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Introduction

In this dissertation we will present some connections between the theory of commutative unital
C∗-algebras, a specific domain of functional analysis, and the theory of Boolean valued models,
which pertains to logic and set theory. More specifically, the main purpose will be to show that
a commutative unital C∗-algebra A, whose spectrum is extremely disconnected, can be identified
with the B-names for complex numbers in the boolean valued model for set theory V B, where B
is the complete boolean algebra given by clopen sets on the spectrum of A.

This study is divided in four chapters. Chapters 1, 2, 3 provide the tools needed in Chapter
4.

Chapter 1 is devoted to functional analysis, here the basics of the theory of C∗-algebras are
outlined. We are interested in commutative unital C∗-algebras. These, by Gelfand-Naimark’s
Theorem, are Banach spaces of the form C(X,C), with X a compact Hausdorff topological space.

Chapter 2 introduces the logical tools we will need in chapters 3 and 4. Sections 2.1 and
2.2 are an overview of elementary model theory and of the basic properties of boolean algebras,
respectively. In the last section of Chapter 2 we introduce the notion of boolean valued model for
an arbitrary first order language L, and we study the theory of these structures from a general
point of view. Given B a complete boolean algebra, the concept of B-valued model M comes
from pure set theory, and generalizes the usual two-valued Tarski semantics, associating to each
formula ϕ a value JϕKM ∈ B. Boolean valued models are generally used to obtain independence
proofs, and they are strictly related to the forcing method introduced by Cohen to prove the
independence of the continuum hypothesis.

In chapter 3 we present some classical results from pure set theory and we briefly introduce
forcing. The forcing method, developed by Cohen in 1963, is the most powerful tool (as of now)
used in mathematics in order to prove independence results. However in section 3.5 we reverse
the common perception of forcing, and we show how to use forcing as a tool to derive theorems
within ZFC by means of the concept of generic absoluteness.

Finally, in Chapter 4, we build a bridge between the theories exposed earlier. In section 4.1 we
introduce and study the space of functions C(St(B), X) where B is a complete boolean algebra,
St(B) is the space of ultrafilters–or equivalently maximal ideals–on B, and X a topological space
with some specific properties. In particular we show that this type of spaces can be interpreted
as B-valued models which contain X as a proper submodel. In section 4.3 we analyze CB, the
set of B-names for complex numbers in the boolean model V B. This family of objects is shown
to be isomorphic (in the sense of B-valued models) to the space of function C+(St(B),C), which
is the set of all continuous functions from the Stone space of B with image in C ∪ {∞} (seen as
the one point compactification of C) such that the preimage of {∞} is meager.

The boolean isomorphism between CB and C+(St(B),C) might be an interesting tool to
translate ideas and results arising in set theory to ideas and results arising in the study of
commutative C∗-algebras, and conversely. This could be the case since, by the results of section
4.2, commutative C∗-algebras can be studied in this context appealing to Gelfand Transform:
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given a commutative unital C∗-algebra A with extremely disconnected spectrum, there is an
isomorphism (which can be defined using the Gelfand Transform) of the C∗-algebras A and
C(St(B),C), where B is the boolean algebra given by clopen sets in the weak∗ topology on the
spectrum of A. By means of this isomorphism A can be therefore embedded in CB, and the
spectrum of A is mapped homeomorphically on the Stone space given by the ultrafilters (or
dually by the maximal ideals) of the boolean algebra B.

We conclude the fourth chapter with an application of the absoluteness properties proved in
Chapter 3. In particular, we will prove that Σ2-formulae are absolute between the first order
structures C (even endowed with arbitrary Borel predicates) and CB/G ∼= C+(St(B),C)/G (where
the latter is also endowed with natural liftings of the Borel predicates), which means that the
truth value of these formulae is the same in C and C+(St(B),C)/G. We remark that in this
context C+(St(B),C)/G is the ring of germs of continuos functions f : St(B) → C in the point
G ∈ St(B).

A concrete example is given letting B = MALG, the complete boolean algebra of measur-
able sets modulo null measure sets in C: in this case we obtain by Gelfand’s transform that
C(St(MALG)) ∼= L∞(C). We can now consider L∞+(C) to be the family of Lebesgue measurable
functions with range in C ∪ {∞} which takes value ∞ on a null set, and lift the above isomor-
phism to an isomorphism of C+(St(MALG)) ∼= L∞+(C). We conclude that whenever G is an
ultrafilter on MALG, L∞+(C)/G is an algebraically closed field extension of C which preserves
the truth value of Σ2-formulae of C.

More generally, we obtain a way to carry properties from the theory of C∗-algebras to the
first order theory of complex numbers in boolean valued models of ZFC, and conversely.
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Chapter 1

Functional Analysis

The aim of this chapter is to briefly present the tools we need from functional analysis. The final
intention is to define C∗-algebras and enunciate the Gelfand-Naimark Theorem. The reference
texts for this part, where to find details and proofs, are [2] and [11] for the general part of
functional analysis, and the first chapter of [4] for the part regarding C∗-algebras.

1.1 Banach Spaces and Weak Topologies

Since our aim is to present the theory of C∗-algebras, we will only work with vector spaces on
the complex field C.

Definition 1.1.1. Given a vector space V, a norm is a function:

‖.‖ : V → R

such that for x, y ∈ V, λ ∈ C:

• ‖x‖ ≥ 0,

• ‖x‖ = 0⇔ x = 0,

• ‖λx‖ = |λ|‖x‖,

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A normed vector space is a pair (V, ‖.‖V) (the norm could be omitted if no confusion can
arise).

A distance can be defined on such spaces through the norm, as follows:

d(x, y) = ‖y − x‖

We can consider therefore the topology induced by this distance.
Continuous linear functions between normed vector spaces have a strong characterization,

given by the following proposition:

Proposition 1.1.2. Assume T is a linear function between two normed spaces (V, ‖.‖V) and
(U , ‖.‖U ). Then the following are equivalent:
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1. T is continuous;

2. T is uniformly continuous;

3. T is continuous at 0;

4. T is bounded, i. e. there is C > 0 such that for all x ∈ V ‖T (x)‖U ≤ C‖x‖V holds.

Proof. A proof can be found in [11, Lemma 4.1].

Definition 1.1.3. Given a normed vector space V, its dual space is the set:

V∗ = {f : V → C | f is linear and continuous}

Remark 1.1.4. The previous proposition tells us that, if f ∈ V∗, the value sup‖x‖≤1|f(x)| is
bounded, hence we can define the following function:

‖.‖ : V∗ → R
f 7→ sup

‖x‖≤1

|f(x)|

and this happens to be a norm (see [11, Lemma 4.15]). This means that the dual space of a
normed vector space is a normed vector space itself, and it is always complete in the topology
induced by the norm ([11, Theorem 4.27]). This is an example of a Banach space.

Definition 1.1.5. A Banach space is a normed vector space (E , ‖.‖) which is complete for the
metric induced by the norm.

Besides the topology induced by the norm, in functional analysis there are two other topologies
which are often defined on Banach spaces (actually the second can be defined only on the dual
of a Banach space).

Definition 1.1.6. Given a set X, a family of functions F = {fi}i∈I , and a family of topological
spaces {Yi}i∈I such that fi : X → Yi, then the coarsest topology for X associated to F is the
smallest topology on X which renders each element in F continuous.

The proof of the existence of such a topology can be found in the first section of Chapter 3
in [2], where it is also explained how to find a basis for this topology:

Proposition 1.1.7. A basis for the coarsest topology of X associated to F is given by the family
of finite intersections of sets in {Uλ}λ∈Λ, where Uλ = f−1

i (V ) for some fi ∈ F and V open set
in Yi

Definition 1.1.8. Given a Banach space E , the weak topology (usually denoted with σ(E , E∗))
on E is the coarsest topology on E associated to E∗.

Remark 1.1.9. Since the functions in E∗ are continuous in the topology induced by the norm,
the norm topology on E contains the weak topology σ(E , E∗).

Proposition 1.1.10. The weak topology on E is generated by the following basis of neighborhoods,
as f1, . . . , fk ∈ E∗, ε ∈ R+ and x0 ∈ E vary:

Vx0
(f1, . . . , fk; ε) = {x ∈ E : |fi(x− x0)| < ε ∀i = 1, . . . , k} .
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A proof of this can be found section 3.2 of [2] (Proposition 3.4), with a deeper explanation
of this topology, and all the details which have been omitted here.

We are more interested on a third topology which can be defined on the dual of a Banach
space.

Definition 1.1.11. The bidual space E∗∗ of a Banach space is the dual space of E∗.

The following map is an embedding of E into E∗∗:

J : E → E∗∗

x 7→ x̂

where, given f ∈ E∗, x̂(f) = f(x). The linearity of x̂ follows from the linearity of f , and the
continuity holds because of the following:

|x̂(f)| = |f(x)| ≤ ‖f‖‖x‖.

Definition 1.1.12. Given a Banach space E , the weak∗ topology on E∗ (denoted by σ(E∗, E))
is the coarsest topology of E∗ associated to J(E).

Remark 1.1.13. If E is such that J is surjective, then the weak topology and the weak∗ topology
on E∗ overlap.

For our purposes, only few properties of this topology will be enunciated. All the facts we
have already stated and the properties we will present from now on about the weak∗ topology
can be found in Chapter 3, Section 4, in [2]. In particular, the reason why this topology is
considered in analysis is briefly explained in Remark 8 of that Chapter.

Proposition 1.1.14. The weak∗ topology on E∗ is generated by the following base of neighbor-
hoods, as x1, . . . , xk ∈ E, f0 ∈ E∗ and ε ∈ R+ vary:

Vf0(x1, . . . , xk; ε) = {f ∈ E : |x̂i(f − f0)| < ε ∀i = 1, . . . , k} .

Proposition 1.1.15. The space E∗ equipped with the weak∗ topology is an Hausdorff space.

An interesting aspect of this topology is that the convergence of a sequence to an element is
the pointwise convergence:

Proposition 1.1.16. A sequence (fn) in E∗ converges to f in the weak∗ topology if and only if
fn(x) converges to f(x) for all x ∈ E.

In defining σ(E∗, E) many open set from the topology defined by the norm on E∗ were removed
(the weak∗ topology is contained in the one induced by the norm). This operation was done in
order to have more compact sets and in fact we have the following result:

Theorem 1.1.17 (Banach-Alaoglu-Bourbaki). In the space E∗ with weak∗ topology, the closed
ball

B0(1) = {f ∈ V∗ : ‖f‖ ≤ 1}

is compact.

Proof. See [2, Theorem 3.16].

Remark 1.1.18. The theorem is in general false for the topology induced by the norm, since we
are working with vector spaces which may have infinite dimension (see [11, Theorem 2.26]).
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1.2 C∗-algebras and Gelfand Transform

Definition 1.2.1. A C-algebra A with a norm (so that A is a normed vector space) is a Banach
algebra if it is a Banach space and for x, z ∈ A:

‖xz‖ ≤ ‖x‖‖z‖

A Banach algebra is unital if there is a neutral element for the product.

Definition 1.2.2. We call involution on a C-algebra A an operator ∗ : A → A such that for
all x, y ∈ A and λ ∈ C:

• (x+ y)∗ = x∗ + y∗,

• (xy)∗ = y∗x∗,

• (λx)∗ = λx∗,

• x∗∗ = x.

A C-algebra A equipped with an involution is called a ∗-algebra.
A C∗-algebra is a Banach ∗-algebra which satisfies the property

‖x∗x‖ = ‖x‖2

Remark 1.2.3. As we can see, all these definitions tend to generalize operations which are well-
known in the field of complex numbers: C equipped with its usual product and with conjugation
as involution is the most elementary example of C∗-algebra.

Definition 1.2.4. Let A and B be two C-algebras. A homomorphism from A to B is a map
ϕ : A → B such that:

• ϕ is linear;

• ϕ bounded (hence continuous);

• ϕ(xy) = ϕ(x)ϕ(y) for each x, y ∈ A.

IfA and B are ∗-algebras, ϕ is said to be a ∗-homomorphism if it satisfies ϕ(x∗) = ϕ(x)∗ as well.
An isomorphism of C-algebras is a bijective homomorphism whose inverse is an homomorphism.
A ∗-isomorphism is a bijective ∗-homomorphism whose inverse is a ∗-homomorphism

There are many interesting examples of C∗-algebras which motivate the study of these objects,
but we are essentially interested in the following one:

Example 1.2.5. Let X be an Hausdorff and compact space. Consider

C(X) = {f : X → C | f is continuous}

with pointwise sum and product and the uniform norm. If we also define f∗ = f , that is
f∗(x) = f(x), it is easy to check that we obtain a C∗-algebra.

From now on, we will focus on commutative unital C∗-algebras. Gelfand theory starts from
a specific object which can be defined for a Banach algebra A: its spectrum.

Definition 1.2.6. Given a Banach algebra A the set of non-zero homomorphisms from A to C
is the spectrum of A, and we denote it with σ(A).
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Proposition 1.2.7. Given a commutative unital Banach algebra A and h ∈ σ(A), the following
holds:

• h(e) = 1

• |h(x)| ≤ ‖x‖

Proof. See [4, Proposition 1.10].

Proposition 1.2.8. The spectrum σ(A) of a commutative unital Banach algebra is an Hausdorff
compact subspace of A∗ in the weak∗ topology.

Proof. Since |h(x)| ≤ ‖x‖, σ(A) is a subset of the ball of radius 1 centered in 0 in A∗. This
means that the spectrum can be defined equivalently as

σ(A) = {h ∈ B1(0) : h(e) = 1 ∧ h(xy) = h(x)h(y) ∀x, y ∈ A} .

Since the conditions h(e) = 1 and h(xy) = h(x)h(y) are preserved under pointwise limits, σ(A)
is closed in B1(0), hence is an Hausdorff compact subspace of A∗ in the weak∗ topology.

Definition 1.2.9. The Gelfand transform of a Banach algebra A is the operator

ΓA : A → C(σ(A))

x 7→ x̂

where x̂(h) = h(x). We will often denote ΓA as Γ.

The Gelfand-Naimark Theorem shows a strong relation between a commutative unital C∗

and its spectrum.

Theorem 1.2.10 (Gelfand-Naimark). Assume A is a commutative and unital C∗-algebra, then
Γ is an isometric ∗-isomorphism from A to C(σ(A)).

Proof. See [4, Section 1.2, Theorem 1.20] for the details of the proof.

