ is covered by D. Since K(n, β) is closed for all n and β, we have that
[X ∩ S≤λ

κ ]λ is covered by D. To see this, let Z be in this latter set and �nd
Y ⊆ X of size λ such that Z ⊆ Y . Now �nd n and β such that Y ⊆ K(n, β).
Since K(n, β) is closed, Z ⊆ Y ⊆ K(n, β).
Now pick M ≺ H(Θ) with Θ large enough such that |M | = λ ⊆ M and
λ, X, (Sη : η < λ) ∈ M . Then Sη ∩ X ∩ S≤λ

κ is non-empty for all η. By
elementarity, M sees this and so M∩Sη∩X∩S≤λ

κ is non-empty for all η. However
M ∩X ∩S≤λ

κ has size λ so there are n and β such that M ∩X ∩S≤λ
κ ⊆ K(n, β).

So Sη ∩K(n, β) is non-empty for all η. �

4.2 CP holds above a strongly compact cardinal

We will need the following trivial consequence of the existence of a strongly
compact cardinal:

Lemma 4.10 Assume λ is strongly compact. Then for every regular κ ≥ λ,
there is U , λ-complete ultra�lter on κ which concentrates on S<λ

κ .
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Proof: Assume λ is strongly compact and κ ≥ λ is regular. By de�nition
of λ there is a λ-complete ultra�lter W on [κ]<λ such that for all X ∈ [κ]<λ,
{Y ∈ [κ]<λ : X ⊆ Y } ∈ W. Set U to be the family of A ⊆ κ such that
{X ∈ [κ]<λ : sup(X ∩α) = α} ∈ W for all α ∈ A. It is immediate to check that
U is a λ-complete ultra�lter which concentrates on S<λ

κ . �

Now let D = (K(n, β) : n ∈ ω, β ∈ κ) be a covering matrix for κ. Let Aγ
n =

{β > γ : γ ∈ K(n, β)} and An = {γ ∈ S<λ
κ : Aγ

n ∈ U}. By the λ-completeness of
U , for every γ ∈ S<λ

κ , there is a least n such that Aγ
n ∈ U . Thus

⋃
n An = S<λ

κ .
So there is n such that An ∈ U . In particular An is unbounded. Now let X be
a countable subset of An. Then Aγ

n ∈ U for all γ ∈ X. Since |X| = ℵ0 < λ,⋂
X Aγ

n ∈ U and thus is non-empty. Pick β in this latter set. Then X ⊆ K(n, β).
Since X is an arbitrary countable subset of An, we conclude that [An]ω is covered
by D. This concludes the proof of theorem 15. �

4.3 PID implies SCH

We turn to the proof of theorem 16. As we will see below a model of the
PID retains enough properties of the supercompact cardinals from which it is
obtained in order that a variation of the above argument can be run also in this
context. We break the proof of theorem 16 in two parts. Assume κ is regular
and let D = (K(n, α) : n ∈ ω, β < κ) be a covering matrix on κ. Let I be the
family of X ∈ [A]ω such that for all α ∈ A and for all n, X ∩K(n, α) is �nite.

Claim 4.11 I is a P -ideal.

Proof: Let {Xn : n ∈ ω} ⊆ I. Let Y =
⋃

n Xn. Let γY witness (v) for D
relative to Y . Now since for every n, m, Xn ∩K(m, γY ) is �nite, let X(n, m) be
the �nite set

Xn ∩K(m, γY ) \K(m− 1, γY )

and let:
X =

⋃
n

⋃
j≥n

X(n, j).

Notice that Xn =
⋃

j X(n, j) and
⋃

j≥n X(n, j) ⊆ X, so we have that Xn ⊆∗ X.
Moreover X ∩K(n, γY ) =

⋃
j≤i≤n X(j, i), so it is �nite. We claim that X ∈ I.

If not there would be some β and some l such that X ∩K(l, β) is in�nite. Now
X ∩ K(l, β) ⊆ Y ∩ K(l, β) ⊆ K(m, γY ) for some m. Thus we would get that
X ∩K(m, γY ) is in�nite for some m contradicting the very de�nition of X. �

Now remark that if Z ⊆ κ is any set of ordinals of size ℵ1 and α = sup(Z), there
must be an n such that Z ∩K(n, α) is uncountable. This means that I 6⊆ [Z]ω,
since any countable subset of Z ∩K(n, α) is not in I. This forbids I to satisfy
the �rst alternative of the P -ideal dichotomy. So the second possibility must be
the case, i.e. we can split κ in countably many sets An such that κ =

⋃
n An

and for each n, [An]ω ∩ I = ∅.
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Claim 4.12 For every n, [An]ω is covered by D.

Proof: Assume that this is not the case and let X ∈ [An]ω be such that
X \ X(l, β) is non-empty for all l, β. Now let X0 be a subset of X such that
X0 ∩ K(l, γX) is �nite for all l. Then exactly as in the proof of claim 4.11 we
can see that X0 ∈ [A]ω ∩ I. This contradicts the de�nition of A. �

This concludes the proof of theorem 16. �

4.4 MRP implies SCH

We prove theorem 17. Thus assume MRP and let D be a covering matrix on κ
such that K(n, β) is a closed set of ordinal for all n and β. Assume that for all
X unbounded in κ, [X]ω is not covered by D. We will reach a contradiction.
For each δ < κ of countable co�nality, �x Cδ co�nal in δ of order type ω. Let
M be a countable elementary submodel of H(Θ) for some large enough regular
Θ. Let δM = sup(M ∩ κ) and βM be the ordinal γM∩κ provided by property
(v) of D applied to M ∩ κ. Set Σ(M) to be the set of all countable X ⊆ M ∩ κ
such that

sup(X) 6∈ K(|CδM
∩ sup(X)|, βM ).

We will show that Σ(M) is open and M -stationary. Assume this is the case
and let {Mη : η < ω1} be a re�ecting sequence for Σ. Let δMξ

= δξ and
δ = supω1

δξ. Find C ⊆ ω1 club such that {δξ : ξ ∈ C} ⊆ K(n, δ) for some n
(which is possible since the K(n, δ) are closed subsets of κ). Let α be a limit
point of C. Let M = Mα and notice that by our choice of βM for all m, there
is l such that K(m, δ) ∩ M ⊆ K(l, βM ). This means that for all η ∈ C ∩ α,
δη ∈ K(n, δ)∩M ⊆ K(l, βM ) for some �xed l. Since α is a limit point of C there
is η ∈ α∩C such that |CδM

∩δη| > l and Mη∩κ ∈ Σ(M). But this is impossible,
since Mη ∈ Σ(M) means that δη 6∈ K(|CδM

∩ δη|, βM ), i.e. δη 6∈ K(l, βM ).
We now show that ΣM is open and M -stationary:

Claim 4.13 Σ(M) is open.

Proof: Assume X ∈ Σ(M), we will �nd γ ∈ X such that [{γ}, X] ⊆ Σ(M). To
this aim notice that CδM

∩sup(X) is a �nite subset of X. Let n0 = |CδM
∩sup(X)|

and γ0 = max(CδM
∩ sup(X)) + 1. Since X ∈ Σ(M), sup(X) 6∈ K(n0, βM ) and

so, since K(n0, βM ) is closed, γ1 = max(K(n0, βM )∩ sup(X)) < sup(X). Thus,
let γ ∈ X be greater or equal than max{γ1 + 1, γ0}. If Y ∈ [{γ}, X], then
γ0 ≤ sup(Y ) ≤ sup(X), so |CδM

∩ sup(Y )| = |CδM
∩ sup(X)| = n0 and

γ1 = max(K(n0, βM )∩sup(X)) < sup(Y ) ≤ sup(X) < min(K(n0, βM )\sup(X)).

Thus Y 6∈ K(|CδM
∩ sup(Y )|, βM ), i.e. Y ∈ Σ(M). �

Claim 4.14 Σ(M) is M -stationary.
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Proof: Let f : [κ]<ω → κ in M . We need to �nd X ∈ Σ(M) such that
f [[X]<ω] = X. Let N ≺ H(κ+) be a countable submodel in M such that f ∈ N
and let C = {δ < κ : f [[δ]<ω] = δ}. Let also n0 = |CδM

∩ sup(N ∩ κ)| and
γ0 ∈ N be larger than max(CδM

∩sup(N ∩κ)). Then (C \γ0) ∈ N . We assumed
that no A unbounded in κ is such that [A]ω is covered by D. So in particular
by elementarity of N :

N |= [(C \ γ0) ∩ Sω
κ ]ωis not covered by D

Thus there exists X ∈ N countable subset of (C\γ0)∩Sω
κ such that for all n and

β, X \K(n, β) is non-empty. Let γ ∈ X \K(n0, βM ). Now �nd Z ∈ N countable
and co�nal in γ and let Y be the f -closure of Z. Then Y ∈ N ⊆ M . Now γ ∈ C
so sup(Y ) = sup(Z) = γ 6∈ K(n0, βM ). Moreover γ = sup(Y ) ∈ (C \ γ0) ∩ N ,
so γ0 < sup(Y ) < sup(N ∩ κ), i.e. |CδM

∩ sup(Y )| = |CδM
∩ sup(N ∩ κ)| = n0.

Thus:
sup(Y ) 6∈ K(|CδM

∩ sup(Y )|, βM ).

I.e. Y ∈ Σ(M). �

This concludes the proof of theorem 17 �
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Chapter 5

Inner models of CP

Since forcing axioms have been able to settle many of the classical problems of
set theory, we can expect that the models of a forcing axiom are in some sense
categorical. There are many ways in which one can give a precise formulation
to this concept. For example, one can study what kind of forcings can preserve
PFA, or else if a model V of a forcing axiom can have an interesting inner model
M of the same forcing axiom. There are many results in this area, some of
them very recent. For instance, König and Yoshinobu [21, Theorem 6.1] showed
that PFA is preserved by ω2-closed forcing. The same holds for BPFA. In fact,
BPFA is preserved by any proper forcing that does not add subsets of ω1. In
the other direction, in [44] Veli£kovi¢ showed that if MM holds and M is an
inner model such that ωM

2 = ω2, then P(ω1) ⊆ M and in a very recent paper
Caicedo and Veli£kovi¢ [6] showed, using the mapping re�ection principle MRP
introduced by Moore in [34], that if M ⊆ V are models of BPFA and ωM

2 = ω2

then P(ω1) ⊆ M . We �rst show, using the CP, that almost all known cardinal
preserving forcing notions to add ω-sequences like Prikry forcing or diagonal
Prikry forcing destroy PFA. On the other hand we show that if it is possible to
have two models of PFA, W ⊆ V with the same cardinals, the same bounded
subsets of ℵω and such that [ℵω]ω 6⊆ W , then ℵω is Jónsson in W . We thus
relate this problem to a very large cardinal issue.

5.1 PFA fails in Prikry type forcing extensions

Theorem 18 Let V be a model of set theory and W be an inner model such
that there is κ regular W -cardinal satisfying:

(i) κ > ℵ0 is an ordinal of countable co�nality,

(ii) for all λ < κ, [λ]ω ⊆ W ,

(iii) κ+ = (κ+)W .

Then V does not model CP.

49
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In particular this gives another proof that Prikry forcing destroys PFA.