Remark 1.2.11. The Gelfand-Naimark Theorem tells us that, in the study of commutative unital
C∗-algebras, it is enough to focus on the function algebras of the form C(X) with X compact
Hausdorff space, since any commutative unital C∗-algebra has an isomorphic copy among these
type of C∗-algebras.
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Chapter 2

First order logic and Boolean
Valued Models

This chapter will be dedicated to mathematical logic, with a focus on boolean valued models and
their semantics. Boolean valued models generalize the structure of first order models, combining
first order model theory with boolean algebras. We will first give a presentation of the basic
tools and theorems of model theory. Our exposition will be short, we refer to [9, Chapters 1,2]
for further details. References for the part regarding the basic properties of boolean algebras are
[5] and [7].

2.1 First order logic

Definition 2.1.1. A language is a set:

L = {Ri : i ∈ I} ∪ {fj : j ∈ J} ∪ {ck : k ∈ K}

where:

• every Ri is called relation symbol;

• every fj is called function symbol;

• every ck is called constant symbol;

with a function
ΘL : {Ri : i ∈ I} ∪ {fj : j ∈ J} → N

which associates to each relation (function) symbol a number n which is called arity of the
relation (function).

We will usually refer to a language omitting the function ΘL (if no confusion can arise).

Definition 2.1.2. Given a language

L = {Ri : i ∈ I} ∪ {fj : j ∈ J} ∪ {ck : k ∈ K}

a L-structure M is a tuple 〈M,RMi : i ∈ I, fMj : j ∈ J, cMk : k ∈ K〉 where:

• M is a non-empty set, called domain of the structure;
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• RMi is a subset of Mn (where n is the arity of Ri) called interpretation of Ri in M;

• fMj is a function from Mn to M (where n is the arity of fj) called interpretation of fj
in M;

• cMk is a element of M called interpretation of ck in M .

The relevant maps between L-structures are those which preserve the interpretations of sym-
bols in L.

Definition 2.1.3. Given two L-structures M and N , an L-embedding is an injective map
ϕ : M → N such that:

• given a relation symbol R ∈ L whose arity is n,

(a1, . . . , an) ∈ RM ⇔ (ϕ(a1), . . . , ϕ(an)) ∈ RN

• given a function symbol f ∈ L whose arity is n,

ϕ(fM(a1, . . . , an)) = fN (ϕ(a1), . . . , ϕ(an))

• given a constant symbol c ∈ L,
ϕ(cM) = cN

An isomorphism is a bijective L-embedding.

Definition 2.1.4. If M ⊆ N andM and N are two L-structures such that the immersion of M
in N is an L-embedding, we say thatM is a substructure of N , or that N is an extension of
M.

Remark 2.1.5. At this stage of model theory, the aim is to formalize the idea that a formula is
true in a certain structure. In order to do this, we need to formalize the notion of formula in a
language L. Among the symbols we want to appear in a formula there are variables, hence, from
now on, when we will consider a certain language L, we will also assume to have a countable set
V = {x1, x2, . . . } of variables.

Definition 2.1.6. Given a language L, the set of L-terms is the smallest set TL such that:

• if c is a constant symbol in L, then c ∈ TL;

• if x ∈ V, then x ∈ TL;

• if t1, . . . , tn ∈ TL and f is a function symbol in L with arity n, then f(t1, . . . , tn) ∈ TL.

A closed term is a term in which no variables occur.

Definition 2.1.7. Given a language L, we say that ϕ is an atomic L-formula (or atomic
formula) if it is one of the following:

• t1 = t2, where t1 and t2 are L-terms;

• R(t1, . . . , tn) where R is relation symbol in L of arity n and ti are terms.

The set of all L-formulae (or formulae) is the smallest set FL such that it contains the atomic
L-formulae and such that:
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• if ϕ ∈ F then ¬ϕ ∈ F ;

• if ϕ,ψ ∈ F then ϕ ∧ ψ ∈ F ;

• if ϕ ∈ F then ∃xϕ ∈ F .

We will also use the following abbreviations:

• ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ);

• ϕ→ ψ ≡ ¬ϕ ∨ ψ;

• ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ);

• ∀xϕ ≡ ¬∃x¬ϕ.

Remark 2.1.8. Given a formula ϕ, an occurrence of a variable x is bound if in such occurrence
x is immediately after a quantification symbol ∃ or ∀. An occurrence of x is free if is not bound.
The set of free variables of a formula ϕ is the set of those variables which have at least one
free occurrence in ϕ. If the set of free variables of ϕ is contained in {x1, . . . , xn} we will write
ϕ(x1, . . . , xn) instead of ϕ. If a L-formula has no free variables, we will call it a L-statement
(or a statement).

Definition 2.1.9. Let {x1, . . . , xn} be a set of variables. A valuation in an L-structure M of
these variables is a function

ν : {x1, . . . , xn} →M

If ν(xi) = ai, we will also write ν = (x1/a1, . . . , xn/an).
Given a formula ϕ(x1, . . . , xn), with ϕ(ν) or ϕ(a1, . . . , an) we will denote the formula ϕ in

which every occurrence of a variable xi is substituted with ν(xi) = ai. We obtain this way a
formula with parameters in M.

Definition 2.1.10. Given an L-term t whose variables are included in the domain of a valuation
ν in M, we inductively define t(ν) ∈M as follows:

• if t is a constant c, then t(ν) = c;

• if t is a variable x, then t(ν) = ν(x);

• if t = f(t1, . . . , tn), where f is a function symbol in L of arity n and ti are L-terms, then
t(ν) = f(t1(ν), . . . , tn(ν)).

Definition 2.1.11 (Tarski’s Semantic). Given an L-structure M, let ϕ be a formula in the
language L whose free variables are in {x1, . . . , xn}, and ν a valuation in M whose domain
contains {x1, . . . , xn}. We say that ϕ(ν) is true in M, or M |= ϕ(ν), in the following cases (by
recursion):

• if ϕ ≡ t1 = t2, then M |= ϕ(ν) iff t1(ν) = t2(ν);

• if ϕ ≡ R(t1, . . . , tn), then M |= ϕ(ν) iff (t1(ν), . . . , tn(ν)) ∈ RM;

• if ϕ ≡ ¬ψ, then M |= ϕ(ν) iff M 6|= ψ(ν)

• if ϕ ≡ ψ ∧ θ, then M |= ϕ(ν) iff M |= ψ(ν) and M |= θ(ν);

• if ϕ ≡ ∃yψ(y), then M |= ϕ(ν) iff there is b ∈M such that M |= ψ(y/b, ν).
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Remark 2.1.12. If ϕ is a statement, the previous definition does not require any valuation in
order to decide if M |= ϕ.

Definition 2.1.13. Given a language L, a L-theory (or just theory) is a set T of L-statements.
We say that a theory is consistent if there is a L-structure M such that for each ϕ ∈ T ,

M |= ϕ holds (we might also write M |= T ).
We say that a L-statement ϕ is a logical consequence of a L-theory T if

M |= T ⇒M |= ϕ

Remark 2.1.14. We can give another notion of logical consequence, assuming some rules which
tell us how to obtain a formula from other formulae, as we do in a proof. A collection of such
rules is called a proof system, and we will refer to the one defined in [12] (Chapter 2, Section
6).

Logical axioms:

– ϕ ∨ ¬ϕ;

– x = x;

– ϕ(a)→ ∃ϕ(x);

– (x = y)→ (f(x) = f(y))

– (x = y)→ (ϕ(x)→ ϕ(y)).

Rules of inference:

– ϕ ` ϕ ∨ ψ;

– ϕ ∨ ϕ ` ϕ;

– (ϕ ∨ (ψ ∨ χ)) ` ((ϕ ∨ ψ) ∨ χ);

– (ϕ ∨ ψ) ∧ (¬ϕ ∨ χ) ` ψ ∨ χ;

– if x is not free in ψ, ϕ(a)→ ψ ` ∃x(ϕ(x)→ ψ);

We will say that a statement ψ is syntactically provable from a theory T , and denote it
with T ` ψ, if there is a finite sequence of formulae ϕ1, . . . , ϕk such that ϕk = ψ and for each
1 ≤ i ≤ k one of the following holds:

• ϕi ∈ T ;

• ϕi is a logical axiom;

• ϕi can be obtained from ϕ1, . . . , ϕi−1 through a rule of inference.

Theorem 2.1.15 (Soundness Theorem). Given an L-theory T and an L-statement ϕ, if T ` ϕ
then T |= ϕ.

The vice versa holds as well.

Theorem 2.1.16 (Completeness Theorem). Given an L-theory T and an L-statement ϕ, if
T |= ϕ then T ` ϕ.

Proof. A proof of both theorems can be found in [12] (Chapter 2 and 4 respectively).

We conclude this part presenting the most important theorems of elementary model theory.
The omitted proofs can be found in [9, Chapter 2, Sections 1 and 3].
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Theorem 2.1.17 (Compactness Theorem). A theory T is consistent if and only if every finite
subset of T is consistent.

Definition 2.1.18. Given two L-structures M and N , we say that they are elementarily
equivalent, and denote it with M≡ N , if for every L-statement ϕ

M |= ϕ⇔ N |= ϕ

We say thatM is an elementary substructure of N , denoting it withM≺ N , if M ⊆ N
and given a L-formula ϕ(x1, . . . , xn) with (a1, . . . , an) ∈Mn, then:

M |= ϕ(a1, . . . , an)⇔ N |= ϕ(a1, . . . , an)

Let T be a set of L-formulae. We will write

M≺T N

if the property above holds only for ϕ ∈ T .

Theorem 2.1.19 (Upward Löwenheim−Skolem Theorem). Let M be an infinite L-structure
and κ a cardinal such that κ ≥ |L|+ |M |. Then there is an L-structure N such that |N | = κ and
M≺ N .

Theorem 2.1.20 (Downward Löwenheim−Skolem Theorem). Let M be an L-structure and
A ⊆M . There is N such that A ⊆ N , |N | ≤ |A|+ |L|+ ℵ0 and N ≺M.

2.2 Boolean Algebras

As mentioned earlier, good references for the material of this part are [5] and [7].

Definition 2.2.1. A partial order (B, <) is called a boolean algebra if:

• every two elements a, b ∈ B admit a unique least upper bound a ∨ b;

• every two elements a, b ∈ B admit a unique greatest lower bound a ∧ b;

• there are two elements 0B, 1B ∈ B such that for every a ∈ B it holds 0B ≤ a ≤ 1B;

• is distributive, which means

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
for every a, b, c ∈ B;

• is complemented, that is for every a ∈ B there is a unique ¬a such that a∧¬a = 0B and
a ∨ ¬a = 1B.

A boolean algebra is complete if any {ai : i ∈ I} subset of B admits a supremum
∨
i∈I ai and

an infimum
∧
i∈I ai.

Remark 2.2.2. Given a, b ∈ B a boolean algebra, we have that:

a ≤ b⇔ a ∧ b = a

a ≤ b⇔ a ∨ b = b
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Example 2.2.3. Given a topological space X, CL(X) is the set of all clopen subsets of X.
CL(X) is a boolean algebra with the following operations:

A ≤ B ⇔ A ⊆ B

A ∧B = A ∩B

A ∨B = A ∪B

¬A = X \A

Another example is given by the set RO(X), the collection of all regular open subsets of a

topological space X. An open subset A of X is regular if A = Å. With the following operations,
RO(X) is a complete boolean algebra:

A ≤ B ⇔ A ⊆ B

A ∧B = A ∩B

A ∨B = ˚A ∪B

¬A = ˚(X \A)∨
i∈I

Ai =
⋃̊
Ai

∧
i∈I

Ai =
⋂̊
Ai

A proof of this can be found in [5, Chapter 10].

Definition 2.2.4. A morphism between two boolean algebras B and C is a map ϕ : B → C
such that, given a, b ∈ B:

• ϕ(0B) = 0C and ϕ(1B) = 1C;

• if a ≤ b then ϕ(a) ≤ ϕ(b);

• ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b);

• ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b);

• ϕ(¬a) = ¬ϕ(a).

An isomorphism of boolean algebras is a bijective morphism. A morphism is complete if
preserves all suprema and infima.

Lemma 2.2.5. Every isomorphism is complete.

Proof. Let i : B→ C an isomorphism and consider {aj : j ∈ J} ⊆ B. We want to show

i

∨
j∈J

aj

 =
∨
j∈J

i(aj)
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On the one hand
∨
j∈J aj ≥ aj , hence i(

∨
j∈J aj) ≥

∨
j∈J i(aj). On the other hand, if b ≥ i(aj)

for every j ∈ J , let a ∈ B such that b = i(a). It follows a ≥ aj for each j ∈ J , hence a ≥
∨
j∈J aj ,

and in conclusion

b = i(a) ≥ i

∨
j∈J

aj


The proof for infima is similar.

We now turn to the topological counterparts of a boolean algebra, its Stone space.

Definition 2.2.6. Given B a boolean algebra, a filter is a subset F of B such that:

• 1B ∈ F and 0B /∈ F ;

• if a ∈ F and b ∈ F then a ∧ b ∈ F ;

• if a ∈ F and a ≤ b then b ∈ F .

A ultrafilter G is a filter such that one of the following equivalent properties holds:

• if a /∈ G then ¬a ∈ G;

• if a1 ∨ · · · ∨ ak ∈ G then there is a ai such that ai ∈ G.

The Stone space of B is the set

St(B) = {G ⊂ B : G is a ultrafilter}

Remark 2.2.7. It follows from the definitions that for a given ultrafilter G on the boolean algebra
B, a ∈ G⇔ ¬a /∈ G.

Remark 2.2.8. Let i : B→ C be an injective morphism of boolean algebras, and let F be a filter
in B. We can define the set:

i∗(F ) = {a ∈ C : ∃b ∈ F such that a ≥ i(b)}

Since the only b ∈ B such that its image is 0C is 0B, i∗(F ) can be easily verified to be a filter.

Theorem 2.2.9 (Maximal Ideal Theorem). If F is a filter in a boolean algebra B, then F can
be extended to a ultrafilter in B.

Proof. A proof of this theorem can be found in [7, Chapter 2, Proposition 2.16].