Theorem 19 Assume that V is a model of CP and that W is an inner model
with the same reals and the same ℵ2. Assume that for the least W cardinal κ
such that κω \ W is nonempty, κ+ = (κ+)W . Then for every λ < κ regular
cardinal of V there is S, W -stationary subset of (Sλ

κ+)W , which is not anymore
stationary in V .

In particular any forcing P satisfying the κ+-chain condition and such that κ
is the least ordinal to which P adds a new ω-sequence destroys PFA. Thus also
diagonal Prikry forcing kills PFA.

Proof of theorem 18: Assume otherwise, and let κ satisfy the hypotheses of
the theorem. Let g ∈ κω \W be a strictly increasing co�nal sequence. We will
reach a contradiction. Fix a surjection φδ : κ → δ for all δ < κ+. De�ne in W ,
D to be the matrix indexed by κ× κ+, whose entries are the sets:

K(α, β) =
⋃
{K(α, γ) : γ ∈ φβ [α]}

Remark that by the minimality of κ and the fact that K(α, β) ∈ W has size less
than κ we get that K(α, β)ω ⊆ W for all α, β. Again in W , �x (Cδ : δ < κ+) ∈
W such that for all δ limit, Cδ is a club in δ of minimal W -order-type and for
all δ, Cδ+1 = {δ}. So for each δ limit, Cδ has order type at most κ. De�ne by
recursion on α < β < κ+, ρ1(α, α) = 0 and:

ρ1(α, β) = max{ρ1(α, minCβ \ α), otp(Cβ ∩ α)}.

Then ρ1 ∈ W and ρ1 has this crucial property:

Fact 5.1 For all ν < κ and for all κ < α < κ+: {η < α : ρ1(η, α) ≤ ν} is a
closed subset of α of size at most |ν|+ ℵ0.

For a proof see [43], Lemma 5.1, page 58. �

De�ne for all α < κ, for all β < κ+, c(α, β) to be the supremum of:

{ρ1(γ, η) : γ, η ∈ K(α, β)}.

Then, since c ∈ W and κ is regular in W , c(α, β) < κ, for all α < κ and β < κ+.
From now on work in V , and let D∗ ∈ V be the matrix produced by the sets
K(g(n), β). It is easy to check that this matrix is a covering matrix for κ+.
Now in V , κ+ > c since

W |= κ ≥ c

and W and V have the same reals. Find A unbounded in κ+ such that [A]ω

is covered by D∗ and let M ∈ V be a countable elementary submodel of some
H(θ) containing all relevant information. Then M ∩ A ⊆ K(g(n), β) for some
n, β, so M ∩ A ∈ W . Let m be such that g(m) > c(g(n), β), and let γ ∈ A be
such that otp(A ∩ γ) = κ, then by elementarity γ ∈ M ∩ A. Using again the
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elementarity of M and fact 5.1 �nd η < γ ∈ A such that ρ1(η, γ) > g(m). Now
we have a contradiction since:

g(m) > c(g(n), β) ≥ ρ1(η, γ) > g(m)

This concludes the proof of Theorem 18. �

Proof of theorem 19: By the previous theorem κ cannot be regular in W ,
otherwise V cannot model CP. Since κ is the least such that κω\W is non empty
and is not regular in W , we can conclude that κ is in W a cardinal of countable
co�nality. So there is a covering matrix D ∈ W for (κ+)W with βD = κ and
such that K(n, β) is closed for all n and β. Since κ+ = (κ+)W D is still a
covering matrix in V for κ+ with βD = κ. Assume towards a contradiction
that there is some λ < κ regular cardinal of V such that every W -stationary
subset of Sλ

κ+ is still stationary in V . So �x in W some {Aα : α < κ} ∈ W
partition of (Sλ

κ+)W in κ-many W -stationary sets. Now by our assumption, this
is still a family of disjoint stationary subsets of V . Let for every n, β, D(n, β)
be the set of α < κ such that Aα ∩K(n, β) is nonempty. Now D(n, β) ∈ W and
|D(n, β)| ≤ |K(n, β)| has size less than κ. So, by minimality of κ, we have that
D(n, β)ω ⊆ W , else there would be a new ω-sequence in |D(n, β)|. Apply in V
the CP and �nd X unbounded in κ+ such that [X]ω is covered by D. Exactly
as in the proof of fact 4.9, we can see that

[X ∩ S≤λ
κ+ ]λ

is covered by D. Now pick M countable elementary submodel containing all
relevant information. Then Ag(n) ∩ X ∩ M ∩ Sλ

κ+ is nonempty for all n, by

elementarity of M . Now M ∩ X ∩ Sλ
κ+ ⊆ K(n, β) for some n, β. This means

that g ∈ D(n, β)ω ⊆ W and we are done. �

5.2 CP and ℵω

Woodin has shown that assuming enough large cardinals, it is possible to de�ne
a class generic extension V [G] of V with the same bounded subsets of ℵω but
such that ([ℵω]ω)V [G] \ V 6= ∅. However ℵ+

ω is collapsed in V [G] to an ordinal of
countable co�nality1. Can this be done without collapsing ℵ+

ω ? We show that
if this is possible then ℵω is a Jónsson cardinal in the smaller model.

Say that κ is E-Jónsson for a family E of structures A = 〈X, κ, (Ri : i < ω)〉 if
every A ∈ E has a submodel Y of size κ such that Y ∩κ is a proper subset of κ.
κ is Jónsson if E is everything.

Theorem 20 Let W ⊆ V be models of ZFC with the same cardinals and reals.
Assume that V |= CP, 2ω < ℵω and that [ℵω]ω 6⊆ W . Then ℵω is W -Jónsson.

1A detailed exposition of the method of generic ultrapowers used to produce this kind of
models can be found in chapter 2 of [24].
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Theorem 21 Let W ⊆ V be models of ZFC with the same cardinals. Assume
that V |= CP, 2ω < ℵω, that for all δ < ℵω, [δ]≤δ ⊆ W and that [ℵω]ω 6⊆ W .
Then ℵω is Jónsson in W .

The rest of this section is devoted to the proof of the above theorems.
We will prove both theorems in a sequence of two lemmas. We �rst set some
notation. We �x W ⊆ V models of ZFC with the same cardinals and reals. We
assume that V |= CP and that c < ℵω. By what we have shown before, this
implies that W |= (ℵω)ω = ℵω+1. Fix in W the following objects:

• A scale F = {hα : α < κ+} on (
∏

n ℵn, <), co�nal sequence under the
partial order < of full dominance and strictly increasing in the partial
order <∗ of eventual dominance.

• D ∈ W is a covering matrix for ℵω+1 with βD = κ.

• C = (Cα : α < ℵω+1) a sequence such that for all α limit, Cα is a club in
α of minimal order type and for all α, Cα+1 = {α}.

• For any structure A ∈ W , A = 〈H(θ)W ,D,F , <, · · · 〉, φA ∈ W a Skolem
function.

It is not hard to check by a simple enumeration argument that a scale F ∈ W
as required above exists.

Finally �x A ∈ V is an unbounded set witnessing CP relative to D.
We will reach the desired conclusions once we prove the following two lemmas2.

Lemma 5.2 There is an n0 such that for all m ≥ n0, supA hα(m) < ℵm.

Let g(m) = supA hα(m) for all m.

Lemma 5.3 Let A be any structure in W , and let MA be the φA-closure of A.
Then there is nA ≥ n0 such that for all δ ∈ ℵω+1∩MA such that cof(δ) = ℵm ≥
ℵnA we have that supMA ∩ δ ≤ Cδ(g(m)).

Lemmas 5.2 and 5.3 su�ces to show that ℵω is W -Jónsson, since for any A ∈ W ,
MA∩ℵω is a proper subset of ℵω of size ℵω. However we can still get more out of
them, in particular theorem 21. For every structure A and real r ∈ ωω consider
the tree T r

A of �nite sequences s = 〈Mi : i < |s|〉 of models Mi ≺ A such that
|Mj ∩ ℵi| = ℵr(i), Mj = φA[Mj ∩ ℵj ], and Mi ⊆ Mj for all i < j < |s|, ordered
by end extension. T r

A ∈ W for all r and A ∈ W . Moreover since [δ]δ ⊆ W for
all δ < ℵω, T r

A gets the same interpretation in V and in W for all r and A ∈ W .
Now for a �xed A ∈ W , let r0(n) = |MA ∩ ℵn| for all n. Then in V , T r0

A ∈ W
is ill-founded: if Mn is the A-closure of MA ∩ ℵn, 〈Mn : n ∈ ω〉 is an in�nite

2We remark that Cummings, Foreman and Magidor proved in ZFC a similar generalized
version of lemma 5.2 (see theorem 7.3 of [9]). Applied to the speci�c situation we are consid-
ering, their theorem would say that if there is F ∈ W which is a scale in V on

Q
n ℵn, then

W covers [ℵω ]ω . I will reach this conclusion assuming CP and the slightly weaker hypothesis
that there is an in�nite A ⊆ ω and F ∈ W scale in V on

Q
A ℵn.
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branch through T r0
A . By absoluteness T r0

A is ill-founded in W . It is evident that
an in�nite branch through T r0

A gives raise to a substructure M of A such that
M ∩ℵω is a proper subset of ℵω of size ℵω. Thus W models that ℵω is Jónsson.
�

We are left with the proof of the two lemmas.

Proof of lemma 5.2: Let A witness the covering property for D. Assume
towards a contradiction that there are in�nitely many n such that

sup
A

hα(n) = ℵn.

We will reach a contradiction showing that (ℵω)ω ⊆ W contrary to our hypoth-
esis. The idea is to approximate any f ∈ (ℵω)ω by a sequence (fn : n ∈ ω) ∈ W
such that:

(i) for all n, m, fn(m) ≥ fn+1(m) ≥ f(m),

(ii) for all n, if fn(m) > f(m) then fn(m) > fn+1(m).

Suppose this can be achieved and let G be the set of n such that for all j,
fj(n) > f(n). We claim that G is empty, otherwise if n ∈ G, by (ii), we would
get that (fj(n) : j ∈ ω) is a strictly decreasing sequence of ordinals. So, since
G is empty, we get that for all n, f(n) = minj∈ω fj(n). So we get that f ∈ W
since (fn : n ∈ ω) ∈ W .
We now proceed from any given f to build a sequence which approximate f .
Let r = {n : supA hα(n) = ℵn} and Xn = {hα(n) : α ∈ A}.
Recall this other crucial property of the function ρ1 which follows from fact 5.1:

Fact 5.4 Let X be any unbounded subset of ℵn, then ρ1[[X]2] is unbounded in
ℵn−1.

Using this property and a simple inductive argument it is easy to show the
following:

Fact 5.5 Let ρ1
1 = ρ1 and ρn+1

1 : [ℵω+1]2
n+1 → ℵω be de�ned by:

ρn+1
1 (α1, · · · , α2n+1) = ρn

1 (ρ(α1, α2), · · · , ρ1(α2n+1−1α2n+1)).

Then if X is unbounded in ℵn+m, ρm
1 [[X]2

m

] is unbounded in ℵn.