Definition 2.2.10. Let B be a boolean algebra and F ⊆ B a filter. The following is an equiva-
lence relation on B:

a ∼F b⇔ ∃f ∈ F : a ∧ f = b ∧ f

The set of all equivalence classes B/F is called quotient algebra, and it is a boolean algebra
with the following order relation and operations:

• [a]F ≤ [b]F ⇔ a < b;

• [a ∧ b]F = [a]F ∧ [b]F ;

• [a ∨ b]F = [a]F ∨ [b]F ;

• ¬[a]F = [¬a]F .
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Moreover 1B/F = [1B]F and 0B/F = [0B]F (a proof of all these facts can be found in [7, Lemma
and Definition 5.22]).

Proposition 2.2.11. Let B and C be two boolean algebras and i : B→ C an injective morphism.
Assume F is a filter in B, then the map

iF : B/F → C/i∗(F )

[a]F 7→ [i(a)]i∗(F )

is a well-defined injective morphism of boolean algebras. Moreover, if i is an isomorphism, iF is
an isomorphism as well.

Proof. First, we show that iF is well-defined. Let a, a′ ∈ B such that a ∼F a′, hence there is
f ∈ F such that a ∧ f = a′ ∧ f . This implies

i(a) ∧ i(f) = i(a ∧ f) = i(a′ ∧ f) = i(a′) ∧ i(f)

so that i(a) ∼i∗(F ) i(a
′) and iF is a well-defined map.

The map iF is a morphism, in fact:

• we have that

iF (0B/F ) = iF ([0B]F ) = [i(0B)]i∗(F ) = [0C]i∗(F ) = 0C/i∗(F )

and
iF (1B/F ) = iF ([1B]F ) = [i(1B)]i∗(F ) = [1C]i∗(F ) = 1C/i∗(F )

• if [a]F ≤ [b]F ∈ B/F :

iF ([a]F ) = [i(a)]i∗(F ) ≤ [i(b)]i∗(F ) = iF ([b]F )

since a ≤ b and i is a morphism itself;

• if [a]F , [b]F ∈ B/F :

iF ([a]F ∧ [b]F ) = iF ([a ∧ b]F ) = [i(a ∧ b)]i∗(F ) = [i(a) ∧ i(b)]i∗(F ) =

[i(a)]i∗(F ) ∧ [i(b)]i∗(F ) = iF ([a]F ) ∧ iF ([b]F )

• if [a]F , [b]F ∈ B/F :

iF ([a]F ∨ [b]F ) = iF ([a ∨ b]F ) = [i(a ∨ b)]i∗(F ) = [i(a) ∨ i(b)]i∗(F ) =

[i(a)]i∗(F ) ∨ [i(b)]i∗(F ) = iF ([a]F ) ∨ iF ([b]F )

• if [a]F ∈ B/F :

iF (¬[a]F ) = iF ([¬a]F ) = [i(¬a)]i∗(F ) = [¬i(a)]i∗(F ) = ¬[i(a)]i∗(F ) = ¬iF ([a]F )

The morphism iF is injective since assuming i(a) ∼i∗(F ) i(b), it can be found f ∈ i∗(F ) such
that

i(a) ∧ f = i(b) ∧ f
This means that we can find c ∈ F such that f ≥ i(c), so that

i(a) ∧ i(c) = i(a) ∧ (i(c) ∧ f) = i(b) ∧ (i(c) ∧ f) = i(b) ∧ i(c)

Since i is injective this implies a ∧ c = b ∧ c, thus a ∼F b.
Assume i is surjective. Then iF is surjective as well, since given b ∈ N it can be found a

a ∈M such that i(a) = b, hence [b]i∗(F ) = iF ([a]F ).
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Remark 2.2.12. If G is a ultrafilter in B, then B/G = {[0B ]G, [1B ]G}. In fact, there are only two
classes: the one containing all the elements in G, and the one containing their complements (i.
e. all the elements not in G).

If a ∈ G, then a ∧ a = 1B ∧ a, which leads to a ∼G 1B (this is true for any filter F ). On the
other side, if a /∈ G, then ¬a ∈ G, and since a ∧ ¬a = 0B ∧ ¬a, a ∼G 0B holds.

On St(B) we define the topology generated by the family of sets {Oa}a∈B, where:

Oa = {G ∈ St(B) : a ∈ G}

Proposition 2.2.13. Given a boolean algebra B, St(B) is an Hausdorff compact space, and the
family {Oa}a∈B is a base of clopen sets (i.e. St(B) is 0-dimensional).

Proof. A proof of this proposition can be found in [7, Theorem 7.8].

Theorem 2.2.14 (Stone’s Representation Theorem). Every boolean algebra B is isomorphic to
the boolean algebra CL(St(B)).

Proof. The map

Φ : B→ CL(St(B))

a 7→ Oa

is an isomorphism of boolean algebras. The details of the proof can be found in [7, Theorems
2.1 and 7.8].

Remark 2.2.15. With the following proposition we will characterize the completeness of a boolean
algebra with the topology of its Stone space. In particular, a topological space X is extremely
disconnected if RO(X) = CL(X).

Proposition 2.2.16. A boolean algebra B is complete ⇔ St(B) is extremely disconnected.

Proof. A proof of this proposition can be found in [7, Proposition 7.21].

The following proposition gives a characterization of 0-dimensional Hausdorff compact spaces
in terms of the Stone space of a specific boolean algebra. We will give an explicit proof of it
since we will need the map defined in it later on.

Proposition 2.2.17. Let X be a 0-dimensional compact Hausdorff topological space, then X is
homeomorphic to St(CL(X)).

Proof. We shall define the map:

ϕ : X → St(CL(X))

x 7→ Gx

where Gx = {A ∈ CL(X) : x ∈ A} can be easily checked to be a ultrafilter.

Injective: If x 6= y, let A be a clopen set such that x ∈ A, y ∈ Ac (we can find such set since X
is 0-dimensional and Hausdorff). A ∈ Gx and Ac ∈ Gy, thus these ultrafilters have to be
different.
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Surjective: Let G ∈ St(CL(X)); it is enough to show that C =
⋂
G is a singleton. In fact,

C = {z} implies that if A ∈ G then z ∈ A. On the other hand, if B is clopen and
a /∈ B, it cannot be B ∈ G (otherwise a /∈ C), hence z ∈ Bc ∈ G. This means that
A ∈ G ⇔ z ∈ A ⇔ A ∈ Gz, so that G = Gz. We have that C is non-empty, because G
has the finite intersection property and X is compact. Let x 6= y be in C, we can therefore
find a clopen set A such that x ∈ A and y /∈ A. It follows that

A ∈ G⇔ Ac /∈ G

which means

x ∈ C ⇔ y /∈ C

and this is absurd.

Continuous and open: Let A be a clopen set in X. x ∈ A if and only if A ∈ Gx, which means
ϕ(A) = OA. It follows that the map ϕ is open and continuous.

Proposition 2.2.18. Let B and C be two boolean algebras, and f be a continuous map:

f : St(C)→ St(B)

We can define the following morphism of boolean algebras:

f∗ : B→ C

a 7→ f−1[a]

where we are identifying the elements of a boolean algebra with the clopen sets of their associated
Stone spaces as in Theorem 2.2.14.

Given another boolean algebra D, and a continuous map

g : St(B)→ St(D)

the following properties hold:

1. (g ◦ f)∗ = f∗ ◦ g∗;

2. if B = C and f = id, then id∗ = idB;

3. if f is an homeomorphism, then (f∗) is an isomorphism of boolean algebras and (f∗)−1 =
(f−1)∗.

Proof. A proof of this can be found in [7, Theorem 8.2].

Remark 2.2.19. The last proposition tells us that if two boolean algebras have homeomorphic
Stone spaces, then they are isomorphic. Since the converse is trivial, we have the following:

Corollary 2.2.20. The boolean algebras B and C are isomorphic if and only if St(B) and St(C)
are homeomorphic.
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2.3 Boolean Valued Models

In a first order model a formula can be interpreted as true or false. Given a complete boolean
algebra B, B-boolean valued models generalize Tarski semantics associating to each formula a
value in B, so that there are no more only true and false propositions (those associated to 1B
and 0B respectively), but also other “intermediate values” (even not comparable values, since B
is not necessarily a linear order) of truth. This section presents and extends some of the contents
of the notes [14] regarding boolean valued models.

Definition 2.3.1. Given a complete boolean algebra B, and a first order language

L = {Ri : i ∈ I} ∪ {fj : j ∈ J} ∪ {ck : k ∈ K} ,

a B-boolean valued model (or B-valued model) M in the language L is a tuple

〈M,=M, RMi : i ∈ I, fMj : j ∈ J, cMk : k ∈ K〉

where:

1. M is a non-empty set, called domain of the B-boolean valued model, whose elements are
called B-names;

2. =M is the boolean value of the equality:

=M: M2 → B

(τ, σ) 7→ Jτ = σKMB

3. RMi is the boolean interpretation of the n-ary relation symbol Ri:

RMi : Mn → B

(τ1, . . . , τn) 7→ JRi(τ1, . . . , τn)KMB

4. fMj is the boolean interpretation of the n-ary function symbol fj :

fMj : Mn+1 → B

(τ1, . . . , τn, σ) 7→ Jfj(τ1, . . . , τn) = σKMB

5. cMk is the boolean interpretation of the constant symbol ck, and it is an element in M .

We require that the following conditions hold:

for τ, σ, χ ∈M ,

i) Jτ = τKMB = 1B;

ii) Jτ = σKMB = Jσ = τKMB ;

iii) Jτ = σKMB ∧ Jσ = χKMB ≤ Jτ = χKMB ;

for Ri ∈ L with arity n, and (τ1, . . . , τn), (σ1, . . . , σn) ∈Mn,

iv) (
∧
h∈{1,...,n} Jτh = σhK

M
B ) ∧ JRi(τ1, . . . , τn)KMB ≤ JRi(σ1, . . . , σn)KMB ;
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for fj ∈ L with arity n, and (τ1, . . . , τn), (σ1, . . . , σn) ∈Mn and µ, ν ∈M ,

v) (
∧
h∈{1,...,n} Jτh = σhK

M
B ) ∧ Jfj(τ1, . . . , τn) = µKMB ≤ Jfj(σ1, . . . , σn) = µKMB ;

vi)
∨
µ∈M Jfj(τ1, . . . , τn) = µKMB = 1B;

vii) Jfj(τ1, . . . , τn) = µKMB ∧ Jfj(τ1, . . . , τn) = νKMB ≤ Jµ = νKMB .

If no confusion can arise, we will omit the pedix B and we will confuse a function or predicate
symbol with its interpretation.

Remark 2.3.2. Every first order model naturally defines a B-valued model with B = {0, 1}.

Remark 2.3.3. Given τ = (τ1, . . . , τn) and σ = (σ1, . . . , σn) in Mn, we will often use the following
abbreviation

Jτ = σKM ≡
∧

h∈{1,...,n}

Jτh = σhK
M

Definition 2.3.4. Let M be a B-valued model and N a C-valued model in the same language
L. Let

i : B→ C

be a morphism of boolean algebras and Φ ⊆M ×N a relation. The couple 〈i,Φ〉 is a morphism
of boolean valued models if:

1. domΦ = M ;

2. given (τ1, σ1), (τ2, σ2) ∈ Φ:

i(Jτ1 = τ2K
M
B ) ≤ Jσ1 = σ2K

N
C ,

3. given R an n-ary relation symbol and (τ1, σ1), . . . , (τn, σn) ∈ Φ:

i(JR(τ1, . . . , τn)KMB ) ≤ JR(σ1, . . . , σn)KNC ,

4. given f an n-ary function symbol and (τ1, σ1), . . . , (τn, σn), (µ, ν) ∈ Φ:

i(Jf(τ1, . . . , τn) = µKMB ) ≤ Jf(σ1, . . . , σn) = νKNC ,

5. given a constant symbol c and (τ, σ) ∈ Φ:

i(Jτ = cKMB ) ≤ Jσ = cKNC .

An injective morphism is a morphism such that in 2 equality holds.

An embedding of boolean valued models is an injective morphism such that in 3-5 equality
holds.

An embedding 〈i,Φ〉 from M to N is called isomorphism of boolean valued models if i is
an isomorphism of boolean algebras and for every b ∈ N there is a a ∈M such that (a, b) ∈ Φ.

Remark 2.3.5. When B = C we will consider i = idB unless otherwise stated.
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Definition 2.3.6. Suppose M is a B-valued model and N a C-valued model (both in the same
language L) such that B is a complete subalgebra of C, M ⊆ N , and

JR(τ1, . . . , τn)KMB = JR(τ1, . . . , τn)KNC

Jf(τ1, . . . , τn) = σKMB = Jf(τ1, . . . , τn) = σKNC

Jτ = cKMB = Jτ = cKNC
for all relation symbols R, all function symbols f , and all constant symbols c in L. Let J be the
immersion of M into N . Then 〈idB, J〉 is an embedding of boolean valued models and N is said
to be a boolean extension of M.

Remark 2.3.7. The definition of valuation of variables in a first order model can be easily
generalized to B-valued models, as the notion of formula with parameters. We will therefore use
the notations defined in Definition 2.1.9 for B-valued models as well.

Definition 2.3.8. Given a B-valued modelM in a language L, let ϕ be a L-formula whose free
variables are in {x1, . . . , xn}, and let ν be a valuation inM whose domain contains {x1, . . . , xn}.
We define now Jϕ(ν)KMB , the boolean value of ϕ(ν).

First, let t be an L-term and τ ∈M ; we define recursively J(t = τ)(ν)KMB ∈ B as follows:

• if t is a constant c, then

J(c = τ)(ν)KMB =
q
cM = τ

yM
B

• if t is a variable x, then
J(x = τ)(ν)KMB = Jν(x) = τKMB

• if t = f(t1, . . . , tn) where ti are terms and f is an n-ary function symbol, then

J(f(t1, . . . , tn) = τ)(ν)KMB =
∨

σ1,...,σn∈M

 ∧
1≤i≤n

J(ti = σi)(ν)KMB

 ∧ Jf(σ1, . . . , σn) = τKMB

Given a formula ϕ, we define recursively Jϕ(ν)KMB as follows:

• if ϕ ≡ t1 = t2, then

J(t1 = t2)(ν)KMB =
∨
τ∈M

J(t1 = τ)(ν)KMB ∧ J(t2 = τ)(ν)KMB

• if ϕ ≡ R(t1, . . . , tn), then

J(R(t1, . . . , tn))(ν)KMB =
∨

τ1,...,τn∈M

 ∧
1≤i≤n

J(ti = τi)(ν)KMB

 ∧ JR(τ1, . . . , τn)KMB

• if ϕ ≡ ¬ψ, then
Jϕ(ν)KMB = ¬ Jψ(ν)KMB

• if ϕ ≡ ψ ∧ θ, then
Jϕ(ν)KMB = Jψ(ν)KMB ∧ Jθ(ν)KMB
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• if ϕ ≡ ∃yψ(y), then

Jϕ(ν)KMB =
∨
τ∈M

Jψ(y/τ, ν)KMB

If no confusion can arise, we omit the index M and the pedix B, and we simply denote the
boolean value of a formula ϕ with parameters in M by JϕK.