Now consider the following operations:

• for any δ < ℵ+
ω , c(n, δ) = hδ(n),

• for any γ ≤ ℵω limit and for any β < cofγ, d(γ, β) = Cγ(β),

• for any γ < ℵω, p(γ + 1) = γ,

• for any given D ∈ [(ℵω)ω]ω, hD(n) = min{f(n) : f ∈ D}.
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First remark that by the above facts on the function ρ1 and the fact that there
are in�nitely many n for which supX hα(n) = ℵn, we can get for every m < ω
a set Xm unbounded in ℵm and such that any element η of Xm is obtained by
a �nite set of ordinals in A by a �nite application of the operations c, ρ1.
Let for any countable set of ordinals X ⊆ ℵω+1, G(X) be the least set closed
under the operations c, d, p, ρ1. It is clear that if X ∈ W then G(X) ∈ W .
Moreover since X is countable G(X) ∈ W is countable and so G(X)ω ⊆ W .
Now let E(X) be the set of f such that there is Y ∈ [G(X)ω]≤ω such that
f = hY .

Claim 5.6 If X ∈ W is countable, then E(X) = (E(X))W .

Proof: Since G(X)ω = (G(X)ω)W ⊆ W , if ϕ : G(X)ω → c is a bijection in
W of G(X)ω with its size, ϕ is still a bijection in V of G(X)ω with c. Now
[c]ω ⊆ W . So if Y ∈ [G(X)ω]ω \ W , we have that ϕ[Y ] ∈ [c]ω \ W and this is
impossible. Now:

E(X) = {f : ∃Y ∈ [G(X)ω]≤ω such that f(n) = min
h∈Y

h(n)}

So E(X) ⊆ W . �

Given any X subset of A of size at most ω, by the covering property and
by our hypothesis on W we get that X ∈ [K(n, β)]ω ⊆ W . So we get that
E(X∪{ℵω}∪(ω)W ) ⊆ W . Build by induction a decreasing sequence of functions
{fn : n < ω)} and of sets Yn ⊆ [A]≤ω in order that:

(i) {fj : j ≤ n} is a subset of G(Yn ∪ {ℵω} ∪ ω),

(ii) for all n and j, fn(j) ≥ fn+1(j) ≥ f(j)

(iii) for all n, if fn(j) > f(j), then fn(j) > fn+1(j).

To de�ne such a sequence �rst of all set f0(j) = ℵω for all j and Y0 = ∅. Now
if {fj : j ≤ k} and Yk have been de�ned, let Bk be the set of m such that
fk(m) > f(m). Let P be the set of m ∈ Bk such that fk(m) is limit, Q be
the set of m ∈ Bk such that fk(m) is a successor ordinal. For any j ∈ Q let
fk+1(j) = fk(j) − 1. For any j ∈ P let ℵl = coffk(j). Now pick γ ∈ Xl

such that ηj = Cfk(j)(γ) > f(j). Notice that such a γ can be found because

Xl is unbounded in ℵl. Let {ηj
0, · · · , ηj

nj
} be a �nite subset of A such that γ

is obtained by this set applying �nitely many times the operations c, ρ1. Let
for all j ∈ P , fk+1(j) = ηj . If j 6∈ Bk, let fk+1(j) = fk(j) = f(j). Let

Yk+1 = Yk

⋃
{{ηj

0, · · · , ηj
nj
} : j ∈ P}. It is easy to check that:

• {fj : j ≤ k + 1} ⊆ G(Yk+1 ∪ {ℵω} ∪ ω)ω,

• for all j such that fk(j) > f(j), fk(j) > fk+1(j) ≥ f(j),

• Yk+1 ∈ [A]ω ⊆ W .
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Now if we continue for ω-many steps and we set Y =
⋃

n Yn, we get that
Y ∈ [A]ω ⊆ W by the CP and that {fn : n ∈ ω} ⊆ G(Y ∪ {ℵω} ∪ ω)ω. Since
Y ∪ {ℵω} ∪ ω ∈ W , f = h{fn:n∈ω} ∈ E(Y ∪ {ℵω} ∪ ω) ⊆ W , so f ∈ W . �

Proof of lemma 5.3: By lemma 5.2 we get that whenever f is greater or equal
than g on an in�nite set, f 6∈ W else there is α ∈ A such that f <∗ hα but
this is impossible since hα <∗ g. Now suppose that for some A, lemma 5.3 is
false. This means that there is an in�nite set {δn : n ∈ Y } ⊆ MA such that for
all n ∈ Y , cofδn = ℵn and supCδn ∩ MA > Cδn(g(n)). Let (ηn : n ∈ Y ) be a
sequence in MA such that for all n ∈ Y , Cδn(g(n)) ≤ ηn < δn.
Notice now that for each n there are {ξn

0 , · · · , ξn
mn
} ⊆ C ∩ Sω

ℵω+1
such that

{δn, ηn} = φA(ξn
0 , · · · , ξn

mn
). So let X =

⋃
n{ξn

0 , · · · , ξn
mn
}, then X is a countable

subset of A so it is in W , so the Skolem hull under φA of X is countable and in
W . So by arguments now standard the function f ∈ W de�ned by f(j) = 0 if
j 6∈ Y , f(j) = otp(Cδj

∩ ηj) if j ∈ Y is greater than g on an in�nite set, which
is not possible. �.

This completes the proof of both theorems. �
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Chapter 6

PFA implies PID

Theorem 22 (Todor£evic¢ [41]) The proper forcing axiom implies the P -ideal
dichotomy.

Proof: We prove PID by induction on θ. So we assume the for any γ < θ and
for any E , P -ideal on [γ]≤ω either (i) or (ii) of PID holds. We let I be any P -
ideal on [θ]≤ω such that (ii) fails for I and we force an uncountable X ⊆ θ such
that [X]ω ⊆ I by a proper forcing. First assume θ is a cardinal of countable
co�nality. Let θn be an increasing sequence of regular cardinals converging to θ
and let In = I∩[θn]≤ω. Then, since the θn are regular cardinals, it is immediate
to check that In is a P -ideal for all n. Now, by our inductive assumption, either
for some n there is X ⊆ θn uncountable such that [X]ω ⊆ In ⊆ I and this
shows that (i) holds for I, or, for all n there is a splitting {An

i : i ∈ ω} of θn in
countably many sets orthogonal to I. Then {An

i : i ∈ ω, n ∈ ω} is a splitting of
θ in countably many sets orthognal to I.
Now assume that θ has uncountable co�nality and let I be a P -ideal on [θ]≤ω

such that (ii) fails for I but holds for I ∩ [γ]≤ω for all γ < θ.
Let P be the poset of p = 〈xp,Zp〉 such that xp ∈ I and Zp is a countable
family of stationary subsets of [I]ω. For any A ∈ [I]ω let aA ∈ I be a subset of⋃

A such that a \ aA is �nite for all a ∈ A . Now let p ≤ q if xp end extends xq

and X(F , p, q) = {A ∈ F : xp \ xq ⊆ aA} ∈ Zp for all F ∈ Zq.

Lemma 6.1 P is proper in the following stronger form: for every relevant
countable elementary substructure M and for every p ∈ M ∩ P , there is q ≤ p
in all dense open subsets of P which are in M .

Lemma 6.2 For all γ < ω1, Dγ = {p : otp(xp) ≥ γ} is dense.

If we can prove both lemmas it is clear that if G is {Dα : α < ω1}-generic, then
[
⋃
{xp : p ∈ G}]ω ⊆ I. We begin proving the following:

Claim 6.3 For any p ∈ P and any γ ∈ (max(xp), θ), there is q ≤ p such that
xq \ γ is non-empty.
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Proof: Assume not and let p, γ contradict the claim. Then for every β ∈ (γ, θ),
there is Fβ ∈ Zp such that F(β) = {A ∈ Fβ : β ∈ aA} is not stationary in [I]ω

else q = 〈xp ∪ {β},Zp ∪ {F(β) : F ∈ Zp}〉 is a condition below p such that
xq \ γ is non-empty. Now let AF = {β : Fβ = F}. We assert that each AF is
orthogonal to I. If not let a ∈ I ∩ [AF ]ω. Let F ′ = {A ∈ F : a ∈ A}. Then
F ′ is stationary in [I]ω. Now for every A ∈ F ′, there is a �nite FA ⊆ a such
that a \FA ⊆ aA. Use the pressing down lemma to �nd F0 stationary subset of
F ′ such that FA is the same for all A ∈ F0. Pick β ∈ a \ FA then F0 ⊆ F(β)
contradicting the assumption that F(β) is not stationary.
Now by our assumption on I there is a family {An : n ∈ ω} such that

⋃
An =

γ + 1 and each An is orthogonal to I. Then {An : n ∈ ω} ∪ {AF : F ∈ Zp} is a
countable family Z of sets orthogonal orthogonal to I and such that

⋃
Z = θ

contradicting our assumption on I. �

Assume that lemma 6.1 has been proved. We can now prove lemma 6.2 by
induction on α < ω1. D0 is clearly a dense set. If α = β + 1 and Dβ is dense,
we can appeal to the above claim to obtain that Dβ+1 is also dense. If α is limit
and for all β < α, Dβ is dense, given any p ∈ P , take M ≺ H(κ) such that
p, α ∈ M and let q be a condition below p and in all dense open subsets of P
which are in M . Now for each β < α, q ∈ Dβ ∈ M . So otp(q) ≥ α.

We are left with the proof of lemma 6.1. So let M be a countable elementary
submodel of some H(κ) with κ regular and large enough and such that all the
relevant objects are in M . Let p be an arbitrary condition of P in M . We
need to �nd an M -generic condition below p. Let also {Dn : n ∈ ω} be an
enumeration of the dense sets of P which are in M and b ⊆ M ∩ θ be any
element of I such that a ⊆∗ b for all a ∈ I ∩ M . We will build a decreasing
sequence of conditions {pn : n ∈ ω} ⊆ M such that p0 = p, each pn+1 ∈ Dn∩M
and such that if xω = ∪nxpn

then:

(i) xω \ xpn
⊆ b,

(ii) E(F , n) = {A ∈ [I]ω : xω \ xpn
⊆ aA} is stationary in [I]ω for all F ∈ Zpn

.

If this can be done

q = 〈xω,
⋃
{Zpn : n ∈ ω} ∪ {E(F , n) : ∃nF ∈ Zpn}〉

is an M -generic condition below each pn.
Assume that p0, · · · , pn have been de�ned. Let {F i

m : m ∈ ω} be an enumeration
of the stationary subsets of [I]ω which are in pi. Let F(i, m, n) = {A ∈ F i

m :
xn \ xi ⊆ aA}. Then this set is stationary and in M , since pn is a condition
below pi. By the pressing down lemma, �nd G(i, m, n) stationary subset of
F(i,m, n) (but not in M) and F (i, m, n) �nite subset of M ∩ θ such that for all
A ∈ G(i, m, n), b ⊆ aA∪F (i, m, n). We will extend pn with a pn+1 ∈ Dn∩M such
that (xpn+1 \xpn

) ⊆ b and min(xpn+1 \xpn
) > max{max(F (i,m, n)) : i,m ≤ n}.

Then for all i,m ≤ n < l and for all A ∈ G(i, m, n),

xpl
\ xpi = (xpl

\ xpn) ∪ (xpn \ xpi) ⊆ b \max(F (i, m, n)) ∪ aA ⊆ aA
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Thus if we can proceed this way for all n, then for all i,m once that n ≥
max{m, i} we get that for all A ∈ G(i, m, n),

xω \ xpi
=

⋃
l>n

(xpl
\ xpn

) ∪ (xpn
\ xpi

) ⊆ aA

Thus G(i,m, n) ⊆ E(F i
m, i), i.e. E(F i

m, i) is stationary for all m and i, so

q = 〈xω,
⋃
{Zpn : n ∈ ω} ∪ {E(F , n) : ∃nF ∈ Zpn}

is an M -generic condition below p.