Remark 2.3.9. In the previous definition we considered the sup of several subsets of B, and this
motivates our request to work with a complete boolean algebra. If we assume that the language
does not contain function symbols, the definition of the boolean value of atomic formulae is
simpler:

J(t1 = t2)(ν)K = Jt1(ν) = t2(ν)K

J(R(t1, . . . , tn))(ν)K = JR(t1(ν), . . . , tn(ν))K

where for a term t which is a constant or a variable, t(ν) can be defined verbatim for B-valued
models as for first order models. In this case we do not require B to be complete for the definition
of the boolean value of atomic formulae, but a certain degree of completeness of B is necessary
to give a semantic interpretation of the existential quantifier.

Proposition 2.3.10. Let M be a B-valued model and N a C-valued model in the same language
L. Assume 〈i,Φ〉 is an isomorphism of boolean valued models.

Then for any L-formula ϕ(x1, . . . , xn), and for every (τ1, σ1), . . . , (τn, σn) ∈ Φ we have that:

i(Jϕ(τ1, . . . , τn)KMB ) = Jϕ(σ1, . . . , σn)KNC

Proof. The proof proceeds by induction on the complexity of the formula. We will write ν =
(x1/τ1, . . . , xn/τn) and ν′ = (x1/σ1, . . . , xn/σn) with (τi, σi) ∈ Φ.

Atomic formulae: First, consider (η, ζ) ∈ Φ and t an L-term. We will show

i(J(t = η)(ν)KMB ) = J(t = ζ)(ν′)KNC

If t is a constant or a variable, this follows because i is an injective morphism. If t =
f(t1, . . . , tn) we use the fact that i is complete (see Lemma 2.2.5) and that 〈i,Φ〉 is an
embedding and proceed by induction on the terms ti:

i(J(f(t1, . . . , tn) = η)(ν)KMB ) =

∨
χ∈Mn

 ∧
1≤i≤n

i(J(ti = χi)(ν)KMB )

 ∧ i(Jf(χ1, . . . , χn) = ηKMB )

Since Im(Φ) = N we have:

∨
χ∈Mn

 ∧
1≤i≤n

i(J(ti = χi)(ν)KMB )

 ∧ i(Jf(χ1, . . . , χn) = ηKMB ) =

∨
ω∈Nn

 ∧
1≤i≤n

J(ti = ωi)(ν
′)KNC

 ∧ Jf(ω1, . . . , ωn) = ζKNC =

J(f(t1, . . . , tn) = ζ)(ν′)KNC
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Let now ϕ ≡ t1 = t2. By induction we have:

i(J(t1 = t2)(ν)KMB ) =
∨
χ∈M

i(J(t1 = χ)(ν)KMB ) ∧ i(J(t2 = χ)(ν)KMB )

From Im(Φ) = N follows that:∨
χ∈M

i(J(t1 = χ)(ν)KMB ) ∧ i(J(t2 = χ)(ν)KMB ) =

∨
ω∈N

J(t1 = ω)(ν′)KNC ∧ J(t2 = ω)(ν′)KNC = J(t1 = t2)(ν′)KNC

If ϕ ≡ R(t1, . . . , tn) we have:

i(JR(t1, . . . , tn)(ν)KMB ) =

∨
χ∈Mn

 ∧
1≤i≤n

i(J(ti = χi)(ν)KMB )

 ∧ i(JR(χ1, . . . , χn)(ν)KMB ) =

∨
ω∈Nn

 ∧
1≤i≤n

J(ti = ωi)(ν
′)KNC

 ∧ JR(ω1, . . . , ωn)(ν′)KNC = JR(t1, . . . , tn)(ν′)KNC

Negation: Consider ϕ ≡ ¬ψ. We have that:

i(Jϕ(ν)KMB ) = ¬i(Jψ(ν)KMB ) = ¬ Jψ(ν′)KNC = Jϕ(ν′)KNC

Conjunction: If ϕ ≡ ψ ∧ θ then:

i(Jϕ(ν)KMB ) = i(Jψ(ν)KMB ) ∧ i(Jθ(ν)KMB ) = Jψ(ν′)KNC ∧ Jθ(ν′)KNC = Jϕ(ν′)KNC

Existential: Let ϕ ≡ ∃yψ(y). We have that:

i(Jϕ(ν)KMB ) =
∨
χ∈M

i(Jψ(y/χ, ν)KMB ) =
∨
ω∈N

Jψ(y/ω, ν′)KNC = Jϕ(ν′)KNC

where second equality holds since 〈i,Φ〉 is an isomorphism.

Now we want to generalize the Soundness Theorem 2.1.15 to boolean valued models. In order
to do this we first need a:

Lemma 2.3.11. Given a B-valued model M in the language L, assume ϕ(x1, . . . , xn) is an
L-formula and τ = (τ1, . . . , τn), σ = (σ1, . . . , σn) ∈Mn. Then:

Jτ = σK ∧ Jϕ(τ)K ≤ Jϕ(σ)K

Proof. The proof proceeds by induction on the complexity of ϕ. Given ϕ(x1, . . . , xn), we can
consider ν = (x1/τ1, . . . , xn/τn) and ν′ = (x1/σ1, . . . , xn/σn), so that the thesis becomes:

Jτ = σK ∧ Jϕ(ν)K ≤ Jϕ(ν′)K
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Atomic formulae: If ϕ is an atomic formula the thesis follows from the definitions and from [5,
Lemma 3, Chapter 8]. Here is the proof: first, consider a term t and µ ∈M . We will show,
recursively on the complexity of the term, that

Jτ = σK ∧ J(t = µ)(ν)K ≤ J(t = µ)(ν′)K

If t is a constant or a variable, this follows from the definition of B-valued model. If
t = f(t1, . . . , tn) and the thesis holds for t1, . . . , tn, then we have:

Jτ = σK ∧ J(f(t1, . . . , tn) = µ)(ν)K =∨
χ∈Mn

(q
(t = χ)(ν)

y
∧ Jτ = σK

)
∧ Jf(χ1, . . . , χn) = µK ≤

∨
χ∈Mn

q
(t = χ)(ν′)

y
∧ Jf(χ1, . . . , χn) = µK = J(f(t1, . . . , tn) = µ)(ν′)K

Consider now ϕ ≡ t1 = t2. We have then:

Jτ = σK ∧ J(t1 = t2)(ν)K =
∨
χ∈M

(J(t1 = χ)(ν)K ∧ Jτ = σK) ∧ (J(t2 = χ)(ν)K ∧ Jτ = σK) ≤

∨
χ∈M

J(t1 = χ)(ν′)K ∧ J(t2 = χ)(ν′)K = J(t1 = t2)(ν′)K

If ϕ ≡ R(t1, . . . , tn), then:

Jτ = σK ∧ JR(t1, . . . , tn)(ν)K =
∨

χ∈Mn

q
(t = χ)(ν)

y
∧ Jτ = σK ∧ JR(χ1, . . . , χn)K ≤

∨
χ∈Mn

q
(t = χ)(ν′)

y
∧ JR(χ1, . . . , χn)K = JR(t1, . . . , tn)(ν′)K

Negation: If ϕ ≡ ¬ψ, by induction we have

Jτ = σK ∧ Jψ(ν)K ≤ Jψ(ν′)K

Jσ = τK ∧ Jψ(ν′)K ≤ Jψ(ν)K ,

which means
Jτ = σK ∧ Jψ(ν)K ∧ Jψ(ν′)K = Jτ = σK ∧ Jψ(ν)K

and
Jτ = σK ∧ Jψ(ν)K ∧ Jψ(ν′)K = Jτ = σK ∧ Jψ(ν′)K .

Hence
Jτ = σK ∧ Jψ(ν′)K = Jτ = σK ∧ Jψ(ν)K

It follows that:

Jτ = σK ∧ ¬ Jψ(ν)K = Jτ = σK ∧ ¬ Jψ(ν)K ∧ (Jψ(ν′)K ∨ ¬ Jψ(ν′)K) =

(Jτ = σK ∧ Jψ(ν′)K ∧ ¬ Jψ(ν)K) ∨ (Jτ = σK ∧ ¬ Jψ(ν′)K ∧ ¬ Jψ(ν)K) =

(Jτ = σK ∧ Jψ(ν)K ∧ ¬ Jψ(ν)K) ∨ (Jτ = σK ∧ ¬ Jψ(ν′)K ∧ ¬ Jψ(ν)K) =

Jτ = σK ∧ ¬ Jψ(ν′)K ∧ ¬ Jψ(ν)K ,

which means
Jτ = σK ∧ ¬ Jψ(ν)K ≤ ¬ Jψ(ν′)K .
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Conjunction: If ϕ ≡ ψ ∧ θ we have:

Jτ = σK ∧ Jϕ(ν)K = (Jτ = σK ∧ Jψ(ν)K) ∧ (Jτ = σK ∧ Jθ(ν)K) ≤

Jψ(ν′)K ∧ Jθ(ν′)K = Jϕ(ν′)K

Existential: If ϕ ≡ ∃yψ(y) we have that:

Jτ = σK ∧ Jϕ(ν)K =
∨
χ∈M

(Jψ(y/χ, ν)K ∧ Jτ = σK) ≤
∨
χ∈M

Jψ(y/χ, ν′)K = Jϕ(ν′)K

Definition 2.3.12. LetM be a B-valued model in a language L. A formula ϕ with parameters
inM is said to be satisfied or valid inM if JϕK = 1B. A theory T is valid inM if every ϕ ∈ T
is valid in M.

Remark 2.3.13. Given a boolean algebra B and two elements a, b in it, we can define a → b ≡
¬a ∨ b, and we observe that

a→ b = 1B ⇔ a ≤ b.

On the one hand assume ¬a ∨ b = 1B. Then:

a = 1B ∧ a = a ∧ (¬a ∨ b) = (a ∧ ¬a) ∨ (a ∧ b) = 0 ∨ (a ∧ b) = a ∧ b

which is equivalent to a ≤ b. On the other hand a ≤ b implies 1B = ¬a ∨ a ≤ ¬a ∨ b.

Theorem 2.3.14 (Soundness Theorem). Let L be a language, if ϕ is a L-formula which is
syntactically provable by a L-theory T , and T is valid in a B-valued modelM, then Jϕ(ν)KM = 1B
for all valuations ν in M.

Proof. We refer to the system proof defined in [12, Chapter 2, Section 6]. We need to show that,
for all valuations, all the logical axioms:

1. ϕ ∨ ¬ϕ;

2. x = x;

3. ϕ(a)→ ∃ϕ(x);

4. (x = y)→ (f(x) = f(y))

5. (x = y)→ (ϕ(x)→ ϕ(y));

have boolean value equal to 1B, and that for all logical rules:

6. ϕ ` ϕ ∨ ψ;

7. ϕ ∨ ϕ ` ϕ;

8. (ϕ ∨ (ψ ∨ χ)) ` ((ϕ ∨ ψ) ∨ χ);

9. (ϕ ∨ ψ) ∧ (¬ϕ ∨ χ) ` ψ ∨ χ;

10. if x is not free in ψ, ϕ(a)→ ψ ` ∃x(ϕ(x)→ ψ);

it holds that if ϕ ` ψ, then JϕK ≤ JψK.
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1. Since for a ∈ B
a ∨ ¬a = 1B

for every valuation ν we have that J(ϕ ∨ ¬ϕ)(ν)K = J(ϕ)(ν)K ∨ ¬ J(ϕ)(ν)K = 1B.

2. From the definition of boolean valued models, for τ ∈M :

Jτ = τK = 1B

hence for all valuations and variables J(x = x)(ν)K = 1B.

3. By definition we have

J∃ϕ(x)K =
∨
σ∈M

Jϕ(σ)K ≥ Jϕ(τ)K

hence we can conclude using Remark 2.3.13.

4. Using the definition of boolean valued model and of boolean evaluation of a formula, sup-
pose ν(x) = τ and ν(y) = σ. We have then:

J(f(x) = f(y))(ν)K =
∨
ω∈M

(J(f(x) = ω)(ν)K ∧ J(f(y) = ω)(ν)K) =

∨
ω∈M

 ∨
χ∈Mn

Jτ = χK ∧ Jf(χ) = ωK

 ∧
 ∨
χ∈Mn

Jσ = χK ∧ Jf(χ) = ωK

 ≥
∨
ω∈M

((Jτ = σK ∧ Jf(σ) = ωK) ∧ (Jσ = τK ∧ Jf(τ) = ωK)) =

∨
ω∈M

(Jτ = σK) ∧
∨
ω∈M

(Jf(σ) = ωK) ∧
∨
ω∈M

(Jf(τ) = ωK) = Jτ = σK ∧ 1B ∧ 1B = J(x = y)(ν)K

using the property ∨
i∈I

(ai ∧ bi) =

(∨
i∈I

ai

)
∧

(∨
i∈I

bi

)
for ai, bi ∈ B. A proof of this fact can be found in [5, Corollary 2, Chapter 8].

5. It is sufficient to show that, for τ , σ ∈Mn:

Jτ = σK ≤ Jϕ(τ)→ ϕ(σ)K .

This is a consequence of Lemma 2.3.11, and of the fact that if a, b, c ∈ B are such that
a ∧ b ≤ c, then a ≤ ¬b ∨ c. This follows from

a ≤ ¬b ∨ a = (¬b ∨ a) ∧ (¬b ∨ b) = ¬b ∨ (a ∧ b) ≤ ¬b ∨ c

6. It follows form a ≤ a ∨ b for all a, b ∈ B.

7. It follows from a = a ∨ a for all a ∈ B.

8. It follows from (a ∨ b) ∨ c = a ∨ (b ∨ c) for a, b, c ∈ B.

9. Let be JϕK = a, JψK = b, JχK = c. Then we have:

(a ∨ b) ∧ (¬a ∨ c) = (a ∧ ¬a) ∨ (a ∧ c) ∨ (b ∧ ¬a) ∨ (b ∧ c) ≤ c ∨ b ∨ (b ∨ c) = b ∨ c.
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10. This item is proved as follows:

Jϕ(τ)→ ψK = J¬ϕ(τ) ∨ ψK ≤
∨
σ∈M

J¬ϕ(σ) ∨ ψK = J∃x(ϕ(x)→ ψ)K .