Now assume that p0, · · · , pn have been de�ned as well as F (i, m, n) and G(i,m, n)
for all i, m ≤ n. Let c = b \

⋃
{F (i, m, n) : i, m ≤ n}. Suppose towards a con-

tradiction that pn+1 as above cannot be found. Then for all r ∈ Dn ∩M below
pn, xr \ xpn

6⊆ c. Let for all a ∈ M ∩ I, Fa = a \ c. Let Y0 be the collection
of A ∈ [I]ω such that for some �nite FA ⊆ aA, there is no r ∈ Dn such that
xr \ xpn

⊆ aA \ FA. Then Y0 ∈ M since it is de�ned by a �rst-order formula
with parameters in M . Moreover every A ∈ M ∩ [I]ω is in Y0. To see this, let
FA = aA \ c and suppose that for some r ∈ Dn ∩M , xr \ xpn ⊆ aA \ FA. Then
xr \ xpn

⊆ c contradicting our assumption. Then

M |= Y0 = [I]ω

So by the pressing down lemma applied in M there is F ∈ M stationary subset
of [I]ω and a �nite F such that FA = F for all A ∈ F . Set s = 〈xpn ,Zpn ∪{F}〉.
Then s ∈ M . By the previous claim 6.3 �nd t ≤ s such that min(xt \ xs) >
max(F ). Now �nd r ≤ t and in Dn ∩M . Then G = {A ∈ F : xr \ xpn

⊆ aA} is
stationary since F ∈ Zs and r ≤ s. Moreover min(xr \ xpn

) = min(xt \ xpn
) >

max(F ). Thus if A ∈ G, xr \ xpn
⊆ aA \ FA so A 6∈ Y0. This is impossible since

we have shown that [I]ω = Y0. Thus a pm+1 as required can be found. This
concludes the proof of lemma 6.1. �

We conclude this part remarking that the forcing P is more than proper. In fact
P satis�es a condition ((∗) in what follows) isolated by Shelah (see [35] chapter
V ) with the property that any generic extension produced by a countable sup-
port iteration of forcing which satis�es (∗) preserves ℵ1 and has the same reals
of the ground model. Using this fact one can produce a model of PID + GCH
starting from a ground model of GCH with a supercompact cardinal λ and use
the standard countable support iteration of length λ to force PID in the generic
extension. Since all elements of the iteration are forcings which satisfy (∗), CH
holds in the extension. Moreover since the iteration satis�es the λ-chain condi-
tion, the cardinal arithmetic above λ is the same in the ground model and in
the extension. It is also not di�cult to see that in the extension 2ℵ1 = λ = ℵ2.
So GCH holds in the extension. The interested reader is referred to section 5 of
[41].
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Chapter 7

PFA implies MRP

Theorem 23 (Moore [32]) Assume PFA. Then MRP holds.

Proof: Let X be uncountable and assume that for a club C of countable models
M of H(κ), where κ is a large enough regular cardinal, Σ(M) is an open M -
stationary subset of [X]ω. Let P be the poset of p = 〈Mη : η ≤ αp〉 such that
for all limit η ≤ αp there is a γ < η such that for all ξ ∈ (γ, η), Mξ ∩X ∈ Σ(M).
p ≤ q, if p is an end extension of q. Once again we will show the following:

Lemma 7.1 P is proper in the following stronger form: for every relevant
countable elementary substructure M and for every p ∈ M ∩ P , there is q ≤ p
in all dense open subsets of P which are in M .

Lemma 7.2 For all α < ω1, Dα = {p : αp ≥ α} is dense in P .

Once this is proved, if we let G be a {Dα : α < ω1}-generic �lter, it is clear that
the sequence

⋃
G is a re�ecting sequence for Σ.

Now assume lemma 7.1 holds. We can prove lemma 7.2 by induction on α < ω1.
D0 is clearly a dense set. If α = β + 1 and Dβ is dense, Dβ+1 is also dense. If
α is limit and for all β < α, Dβ is dense, given any p ∈ P , take M such that
p, α ∈ M and let q be an condition below p belonging to all dense open subsets
of P which are in M .. Now for each β < α, q ∈ Dβ since q is M -generic and
Dβ ∈ M . So αq ≥ α.

We are left with the proof of lemma 7.1. So let M ≺ H(λ) be countable with
λ regular and large enough and such that P,Σ and all the relevant objects are
in M . Let p ∈ P ∩ M and let {Dn : n ∈ ω} enumerate the dense open sets of
P in M , we will build a decreasing sequence of conditions pn such that p0 = p,
pn+1 ∈ Dn and for all ξ ∈ (αp0 , αpn ], Mξ ∈ Σ(M ∩ H(κ)). Set αM =

⋃
n αpn .