Remark 2.3.15. Since first order models are a subfamily of boolean valued models, we can infer
with no additional effort the Completeness Theorem also for boolean valued semantic.

Theorem 2.3.16 (Soundness and Completeness). Given a language L, an L-formula ϕ is syn-
tactically provable from an L-theory T if and only if Jϕ(ν)K = 1B for all complete boolean algebras
B, all B-valued model M in which T is valid, and all valuations ν in M.

We now introduce quotients of B-valued models by a filter on B. Given a B-valued modelM
in the language L and a filter F in B, we can define a B/F -valued model M/F whose domain
will be defined through an equivalence relation built on M using F . Some difficulties arise due
to the fact that B/F may not be necessarily complete, thus it might not be possible to satisfy all
conditions in Definition 2.3.1 in order thatM/F satisfies Definition 2.3.8 for the boolean algebra
B/F . Nonetheless completeness is not strictly necessary, since these definitions work once B/F
contains “enough” suprema and infima.

Definition 2.3.17. Given B a boolean algebra and M a tuple defined as in 1-5 of Definition
2.3.1, the couple 〈B,M〉 is a boolean couple in the language L if B contains all suprema and
infima required for Definitions 2.3.1 and 2.3.8.

We can generalize Definition 2.3.1 saying that M is a B-valued model if and only if 〈B,M〉
is a boolean couple.

All the results we have presented so far for boolean valued model can be generalized to
boolean couples. Nevertheless our analysis will focus on B valued models with B a complete
boolean algebra.

Definition 2.3.18. Let 〈B,M〉 be a boolean couple in the language L and F a filter of B. Define
the equivalence relation on M

τ ≡F σ ⇔ Jτ = σK ∈ F

and M/F as the set of all equivalence classes {[τ ]F : τ ∈ M}. The B/F -model M/F =

〈M/F,=M/F , R
M/F
i : i ∈ I, fM/F

j : j ∈ J, cM/F
k : k ∈ K〉 is defined as follows:

• =M/F is defined as:

=M/F : (M/F )2 → B/F

([τ ]F , [σ]F ) 7→
[
Jτ = σKMB

]
F

• For any n-ary relation symbol R in L, let:

RM/F : (M/F )n → B/F

([τ1]F , . . . , [τn]F ) 7→
[
JR(τ1, . . . , τn)KMB

]
F
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• For any n-ary function symbol f in L, let:

fM/F : (M/F )n+1 → B/F

([τ1]F , . . . , [τn]F , [σ]F ) 7→
[
[Jfj(τ1, . . . , τn) = σKMB

]
F

• For any constant symbol c in L, let cM/F = [cM]F ∈M/F .

Whenever 〈B/F,M/F 〉 is a boolean couple (except for vi, all points i-vii of Definition 2.3.1 are
always trivially satisfied), we say that the B/F -valued modelM/F is the quotient ofM by F .

Remark 2.3.19. The functions =M/F , RM/F , fM/F are all well-defined. For =M/F and RM/F

the proof is the same and we shall see in detail the case of =M/F . Let τ, τ ′, σ, σ′ ∈M such that
[τ ]F = [τ ′]F and [σ]F = [σ′]F , we want to show

[Jτ = σK]F = [Jτ ′ = σ′K]F

Since both a = Jτ = τ ′K and b = Jσ = σ′K belong to F we have:

[a]F = 1B/F

[b]F = 1B/F

and since M is a B-valued model it follows that:

[Jτ = σK]F = [Jτ = σK]F ∧ [a]F ∧ [b]F = [Jτ = σK ∧ a ∧ b]F ≤ [Jτ ′ = σ′K]F .

In the same way it can be shown that [Jτ ′ = σ′K]F ≤ [Jτ = σK]F .
For f an n-ary function symbol, the proof is similar but it requires Proposition 2.3.11: Let

(τ1, . . . , τn, σ) and (τ ′1, . . . , τ
′
n, σ

′) in Mn+1 such that a = Jτ = τ ′KMB and b = Jσ = σ′KMB are in
F . We have

[Jf(τ1, . . . , τn) = σK]F = [Jf(τ1, . . . , τn) = σK]F ∧ [a]F ∧ [b]F =

[Jf(τ1, . . . , τn) = σK ∧ a ∧ b]F ≤ [Jf(τ ′1, . . . , τ
′
n) = σ′K]F

The other way around can be shown in the same way.

We show now that morphisms of boolean valued models are preserved by quotients.

Proposition 2.3.20. Let 〈B,M〉 and 〈C,N〉 be two boolean couples in the language L. Let F be
a filter in B and i : B→ C an injective morphism of boolean algebras. Suppose both 〈B/F,M/F 〉
and 〈C/i∗(F ),N/i∗(F )〉 are boolean couples, and Φ ⊆ M ×N is such that 〈i,Φ〉 is a morphism
of boolean valued models. Let

ΦF = {(α, β) ∈M/F ×N/i∗(F ) : ∃σ ∈ α, τ ∈ β such that (σ, τ) ∈ Φ}.

Then 〈iF ,ΦF 〉 is a morphism between the boolean valued models M/F and N/i∗(F ). Moreover,
if 〈i,Φ〉 is an injective morphism, embedding, or isomorphism of boolean valued models, then
〈iF ,ΦF 〉 is respectively an injective morphism, embedding, or isomorphism of boolean valued
models.

Proof. Given (αj , βj) ∈ ΦF , we let σj ∈ M and τj ∈ N be two elements such that (σj , τj) ∈ Φ
and αj = [σj ]F , βj = [τj ]i∗(F ).

1. Since dom(Φ) = M , it follows that ΦF is everywhere defined.
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2. Consider (α1, β1), (α2, β2) ∈ ΦF . We have then:

iF (Jα1 = α2K) = iF ([Jτ1 = τ2K]F ) = [i(Jτ1 = τ2K)]i∗(F ) ≤ [Jσ1 = σ2K]i∗(F ) = Jβ1 = β2K

3. Let R be an n-ary relation symbol in L and (α1, β1), . . . , (αn, βn) ∈ ΦF . We have that:

iF (JR(α1, . . . , αn)K) = iF ([JR(τ1, . . . , τn)K]F ) = [i(JR(τ1, . . . , τn)K)]i∗(F ) ≤

[JR(σ1, . . . , σn)K]i∗(F ) = JR(β1, . . . , βn)K

4. Consider f an n-ary function symbol in L and (α1, β1) . . . , (αn+1, βn+1) ∈ ΦF . Then:

iF (Jf(α1, . . . , αn) = αn+1K) = iF ([Jf(τ1, . . . , τn) = τn+1K]F ) =

[i(Jf(τ1, . . . , τn) = τn+1K)]i∗(F ) ≤ [Jf(σ1, . . . , σn) = σn+1K]i∗(F ) =

Jf(β1, . . . , βn) = βn+1K

5. Let c a constant symbol and (α, β) ∈ ΦF . Then:

iF (Jα = cK) = iF ([Jτ = cK]F ) = [i(Jτ = cK)]i∗(F ) ≤ [Jσ = cK]i∗(F ) = Jβ = cK

It can be easily checked that whenever equality holds in 2-5 of Definition 2.3.4, equality holds
as well in the respective points of this proof, and recalling Proposition 2.2.11, the proof is
concluded.

We also want to outline how some properties of a boolean valued model behave when passing
to quotient models.

Definition 2.3.21. Given a boolean couple 〈B,M〉 we say thatM is an extensional B-valued
model if, given τ, σ ∈M :

τ = σ ⇔ Jτ = σK = 1B

Remark 2.3.22. If 〈i,Φ〉 is a morphism between the boolean couples 〈B,M〉 and 〈C,N〉 and N
is extensional, then Φ is a function, in fact given (τ, σ1), (τ, σ2) ∈ Φ:

1C = i(1B) = i(Jτ = τK) ≤ Jσ1 = σ2K

hence σ1 = σ2.

Proposition 2.3.23. Given a boolean couple 〈B,M〉 and a filter F in B, if 〈B/F,M/F 〉 is a
boolean couple, then M/F is an extensional B/F -valued model.

Proof. Given τ, σ ∈M , we have that:

[τ ]F = [σ]F ⇔ Jτ = σK ∈ F

Recalling Remark 2.2.12, we can infer that:

[τ ]F = [σ]F ⇔ Jτ = σKB ∈ F ⇔ J[τ ]F = [σ]F KB/F = 1B/F
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Example 2.3.24. We now introduce an example of extensional model inspired by functional
analysis. Let L∞(R) be the set of all measurable functions with domain R. Let Meas be the
boolean algebra of measurable subsets of R, and Null be the ideal on Meas given by the null
measure subsets of the real line. We shall denote with MALG the quotient boolean algebra
Meas/Null. The family MALG with the operation of intersection, union, set complement, and
with set inclusion, is a complete boolean algebra (for more details on measure algebras see [5,
Chapter 31]). We define a structure of MALG-valued model on L∞(R) in the language {≤,+, ∗}.
The definition of the boolean interpretations are the following (identifying any A ∈ Meas with
its equivalence class in MALG):

Jf = gK = {x ∈ R : f(x) = g(x)}

Jf ≤ gK = {x ∈ R : f(x) ≤ g(x)}

Jf + g = hK = {x ∈ R : f(x) + g(x) = h(x)}

Jf ∗ g = hK = {x ∈ R : f(x) ∗ g(x) = h(x)}

It is immediate to check that L∞(R) is an MALG-valued model with these interpretations.
Let F = {R} = {1M} be the trivial filter on MALG, and consider the quotient M/F . The
boolean algebras MALG and MALG/F are clearly isomorphic. Hence MALG/F is complete, and
〈MALG/F,L∞(R)/F 〉 is a boolean couple with L∞(R)/F an extensional MALG = MALG/F -
model. In L∞(R)/F it holds that:

[f ]F = [g]F ⇔ Jf = gK ∈ F ⇔ Jf = gK = R

This means that we are identifying all functions that differ only on a null measure set. L∞(R)/F
is what is usually denoted with L∞(R).

Repeating verbatim the procedure above for any B-valued model M gives an extensional
model M/F with F = {1B}. If M is already extensional, then M/F =M.

The following property is fundamental when considering the quotient of a boolean valued
model by a ultrafilter.

Definition 2.3.25. A B-valued modelM for the language L is full if for every L-formula ϕ(x, y)
and every τ ∈M |y| there is a σ ∈M such that

J∃xϕ(x, τ)K = Jϕ(σ, τ)K

Remark 2.3.26. Consider M an extensional full B-valued model in the language L and f an
n-ary function symbol in L. The boolean interpretation of f defines a function from Mn to M .
We will denote it with the same name of the boolean interpretation of f , namely fM:

fM : Mn →M

(τ1, . . . , τn)→ σ

where σ is such that Jf(τ1, . . . , τn) = σK = 1B (here we use the hypothesis that M is full). To
see this observe that whenever σ1, σ2 ∈M both satisfy the above property, then

1B = Jf(τ1, . . . , τn) = σ1K ∧ Jf(τ1, . . . , τn) = σ2K ≤ Jσ1 = σ2K

therefore, sinceM is extensional, it follows σ1 = σ2. When dealing with extensional full boolean
valued models, we will always refer to this function when considering the interpretation of a
function symbol in the language.
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Theorem 2.3.27 (Boolean Valued Models  Loś’s Theorem). Assume M is a full B-valued model
for the language L. Let G ∈ St(B). ThenM/G is a first order model for L and for every formula
ϕ(x1, . . . , xn) in L and (τ1, . . . , τn) ∈Mn:

M/G |= ϕ([τ1]G, . . . [τn]G)⇔ Jϕ(τ1, . . . , τn)K ∈ G

Proof. As Remark 2.2.12 shows, B/G = {[0B]G, [1B]G}, so that 〈B/G,M/G〉 is always a boolean
couple. Moreover ifM is full,M/G naturally defines a first order model (which will be denoted
with the same name). Given an n-ary relation symbol R, RM/G (as defined in Definition 2.3.18)
is the characteristic function of the set (which we shall denote with the same name)

RM/G = {([τ1]G, . . . , [τn]G) ∈ (M/G)n : JR([τ1]G, . . . , [τn]G)K = 1B/G}
= {([τ1]G, . . . , [τn]G) ∈ (M/G)n : JR(τ1, . . . , τn)K ∈ G}

Given f a function symbol, fM/G can be defined according to Remark 2.3.26, since M/G is
extensional (see Proposition 2.3.23) and full (since M is full).

From this definition follows that

M/G |= f([τ1]G, . . . , [τn]G) = [σ]G ⇔ Jf(τ1, . . . , τn) = σK ∈ G

and
M/G |= R([τ1]G, . . . , [τn]G)⇔ JR(τ1, . . . , τn)K ∈ G

We proof now the second part of the theorem. Denote with τ = (τ1, . . . , τn) a vector of
parameters in M and with [τ ]G = ([τ1]G, . . . , [τn]G) the vector of equivalence classes. With x, y
we denote variables and with c, c′ constants (and respectively with x and c the vectors). We will
prove the Theorem just for a special class of formulae, those whose atomic subformulae are of
the form

x = y c = y c = c′, (1)

R(x, c), (2)

f(x, c) = y f(x, c) = c. (3)

This is sufficient remarking that an atomic formula of the form

f(x) = g(y)

(or similarly defined using some constants as arguments for the functions) is logically equivalent
to the formula

∃z(f(x) = z ∧ g(y) = z).

On the other hand an atomic formula with nested function symbols such as f(g(x)) = y is
logically equivalent to the formula ∃z(g(x) = z ∧ f(z) = y). Thus by an easy induction we can
prove that each formula is logically equivalent to one in which all the atomic subformale are of
the form (1), (2) or (3). Thus it suffices to prove the theorem for this class of formulae:

Atomic formulae: Consider atomic formulae of the form

x = y c = y c = c′, (1)

R(x, c), (2)

f(x, c) = y f(x, c) = c. (3)

In this case the theorem easily follows from the preceding observations.
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Negation: By induction, suppose the theorem holds for ϕ(x1, . . . , xn), then

M/G |= ¬ϕ([τ ]G)⇔M/G 6|= ϕ([τ ]G)⇔ Jϕ(τ)K /∈ G⇔ J¬ϕ(τ)K ∈ G

where last equivalence holds since J¬ϕ(τ)K = ¬ Jϕ(τ)K and G is a ultrafilter.