Then q =
⋃

n pn ∪ {〈αM ,M ∩H(κ)〉} is the desired M -generic condition below
p. First of all for all ξ ∈ (αp0 , αM ), Mξ ∈ Σ(M ∩H(κ)). While for all η < αM

and limit, since η < αpn
for some n and pn is a condition, there is γ < η such

that Mξ ∈ Σ(Mη) for all ξ ∈ (γ, η). Thus q is a condition. Then it is clear that
it extends each pn, so it is in all dense sets of M .
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Now assume that pn has been de�ned according to our constraint and let

En = {N ≺ H(λ+) : pn, Dn ∈ N}

Then En ∈ M is a club in [H(λ+)]ω so {N ∩X : N ∈ En} is a club in [X]ω and
is in M . Since Σ(M) is M -stationary there is N ∈ En such that N ∩X ∈ Σ(M).
Since Σ(M) is open there is a �nite subset s of X ∩N such that [s,N ∩X] ⊆
Σ(M). Let M0 ∈ C ∩N be such that pn, s ∈ M0. Set q0 = pn ∪{〈αpn +1,M0〉}.
Then q0 ∈ N , so we can �nd pn+1 = 〈Mξ : ξ ≤ αpn+1〉 ∈ N ∩ Dn below
q0. Then for all ξ ∈ (αpn

, αpn+1 ], we have that s ⊆ Mξ ∩ X ⊆ N ∩ X. So
Mξ ∈ Σ(M ∩ H(κ)) for all ξ ∈ (αpn

, αpn+1 ]. This concludes the proof of the
lemma. �

The proof of the theorem is now completed. �

7.1 MRP and PID are mutually independent

We sketch a proof of the following result from Miyamoto [30]:

Theorem 24 (Miyamoto [30]) Assume that there is a supercompact cardinal.
Then there is a model of MRP in which there is a Souslin tree.

The theorem is a consequence of the following two lemmas:

Lemma 7.3 (Miyamoto [29]) Assume that T is Souslin in V and that P is a
countable support iteration such that at each successor stage ξ + 1,


Pξ+1 T is Souslin.

Let G be a P -generic �lter. Then T is Souslin in V [G].

Proof: For a proof see [29]. �

Lemma 7.4 Let X be an uncountable set and Σ(M) be an open M -stationary
subset of [X]ω for a club of countable M ≺ H(κ), with κ regular and large
enough. Let PΣ be the forcing notion that produces a re�ecting sequence for Σ.
Assume that T is a Souslin tree. Then


PΣ T is Souslin.

Now assuming both lemmas, let V be a model of set theory with a Souslin tree
T and a supercompact cardinal λ. Let P be the standard countable support
iteration of length λ to force MRP. Then in V [G] MRP holds and T is Souslin.

We sketch a proof of lemma 7.4. First of all we remark the following:

Fact 7.5 Let (T,<T ) be a Souslin tree, P be a forcing and Ȧ be a P -name for
a maximal antichain in T . Then for all p ∈ P the following set is open dense
in T :

Dp = {t ∈ T : ∃ s <T t and q ≤ p such that q 
P s ∈ Ȧ}
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Now we can prove the following:

Claim 7.6 Let N be a countable elementary submodel of H(θ) for a large
enough regular θ and containing all relevant information. Let αN = N ∩ ω1,
t ∈ TαN

and p ∈ P ∩N . Then there is q ∈ P ∩N below p and s <T t such that
q 
P s ∈ Ȧ.

Proof: Notice that t is an N -generic condition for T , since T is a c.c.c. partial
order. Now Dp ∈ N so there is t0 ∈ Dp ∩ N compatible with t. This means

that there are s <T t0 and q ≤ p such that q 
P s ∈ Ȧ. Then s ∈ T ∩N since
htT (s) < htT (t). So by elementarity of N there is q ∈ N and below p such that
q 
P s ∈ Ȧ. This proves the claim. �

Now let X be an uncountable set and Σ(N) be an open and N -stationary subset
of [X]ω for a club of N ≺ H(θ). Let also T be a Souslin tree, Ȧ be a PΣ-name for
a maximal antichain of T and p ∈ PΣ. Let M be a countable model containing
all relevant information and αM = M ∩ ω1. We will show that there is q ≤ p,
M -generic condition for PΣ and such that q 
PΣ Ȧ ⊆

⋃
αM

Tξ. This shows that
the set of such q is dense, so we can conclude that:


PΣ Ȧ is a countable antichain.

Since Ȧ is an arbitrary name for a maximal antichain, we can conclude that:


PΣ T is Souslin.

To obtain such a q it is enough to modify the construction of the generic condi-
tion performed in lemma 7.1 as follows. First of all let {Dn : n ∈ ω} enumerate
the dense open sets of PΣ ∈ M and {tn : n ∈ ω} = TαM

. At odd stages 2n− 1,
assuming that p2n−1 has been de�ned, proceed exactly as in the proof of lemma
7.1 to de�ne p2n ∈ Dn. At even stages 2n, assuming that p2n has been de�ned,
let E2n be the club of countable N ≺ H(|PΣ|+) such that p2n ∈ N . Now Pick
N ∈ En such that N ∩X ∈ Σ(M ∩H(θ)). As in the previous lemma let s be a
�nite subset of X ∩N such that Y ∈ Σ(M ∩H(θ)) for all Y ∈ [s,N ∩X] and
N0 ∈ N be a countable elementary submodel of H(θ) such that p2n, s ∈ N . Let
q0 = p2n ∪{〈αp2n + 1, N0〉}. Now let t ≺ tn have htT (t) = N ∩ω1. By claim 7.6
we can �nd p2n+1 ∈ N below q0 and sn <T t such that

p2n+1 
PΣ sn ∈ Ȧ.

Exactly as in the proof of lemma 7.1 we can see that q =
⋃

n pn ∪ {〈αM ,M ∩
H(θ)〉} is an M -generic condition below p. Moreover for all n there is sn <T tn
such that q 
 sn ∈ Ȧ. Then

q 
 Ȧ = {sn : n ∈ ω}.

This is so since any t ∈ T is compatible with some tn so it is also compatible
with some sn. So {sn : n ∈ ω} is a maximal antichain. This concludes the proof
of the lemma. �
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We can now conclude that MRP and PID are mutually independent. On on side
MRP implies c = ℵ2, while PID is compatible with CH. So MRP does not imply
PID. On the other side PID implies that there are no Souslin tree, while MRP
is compatible with the existence of such trees, so PID does not imply MRP.
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