Conjunction: Suppose the Theorem holds for ψ(x1, . . . , xn) and for θ(x1, . . . , xn). Let

ϕ(x1, . . . , xn) ≡ ψ1(x1, . . . , xn) ∧ θ(x1, . . . , xn)

Then we have

M/G |= ϕ([τ ]G)⇔M/G |= ψ([τ ]G) and M/G |= θ([τ ]G)

⇔ Jψ(τ)K , Jθ(τ)K ∈ G
⇔ Jψ(τ) ∧ θ(τ)K = Jψ(τ)K ∧ Jθ(τ)K ∈ G.

Where the last equivalence holds since G is a filter.

Existential: Let ϕ(x1, . . . , xn) = ∃yψ(x1, . . . , xn, y).

M/G |= ϕ([τ ]G)⇔M/G |= ψ([τ ]G, [σ]G) for some σ ∈M
⇔ Jψ(τ , σ)K ∈ G for some σ ∈M
⇔ J∃yψ(τ , y)K ∈ G.

where in the last equivalence ⇒ is always true, while the opposite direction holds sinceM
is full.

Remark 2.3.28. Whenever L is a relational language (i.e. with no function symbols), in order to
have a first order model M/G when G is a ultrafilter in B, it is not necessary for M to be full.
Nevertheless, without this request the previous theorem will not generally hold, as the following
example will show.

Example 2.3.29. Consider B = RO(R) and Cω(R) the space of analytic functions from R to R,
we will use this structure to produce a counterexample to the above Theorem. Let L = {<,C}
be a relational language, where < is binary and C is unary. The boolean value of the relations
is defined as follows:

Jf = gK =
˚{x ∈ R : f(x) = g(x)}

Jf < gK =
˚{x ∈ R : f(x) < g(x)}

JC(f)K = {x ∈ R : ∃I open interval such that x ∈ I and f �I is constant}

The set JC(f)K is always open, and it is regular for analytic functions (it is regular for continuous
functions as well). Assume f is analytic on R such that it admits a non-empty interval on which
it is constant. Then f must be constant everywhere (see for example [10, Theorem 8.5,Chapter
8]). Hence the only possibilities are JC(f)K = ∅ and JC(f)K = R for all functions f ∈ Cω(R).

With these definitions Cω(R) is a B-valued extension of the boolean couple 〈{0, 1},R〉 (R is
identified with the constant functions cr(x) = r). Fix some f ∈ Cω(R) and consider the formula
∃x(f < x ∧ C(x)), its boolean value can be calculated as follows:

J∃x(f < x ∧ C(x))K =
∨
g∈Cω

Jf < g ∧ C(g)K ≥
∨
r∈R

Jf < cr ∧ C(cr)K .
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Since C(cr) = R, it follows that

Jf < cr ∧ C(cr)K = Jf < crK ∧ JC(cr)K = Jf < crK ;

therefore ∨
r∈R

Jf < cr ∧ C(cr)K =
∨
r∈R

Jf < crK .

Consider now f �(n,n+1) with n ∈ Z, and set mn = supx∈(n,n+1)(f(x)) + 1. It follows that:∨
n∈Z

Jf < cmnK ≥
∨
n∈Z

(n, n+ 1) = R.

Hence J∃x(f < x ∧ C(x))K is a valid formula in the B-valued model considered.
Now pick G ∈ St(B) extending H = {(n,+∞) : n ∈ Z} (such ultrafilter can be found since

H satisfies the finite intersection property, hence it generates a filter), and let N be the quotient
Cω(R)/G. We will show that

N |= [idR]G > y

for each y ∈ N such that N |= C(y). If C([g]G) holds in N , there is r ∈ R such that g = cr on
R (since N |= C([g]G) if and only if JC(g)K = R). On the other hand we have that

JidR > crK = (r,+∞)

and this interval is in G since G contains (brc+ 1,+∞) ∈ H. This means that

N |= [idR] > [g]G

for all g such that JC(g)K ∈ G.
In conclusion, even if ∃x(idR < x ∧ C(x)) is valid in Cω(R), this formula is not true in N .

We conclude this chapter with the following Lemma which will be needed later:

Lemma 2.3.30. Let M be a full B-valued model in the language L and ϕ an L-formula with
parameters in M. For any b ∈ B the following are equivalent:

1. b ≤ JϕK,

2. there is D a dense subset of Ob such that for each G ∈ D M/G |= ϕ holds.

Proof. Assume b ≤ JϕK, the relevant implication immediately follows from Theorem 2.3.27 with
D = Ob.

For the vice versa suppose b 6≤ JϕK. This implies that b∧¬ JϕK 6= 0B. From 0B < b∧¬ JϕK ≤ b
it follows that Ob∧¬JϕK is a non-empty open subset of Ob. By Theorem 2.3.27 we have that
M/G |= ¬ϕ for any G ∈ Ob∧¬JϕK. In particular the set of G such that M/G |= ϕ is disjoint
from Ob∧¬JϕK and thus cannot be a dense subset of Ob.
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Chapter 3

Set Theory and Forcing

We present a compact introduction to set theory and the basic properties of the forcing method.
We assume the reader is already acquainted with the basic properties of set theory as formalized
in the first order axiomatization ZFC. Sections 1, 2 and 3 will be a brief summary of classic
results, references for those parts are [6], [8], [1], [3]. We will assume all over the chapter to work
in a language L with just one binary relation symbol ∈.

3.1 Basics

Let V be the universe of sets, the standard model for set theory, i. e. the collection of all sets.

Definition 3.1.1. The cumulative hierarchy of sets is defined by recursion on the ordinals:

V0 = ∅

Vα+1 = P(Vα)

Vβ =
⋃
α<β

Vα if β is a limit ordinal

The Axiom of Regularity guarantees that every set belongs to some Vα (see [6, Lemma 6.3]),
i. e.:

V =
⋃

α∈ON

Vα

We define the rank of a set x as

ρ(x) = the least α such that x ∈ Vα+1

Remark 3.1.2. The universe V is not a set, thus we can not speak directly of it in ZFC, where only
one type of objects are defined, namely sets. However, when dealing with ZFC, it is sometimes
useful to consider proper classes. In general, a class C is the extension in V of a certain first
order formula C(x) in one or more free variables:

C = {x : C(x)}

Examples of classes we will consider are

ON = {x : x is an ordinal}



34 Chapter 3. Set Theory and Forcing

V = {x : x = x}

∈= {(x, y) : x ∈ y}

Classes are generally used in informal contexts as abbreviations. Given a class M and a binary
relation E on it, we generalize the definition

〈M,E〉 |= ϕ

where ϕ is a {∈}-formula. In the definition we gave of first order model we required the domain
of the structure to be a set. With this assumption the relation M |= ϕ between sets M ∈ V and
(Gödel numbers for) formulae ϕ turns out to be a definable class in ZFC. However this is not the
case if we try to extend the relation |= so to include classes as the first argument of its domain.
This issue can be solved showing that for each fixed ∈-formula ϕ and each pair of classes M and
E ⊆ M2 the statement 〈M,E〉 |= ϕ is a definable class relation ϕM,E (in case E = ∈ we will
simply write ϕM ). Recall that ϕM,E is the formula obtained from ϕ substituting ∈ with E and
all quantifiers ∃x and ∀x with ∃x ∈ M (i.e. ∃xM(x) ∧ . . .) and ∀x ∈ M (i.e. ∀xM(x) → . . .)
respectively. Keeping this in mind we will informally generalize most of the notions defined for
first order models. More about this in [8, Chapter 1, Section 9] and [6, Chapter 1, Chapter 12].

Chapters 6 and 12 of [6] contain all the details and the proofs we will omit in the remaining
part of this section.

Definition 3.1.3. A class A is transitive if x ∈ A implies x ⊂ A.

Definition 3.1.4. Consider a class P and a binary relation E on it. For each x ∈ P the
extension of x is the class

extE(x) = {z ∈ P : zEx}

The relation E on P is:

• well-founded if every non-empty set A ⊂ P has an E-minimal element (i.e an x ∈ A such
that zEx holds for no z ∈ A);

• set-like if extE(x) is a set for every x ∈ P ;

• extensional if given x, y ∈ P :

extE(x) 6= extE(y)⇒ x 6= y

or equivalently, if
〈P,E〉 |= Axiom of Extensionality

Theorem 3.1.5 (Mostowski’s Collapsing Theorem). Assume E is a well-founded, set-like and
extensional relation on a class P . Then there is a transitive class M and an isomorphism π
between 〈P,E〉 and 〈M,∈〉. The transitive class M and the isomorphism π (the Mostowski’s
Collapse of P ) are unique. Moreover, if E = ∈ and T ⊂ P is transitive, then π(x) = x for each
x ∈ T .

Proof. For a proof see, [6, Theorem 6.15].

Definition 3.1.6. Let 〈M,∈〉 and 〈N,∈〉 be two {∈}-structures (possibly classes) such that
M ⊆ N . We say that a {∈}-formula ϕ(x1, . . . , xn) is upward absolute for M,N if for every
(a1, . . . , an) ∈Mn:

〈M,∈〉 |= ϕ(a1, . . . , an)⇒ 〈N,∈〉 |= ϕ(a1, . . . , an)
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The formula ϕ(x1, . . . , xn) is downward absolute for M,N if for every (a1, . . . , an) ∈Mn:

〈M,∈〉 |= ϕ(a1, . . . , an)⇐ 〈N,∈〉 |= ϕ(a1, . . . , an)

A formula is absolute for M,N if it is both upward and downward absolute for M,N . A formula
is (upward, downward) absolute for M if it is (upward, downward) absolute for M,V .

Theorem 3.1.7 (Reflection Principle). Consider a {∈}-formula ϕ(x1, . . . , xn) and a set A.
There exists an ordinal α such that:

• A ∈ Vα;

• ϕ is absolute for Vα.

In this case we say that Vα reflects ϕ.

Proof. For a proof see [6, Theorem 12.14].

3.2 Boolean Valued Models for Set Theory

The aim of this section is to formalize the boolean generalization of the universe V . V can be
built step by step iterating the operation of power set. Given a set X, P(X) can be identified
with the set of characteristic functions of its element, i. e. as the functions from X to the
boolean algebra {0, 1}. Roughly, the generalization of the power-set operation on a given set X
we are looking for is obtained considering characteristic functions with domain X and range in
an arbitrary complete boolean algebra instead of {0, 1}. See Chapter 14 of [6] for a complete
analysis of this topic.

Definition 3.2.1. Consider a complete boolean algebra B. The class V B is defined by induction
on the ordinals as follows:

V B
0 = ∅

V B
α+1 = {f : X → B | X ⊂ V B

α }

V B
β =

⋃
α<β

V B
α if β is a limit ordinal

V B =
⋃

α∈ON

V B
α

The boolean rank of a B-name τ of V B is defined as:

ρB(τ) = the least α such that τ ∈ V B
α+1

At first, it is easier to define the structure of B-valued model on V B for L = {∈,⊆}.

Definition 3.2.2. The interpretations of ∈,⊆ and = are defined by induction on the pairs
(ρB(τ), ρB(σ)):

• Jτ ∈ σK =
∨
χ∈dom(σ)(Jτ = χK ∧ σ(χ));

• Jτ ⊆ σK =
∧
χ∈dom(τ)(τ(χ)→ Jχ ∈ σK);

• Jτ = σK = Jτ ⊆ σK ∧ Jσ ⊆ τK.
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See [6, Lemmas 14.15 and 14.16] for a proof that the structure V B with the maps

(τ, σ) 7→ Jτ R σK

for R in {=,∈,⊆} as defined above is a B-valued model for the language {∈,⊆}.
Remark 3.2.3. Definitions 3.2.1 and 3.2.2 work starting from any transitive first order model
M = 〈M,∈〉 of ZFC (the request for the model to be transitive is redundant, but we are mainly
interested in transitive well-founded models in order to be able to build transitive generic exten-
sions of such models). In this case, in order to have a boolean couple 〈B,MB〉 we need B ∈ M
and

M |= B is a complete boolean algebra

so that all subsets of B which belong to M admit a supremum in M itself. In this section we
will just analyze the boolean valued model V B, although our analysis can be easily generalized
so that it applies to any first order model of ZFC.

Remark 3.2.4. Every element x of V has a canonical name x̌ in V B which we define by induction
on the rank:

• ∅̌ = ∅;

• for x ∈ V , x̌ is the function whose domain is {y̌ : y ∈ x} and such that x̌(y̌) = 1B for every
y ∈ x.

This map, when restricted to sets, is an embedding of B-valued models. In fact, given x, y ∈ V :

Jx̌ ∈ y̌K =

{
1B if x ∈ y
0B if x /∈ y

Jx̌ ⊆ y̌K =

{
1B if x ⊆ y
0B if x 6⊆ y

Jx̌ = y̌K =

{
1B if x = y

0B if x 6= y

For a proof see [6, Lemma 14.21]

Theorem 3.2.5. Let B be a complete boolean algebra, then

• V B is full;

• ZFC is valid in V B.

Proof. See [6, Lemma 14.17, Lemma 14.19, Theorem 14.24].

Remark 3.2.6. In ZFC the binary relation x ⊆ y is introduced as an abbreviation for the formula
in the language {∈}:

y ⊆ x ≡ ∀z(z ∈ y → z ∈ x).

In order to show that V B is a B-valued model in L = {∈} we need to show that:

Jy ⊆ xK = J∀z(z ∈ y → z ∈ x)K

A proof of this is given in [1, Corollary 1.18].

Lastly we define a B-name which will be useful later.

Definition 3.2.7. ĠB ∈ V B is defined as:

dom(ĠB) = {b̌ : b ∈ B} ĠB(b̌) = b

ĠB is the canonical name for a generic ultrafilter. If no confusion on the algebra B
considered can arise we shall omit the subscript B and denote ĠB by Ġ.



3.3. Generic extensions 37

3.3 Generic extensions

From now on we will be interested in a structure 〈M,∈〉 (we will refer to it as M), which is a
transitive first order model of ZFC (possibly a class), and to a B ∈M boolean algebra which M
models to be complete.

Definition 3.3.1. Given a partial order (P,<) we say that:

• D ⊆ P is dense if for every p ∈ P there is a d ∈ D such that d ≤ p;

• D ⊆ P is dense below q ∈ P if for every p ≤ q there is d ∈ D such that d ≤ p;

• D ⊆ P is open if p ∈ D and q ≤ p implies q ∈ D;

• D ⊆ P is predense if its downward closure

↓ D = {b ∈ B : ∃d ∈ D(b ≤ d)}

is dense.

We shall identify a boolean algebra B with the partial order B+ = B \ {0B} and we generalize
the notion of filter to partially ordered sets as follows:

Definition 3.3.2. Given a partial order (P,<) a subset F ⊆ P is a filter if:

• F is non-empty;

• if p ≤ q and p ∈ F then q ∈ F ;

• if p, q ∈ F then there exists r ∈ F such that r ≤ p and r ≤ q.

Definition 3.3.3. Given a partial order (P,<), G ⊆ P is generic over a class C (or C-generic)
if:

• G is a filter;

• if D ⊆ P is dense and D ∈ C, then G ∩D 6= ∅.

The following lemmas will be useful later. We will not omit the proof of the first one, as we
will need the map defined in it in the next chapter.

Lemma 3.3.4. Let B be a complete boolean algebra. There is a bijection between D, the family
of open dense subsets of B+, and E, the family of open dense subsets of St(B).

Ψ : E → D
E 7→ {a ∈ B+ : Oa ⊆ E}

Proof. Well-defined: Assume E is open and dense in St(B). Consider b ∈ B+, it follows that

Ob ∩ E 6= ∅

We can therefore find a ∈ B+ such that

Oa ⊆ Ob ∩ E

Hence a ≤ b and a ∈ Ψ(E) hold. The set Ψ(E) is open since, given a, b ∈ B+

a ≤ b⇒ Oa ⊆ Ob
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Injective: Let E 6= E′ be elements of E . We can assume there exists G ∈ E \ E′. E is open, we
can find therefore a ∈ B+ such that

G ∈ Oa ⊆ E

On the other hand we have:
Oa 6⊆ E′

because G ∈ Oa. In conclusion, a ∈ Ψ(E) \Ψ(E′), hence the map is injective.

Surjective: Let D be a dense open subset of B+, we will show that

D = Ψ

(⋃
a∈D
Oa

)

Consider b ∈ B+. There exists a ∈ D such that a ≤ b, so that

∅ 6= Oa ⊆ Ob

It follows that the intersection of
⋃
a∈DOa and Ob is non-empty. The thesis follows since

b ∈ B+ was arbitrary.

Lemma 3.3.5. Assume (P,<) is a partial order and D is a countable family of dense subsets
of P . Then there exists a D-generic filter on P . Moreover, for every p ∈ P there is a D-generic
filter on P containing p.

Proof. For a proof see, for example, [6, Lemma 14.4]

Definition 3.3.6. Let G be an M -generic ultrafilter over B. We define by induction on ρB the
interpretation by G of the B-names as:

• ∅G = ∅;

• τG = {σG : τ(σ) ∈ G};

The generic extension of M by G is the class:

M [G] = {τG : τ ∈MB}

Remark 3.3.7. The previous definition can be given for any G ∈ St(B), and does not require
G ∈M . M [G] (which will not be called generic extension if G is not generic) is always transitive.
We will always assume G to be M -generic for B unless otherwise stated.

Lemma 3.3.8. Assume G is an M -generic filter in B. Then for all τ, σ ∈MB:

τG ∈ σG ⇔ Jτ ∈ σK ∈ G;

τG ⊆ σG ⇔ Jτ ⊆ σK ∈ G;

τG = σG ⇔ Jτ = σK ∈ G.

Proof. For a proof see [6, Lemma 14.28]

Now we want to show which is the relationship between M [G] and MB/G. Since MB is a
class, given τ ∈ MB, [τ ]G might be a class itself. We can bypass this problem with the Scott’s
trick, defining [τ ]G as the set of σ ∈MB of minimal rank ρ such that σ ≡G τ .
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Theorem 3.3.9. Let M be a transitive model of ZFC, B a boolean algebra which M models to
be complete, and G an M -generic ultrafilter in B. The map

πMG : MB/G→M [G]

[τ ]G 7→ τG

is an isomorphism between the two models, more precisely it is the Mostowsky’s Collapse of the

extensional well founded model (MB/G,∈MB/G).

Proof. From Lemma 3.3.8 and Theorem 2.3.27 (〈MB,∈B〉 is a full boolean couple due to Theorem
3.2.5) it follows that πMG is an L-embedding. The map is surjective, since for any x ∈M [G], by
definition x = τG for some τ ∈MB, hence

x = πMG ([τ ]G)

Theorem 3.3.10 (Cohen’s Forcing Theorem). Assume M is a transitive first order model of
ZFC, B a boolean algebra which M models to be complete and G an M -generic filter in B. Let
ϕ(x1, . . . , xn) be an L-formula, then for every τ1, . . . , τn ∈MB:

M [G] |= ϕ(τG1 , . . . , τ
G
n )⇔ Jϕ(τ1, . . . , τn)K ∈ G

Proof. The map πMG defined in Theorem 3.3.9 is an isomorphism between MB/G and M [G],
therefore

M [G] |= ϕ(τG1 , . . . , τ
G
n )⇔MB/G |= ϕ([τ1]G, . . . , [τn]G)

MB is full, therefore we can conclude the proof using Theorem 2.3.27.

The last theorem we present in this section tells us that M [G] is the smallest transitive first
order model N such that M ⊂ N and G ∈ N .

Theorem 3.3.11 (Generic Model Theorem). Let M be a transitive model of ZFC, B a boolean
algebra which M models to be complete and G an M -generic ultrafilter in B. Then 〈M [G],∈〉 is
a first order transitive model such that:

• M [G] |= ZFC;

• M ⊆M [G] and G ∈M [G];

• ONM = ONM [G];

• if N is a transitive first order model of ZFC such that M ⊆ N and G ∈ N then M [G] ⊆ N .

Proof. To prove the first item we observe that by Theorem 3.2.5 all axioms of ZFC have boolean
value equal to 1B, which clearly belongs to any ultrafilter in St(B). The thesis follows therefore
from Theorem 3.3.10.

The second item holds since it can be shown that or each x ∈M

x̌G = x

and also that
ĠG = G

A detailed proof of this and of the other two items can be found in [6, Lemma 14.31].
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3.4 More on Cohen’s Forcing Theorem

The hypotheses of Cohen’s Forcing Theorem are too strict, and on a first sight they make the
theorem useless: on the one hand we assumed the existence of a transitive first order model of
ZFC M , which is unprovable within ZFC because of Gödel Incompleteness Theorem. On the
other hand, we assumed the existence of an M -generic ultrafilter. Unfortunately, the existence
of such an ultrafilter can not generally be proved, unless M satisfies certain strict requirements,
for example M -generic ultrafilters extists whenever M is a countable model (see Lemma 3.3.5).
Therefore, one may ask how we can use Cohen’s Forcing Theorem in order to show that a certain
formula ϕ is consistent with ZFC. In this section we provide a method to bypass the problems
exposed above. The first observation is that, when proving that ϕ is consistent with ZFC by
means of Cohen’s Forcing Theorem, by a compactness argument, we only need to prove that ϕ is
consistent with an arbitrary finite set of ZFC-axioms. We can also argue that in order to show that
in an M -generic extension M [G] a finite set of ZFC-axioms hold, we just need M to be a model
of a (possibly different) finite set of ZFC-axioms. Finally, we can use the Reflection Principle
3.1.7, the Downward Löwenheim−Skolem Theorem 2.1.20, and the Mostowski’s Collapse 3.1.5
to find countable transitive models M of any given finite set of ZFC-axioms. Such models M will
be the ones to which we can apply Cohen’s Forcing Theorem.

We will need to work among different classes which may or may not be models of ZFC, hence
we introduce some definitions regarding how a formula behaves when we consider it in different
models

The behaviour of formulae between different structures is mainly determined by their logical
complexity. A precise formalization of this concept can be given by means of the Lévy Hierarchy
(see [6, Chapter 13]). For our purposes the following definitions are sufficient.

Definition 3.4.1. A {∈} ∪ {a1, . . . , an}-formula ϕ(x1, . . . , xn, a1, . . . , an) (with a1, . . . , an addi-
tional constant symbols) is ∆0 if

• it has no quantifiers;

• it is of the form ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ, ϕ→ ψ, ϕ↔ ψ and both ϕ and ψ are ∆0;

• it is of the form
(∃x ∈ y)ψ(x, x1, . . . , xn, a1, . . . , an)

or
(∀x ∈ y)ψ(x, x1, . . . , xn, a1, . . . , an)

and ψ is1 ∆0.

We will loosely say that ϕ is ∆0 over a theory T if it is provable from T that ϕ is equivalent to
a formula of the form above. A formula ϕ is Σ1 (Π1) in T if it is provable to be equivalent in
T to one of the form ∃xψ(x) (∀xψ(x)) where ψ is a ∆0-formula. A formula ϕ is ∆1 in T if it is
both Π1 and Σ1 in T . If not otherwise stated we will assume T = ZFC and we will just say that
ϕ is ∆0 (or Σ1,Π1,∆1).

Proposition 3.4.2. Given a transitive {∈}-structure M , every ∆0-formula is absolute for M .

Proof. For a proof see [6, Lemma 12.9]

Remark 3.4.3. An easy consequence of this is that, when considering transitive classes, Σ1-
formulae are upward absolute, Π1-formulae are downward absolute, and ∆1 formulae are absolute.

1Recall that (∃x ∈ y)ψ(x) is a shorthand for ∃x(x ∈ y ∧ ψ(x)) and similarly (∀x ∈ y)ψ(x) is a shorthand for
∀x(x ∈ y → ψ(x)).
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Consider a complete boolean algebra B. We need to generalize the definition of V B to transi-
tive classes M which are not necessarily models of ZFC and are such that B ∈M . We will perform
this generalization studying the formula which defines V B, although this is not the quickest way
to do it. Notice that the properties which define a boolean algebra can always be expressed with
quantifiers bounded in B. Hence “B is a boolean algebra” and its operations and relations are
absolute for transitive classes. Moreover, B ∈M and M is transitive imply B ⊂M , so that if B
is complete in V , it has to be complete in M as well (every supremum which is in V is also in
M). Observe that the vice versa does not hold. In fact, if B is a complete boolean algebra in a
transitive class M , and N is a transitive class containing M , there might exists some subset of
B belonging to N but not to M , thus that set may not have a supremum.

Definition 3.4.4. Given a set X, the transitive closure of X is defined as:

TC(X) =
⋃{(⋃

X
)n

: n ∈ ω
}

i.e. the smallest transitive set containing X.

Definition 3.4.5. Given a complete boolean algebra B and f : V → B a partial function (i. e.
whose domain is contained in V ) which is an element of V , we define:

∗⋃
f =

⋃
{dom(x) : ∃b(x, b) ∈ f ∧ x is a partial function with range in B}

and we define

TCB(f) =
⋃{( ∗⋃

f

)n
: n ∈ ω

}
where ( ∗⋃

f

)0

= dom(f)

( ∗⋃
f

)1

=

∗⋃
f

( ∗⋃
f

)n+1

=

∗⋃( ∗⋃
f

)n
for n ≥ 1

We call TCB(f) the boolean transitive closure of f on B.

Lemma 3.4.6. Let B be a complete boolean algebra, then τ ∈ V B if and only if

Φ(τ,B) ≡ τ is a function ∧ Im(τ) ⊆ B ∧ ∀σ ∈ TCB(τ)(σ is a function ∧ Im(σ) ⊆ B)

Moreover Φ(x,B) is ∆1 in the parameter B.

Proof. We first check the above equivalence. Let τ be a B-name, hence it is a function with
range in B. Then we proceed by induction: if σ ∈ dom(τ) then by definition σ ∈ V B hence it is

a function whose rank is contained in B. Consider now σ ∈
( ∗⋃

τ

)n+1

. The element σ is in the

domain of some η ∈
( ∗⋃

τ

)n
, which by inductive hypothesis is in V B, hence σ is a B-name.
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Conversely, towards a contradiction let τ be of minimum rank such that Φ(τ) holds but
τ /∈ V B. Since

∀σ ∈ TCB(τ)(σ is a function ∧ Im(σ) ⊆ B)

holds, every η ∈ dom(τ) is a function whose image is in B. Moreover

∀σ ∈ TCB(η)(σ is a function ∧ Im(σ) ⊆ B)

hence Φ(η,B) holds. Since x ∈ y implies ρ(x) < ρ(y) and for a certain b ∈ B

η ∈ {η} ∈ {{η}, {η, b}} = (η, b) ∈ τ

we have ρ(η) < ρ(τ). Thus η ∈ V B and from this follows that τ is a function in B whose domain
is composed by B-names, hence it is a B-name itself.

For the proof that Φ is ∆1 we will assume most of the basic facts about the Lévy Hierarchy.
For those results see [3, Lemma 2.6, Theorem 2.7, Lemma 2.8] and [6, Lemma 12.10]. This means
that we only need to show that y = TCB(f) is ∆1 with the parameter B. In order to do this, it

is enough to prove that x ∈
∗⋃
f is ∆1, since

y = TCB(f)↔ ∀x ∈ y∃z ∈ ω(x ∈ (

∗⋃
f)z)

and the fact that x ∈ (
∗⋃
f)n is ∆1 easily follows once we have showed that x ∈

∗⋃
f is ∆1 (trivial

for n = 0, otherwise just substitute f with (
∗⋃
f)n−1). On the one hand we have

x ∈
∗⋃
f ↔ ∃z∃b ∈ B((z, b) ∈ f ∧ z is a function ∧ Im(z) ⊆ B ∧ x ∈ dom(z))

and the right side formula is Σ1. On the other hand

y ⊇
∗⋃
f ↔ ∀z [(z is a function ∧ Im(z) ⊆ B ∧ ∃b ∈ B((z, b) ∈ f))→ dom(z) ⊆ y]

tells us that y ⊇
∗⋃
f is Π1, and since

x ∈
∗⋃
f ↔ ∀y(y ⊇

∗⋃
f → x ∈ y)

we have the thesis.

Remark 3.4.7. The B-names in a transitive class M are defined as those elements τ such that
Φ(τ,B)M holds. With the previous lemma we have showed that Φ(x,B) is absolute for transitive
structures, hence if τ ∈M

Φ(τ,B)M ⇔ Φ(τ,B)

so that the class of B-names in M , which we shall call MB, overlaps with V B ∩M . We need to
check that MB inherits the structure of B-valued model.

Proposition 3.4.8. Let M be a transitive class and B complete boolean algebra which belongs
to M . Then MB = V B ∩M with relations defined for σ, τ ∈MB by:

Jσ ∈ τKM
B

= (Jσ ∈ τKV
B

)M
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Jσ = τKM
B

= (Jσ = τKV
B

)M

is a B-valued model for the language {∈}. Moreover if ϕ(x1, . . . , xn) is a formula and τ1, . . . , τn ∈
MB then:

Jϕ(τ1, . . . , τn)KM
B

= (Jϕ(τ1, . . . , τn)KV
B

)M

Proof. For the first part of the proof it suffices to show that Jσ ∈ τKV
B

and Jσ = τKV
B

are absolute
for transitive models M such that B ∈ M and M models B to be a complete boolean algebra.
We will only prove the ∈-clause, the one with ⊆ (from which the one with = follows) can be
inferred similarly. The proof proceeds by induction on the pairs (ρB(σ), ρB(τ)). For the empty
set:

(J∅ ∈ ∅KV
B

)M = (0B)M = 0B = J∅ ∈ ∅KV
B

.

Given σ, τ ∈MB:

(Jσ ∈ τKV
B

)M =
∨

η∈dom(τ)∩M

(Jη = σKV
B

)M ∧ τ(η).

By the inductive hypothesis (Jη = σKV
B

)M = Jη = σKV
B

, and since τ ∈ M , we have τ ⊆ M , so
that if η ∈ dom(τ) then (η, b) ∈M for some b ∈ B. By the definition of ordered couple

(η, b) = {{η}, {η, b}}

and from the transitivity of M it follows that η ∈ M , hence dom(τ) ⊆ M , which leads to the
thesis.

The second part of the proposition is by induction on the complexity of ϕ. The case for ϕ an
atomic formula holds by definition. The proof for conjunction and negation is immediate, lastly
for ϕ ≡ ∃xψ(x) we have that:

(JϕKV
B

)M =
∨

τ∈V B∩M

(Jψ(τ)KV
B

)M =
∨

τ∈MB

Jψ(τ)KM
B

= JϕKM
B

.

Remark 3.4.9. Notice that defining Jσ ∈ τKM
B

and Jσ = τKM
B

as in the proposition or as in
Definition 3.2.2 gives the same result.

We have defined MB for any transitive class M which contains B. Since ZFC does not
necessarily hold in M , we do not know which properties of V B (fullness, validity of ZFC, etc.)
hold in MB.

Definition 3.4.10. Given a Boolean algebra B, A ⊆ B\{0B} is an antichain if any two distinct
x, y ∈ A, are incompatible, i. e. x ∧ y = 0B.

The following Lemma is crucial if we are looking for a full B-valued model, it holds for every
model of ZFC (see Lemma 14.18 in [6]), and it implies that V B is full.

Lemma 3.4.11 (Mixing Lemma for B). Assume B is a complete boolean algebra in V . Let A be
an antichain of B and for any a ∈ A let τa be an element of V B. Then there exists some τ ∈ V B

such that a ≤ Jτ = τaK for all a ∈ A.

In [6, Lemma 14.19] is shown how the Mixing Lemma for B implies that V B is full. In this
proof some axioms of ZFC are used (Zorn’s Lemma, the axiom schema of separation and of
replacement). We are not interested in a full analysis of which of them are necessary and which
redundant. For our purposes consider the following:
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Proposition 3.4.12. Let M be a transitive class which is a model of the axiom schema of
separation, of replacement, and of the axiom of choice. Let moreover B ∈ M a boolean algebra
which M models to be complete. If:

M |= Mixing Lemma

then MB is full.

Proof. The proof is as in [6, Lemma 14.19].

Observe that in order to prove the proposition above for a single formula ϕ, i. e. that there

exists τ ∈ V B such that J∃xϕ(x)KM
B

= Jϕ(τ)KM
B

, by compactness only a finite number of axioms
of ZFC are needed.

Remark 3.4.13. So far we have defined the class MB for any transitive M such that B ∈ M
and M models B to be a complete boolean algebra. Given an M -generic filter G in B, we can
generalize to these models also Definition 3.3.6, i. e. the generic extension M [G]. We do not
know if M models ZFC, hence we can not infer Theorems 3.3.9 and 3.3.10 for M [G]. However if
we want these theorems to hold for a specific formula ϕ in M [G], only a finite number of axioms
of ZFC is required to hold in M . For instance we can require that Lemma 3.3.8 holds in M , and
we can ask MB to be full for ϕ (which can be obtained through specific instances of the Mixing
Lemma as described above). By compactness, given a formula ϕ and a transitive class M with a
complete boolean algebra B ∈M , by requiring that M satisfies a certain formula Θϕ we can infer
that Theorem 3.3.9 holds in M whenever G is M -generic, and that Cohen’s Forcing Theorem
3.3.10 holds in M for ϕ. Θϕ will depend on which instance ϕ of Cohen’s Forcing Theorem we
want to satisfy.

Now we can finally present the final result of this section. We state it for V a transitive ZFC-
model. However with some more intricacies in its formulation, it can be inferred for arbitrary
first order models of ZFC.

Proposition 3.4.14. Let B be a complete boolean algebra in V . Let b ∈ B, consider a formula
ϕ(x1, . . . , xn) and τ1, . . . , τn ∈ V B. Let α > ω be an ordinal (given by the Reflection Principle)

such that τ1, . . . , τn, b,B ∈ Vα and such that Vα reflects (Jϕ(τ1, . . . , τn)KV
B

≥ b) ∧ Θϕ. Then the
following are equivalent:

1. Jϕ(τ1, . . . , τn)KV
B

≥ b.

2. For every M ∈ V such that M ≺ Vα and M is a countable structure to which τ1, . . . , τn, b,B
belong, if π : M → N is the Mostowski Collapse, and G ⊆ π(B) is an N -generic ultrafilter
such that π(b) ∈ G, then N [G] |= ϕ(π(τ1)G, . . . , π(τn)G).

3. There exists some countable M ≺ Vα with M ∈ V and τ1, . . . , τn, b,B ∈M such that letting
π : M → N be the Mostowski Collapse, and G ⊆ π(B) be any N -generic ultrafilter such
that π(b) ∈ G, then N [G] |= ϕ(π(τ1)G, . . . , π(τn)G).

Proof. 1 ⇔ 2. Fix M ≺ Vα. Since being a B-name is absolute for transitive models and
π is an isomorphism, we have that π(τ1), . . . , π(τn) ∈ Nπ(B). Moreover, since Vα reflects

Jϕ(τ1, . . . , τn)KV
B

≥ b, M is an elementary substructure of Vα and π is an isomorphism, we
can infer that:

Jϕ(τ1, . . . , τn)KV
B

≥ b⇔ (Jϕ(τ1, . . . , τn)KV
B

≥ b)Vα

⇔ (Jϕ(τ1, . . . , τn)KV
B

≥ b)M

⇔ Jϕ(π(τ1), . . . , π(τn))KN
π(B)

≥ π(b).
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For the same reasons Θϕ holds in N . Moreover, Lemma 3.3.5 tells us that N -generic ultrafilter
are dense in St(π(B)). Then one direction of the thesis follows from Theorem 3.3.10, the other
from Lemma 2.3.30.

1⇔ 3. The existence of a countable model M such that M ≺ Vα is guaranteed by Downward
Löwenheim−Skolem Theorem 2.1.20. With this observation the proof proceeds as in the previous
point.

Remark 3.4.15. Let ϕ be a formula. Suppose that ZFC proves that for some boolean algebra
B JϕKB > 0B. By compactness only a finite number of axioms of ZFC are needed to prove this
derivation. We let Ξϕ denote the conjunction of these axioms. By the Reflection Principle 3.1.7
we get a Vα which reflects Ξϕ ∧ Θϕ. By the Downward Löwenheim−Skolem Theorem 2.1.20,
and the Mostowski’s Collapse 3.1.5, we can find a countable transitive set N which is a model
of Ξϕ ∧ Θϕ. Since N is a countable model of Ξϕ, there exists a boolean algebra B ∈ N which
N models to be complete and such that JϕKB > 0B. By Lemma 3.3.5 there exists an N -generic
ultrafilter G with JϕKB ∈ G. We conclude, by means of Cohen’s Forcing Theorem applied to ϕ,
that N [G] |= ϕ whenever G is N -generic for B with JϕKB ∈ G (this is the case since N models
Θϕ).

Since we can repeat this procedure for any finite set of axioms of ZFC which includes Ξϕ∧Θϕ,
we obtain that ϕ is finitely consistent with ZFC, and thus, by compactness, that it is consistent
with ZFC.

This explains why set theorists can use Cohen’s Forcing Theorem without being worried by
the non-existence of a V -generic ultrafilter.

3.5 Absoluteness results

The previous sections provided the basic tools needed in order to obtain consistency results using
forcing. Now we will present some theorems which show how the forcing techniques can be used to
derive properties within ZFC. The key of this process will be Shoenfield’s Absoluteness Theorem.
An exhaustive description of this topic can be found in Chapter 25 of [6]. Our description will
be slightly different, and it will be closer to the introduction of [13].

Definition 3.5.1. Let κ be a cardinal. We define the set Hκ as

Hκ = {x : |TC(x)| < κ}

Proposition 3.5.2. Assume κ > ω is regular. Then Hκ is a model of all axioms of ZFC except
for the power set axiom.

Proof. See [8, Theorem 6.5]

Theorem 3.5.3 (Cohen’s Generic Absoluteness). Assume ϕ(x, a) is a ∆0-formula and a ⊆ ω.
The following are equivalent:

1. 〈Hℵ1 ,∈〉 |= ∃xϕ(x, a);

2. there is a complete boolean algebra B such that J∃xϕ(x, ǎ)KV
B

> 0B.

Proof. Suppose 〈Hℵ1 ,∈〉 |= ∃xϕ(x, a), since Hℵ1 ⊂ V and Σ1-formulae are upward absolute it
holds

V |= ∃xϕ(x, a)

hence, considering B = {0, 1}, we have J∃xϕ(x, ǎ)KV
B

= 1B.
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Conversely, assume there is a complete boolean algebra B such that J∃xϕ(x, ǎ)KV
B

> 0B. By
Remark 3.4.15 there exists a countable transitive model N and an N -generic ultrafilter G such
that N [G] |= ϕ(s, a) for a certain s ∈ N [G] (notice that π(a) = a since a ⊆ ω). The set N [G] is
transitive and countable, hence it is contained in Hℵ1 and so does a. The formula ϕ is ∆0, so
it is absolute for transitive models, hence Hℵ1 |= ϕ(s, a) (every Hκ is clearly transitive), which
leads to Hℵ1 |= ∃xϕ(x, a).

Remark 3.5.4. Cohen’s Absoluteness Theorem deserves some comments. We know that (Hℵ1)V ⊆
V for any V |= ZFC, and Σ1-formulae are upward absolute. Thus Cohen’s Absoluteness Theorem
tells us that in order to proof ∃xϕ(x, a) (ϕ any ∆0-formula) in ZFC, it is not necessary to show
that this formula holds in every model of ZFC, but just that J∃xϕ(x, ǎ)K > 0B holds for some B.
This can be performed finding one appropriate model through forcing. This technique can also
be applied to Σ1

2-formulae, which are a specific class of formulae in the second order arithmetic
(see [6, Chapter 25] for more details), since these formulae can be translated into Σ1-formulae in
Hℵ1 (see Lemma 25.25 in [6]).
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Chapter 4

C∗-algebras and B-names for
complex numbers

In this chapter we will finally draw a bridge between the theory of commutative C∗-algebras and
the theory of boolean valued models of set theory. First we will show how to define (given B a
complete boolean algebra) a structure of B-valued extension of C on the C∗-algebra C(St(B)),
the set of continuous functions from St(B) to C. In the second part we will consider C∗-algebras
A whose spectrum is extremely disconnected, and we will show that

A ∼= C(St(B))

for a specific complete boolean algebra B. In the last section we will provide an embedding of
these C∗-algebras in the B-names for complex numbers of V B. From this we will get that the
quotient C(St(B))/G, where G is a V -generic ultrafilter of B, is an algebraically closed field which
extends C, and which preserves the truth value of Σ2-formulae of C.

4.1 A boolean valued extension of C
We introduce some definitions from topology.

Definition 4.1.1. Let X be a topological space.

• A ⊆ X is nowhere dense if its complement contains an open dense set;

• A ⊆ X is meager if it is the union of countably many nowhere dense sets;

• A ⊆ X is comeager if its complement is meager;

• A ⊆ X has the Baire property if there exists an open set U ⊆ X such that A∆U is
meager.

The family of Borel sets of X is the σ-algebra generated by the open subsets of X, i. e. the
smallest family F of subsets of X such that:

1. if A ⊆ X is open then A ∈ F ;

2. if A ∈ F then Ac ∈ F ;



50 Chapter 4. C∗-algebras and B-names for complex numbers

3. if {An}n∈ω ⊆ F then
⋃
n∈ω An ∈ F .

We need a couple of properties before being able to present the boolean extension of C.

Proposition 4.1.2. Assume X is a compact Hausdorff space. Then every Borel set B of X has
the Baire property and there exists a unique regular open set U such that B∆U is meager.

Proof. For a proof see [5, Chapter 29, Lemma 2].

Proposition 4.1.3. Let X,Y be two topological spaces and f : X → Y a continuous map. If
B ⊆ Y is a Borel set, then f−1[B] is a Borel set of X.

Proof. This is the case since the preimage of open sets through f is open, and:

f−1

[⋃
n∈ω

An

]
=
⋃
n∈ω

f−1[An]

f−1[Acn] = f−1[An]c

The following example shows how to obtain a boolean extension of a topological space X
when the language is composed by symbols which are interpreted as Borel subsets of Xn.

Example 4.1.4. Fix a complete boolean algebra B, a topological space X, and R ⊆ X × X
a binary Borel relation on X. Consider M = C(St(B), X) the set of continuous functions from
St(B) to X. We can define a structure of B-valued extension of X on M . Given f, g ∈ M , the
set

W = {G ∈ St(B) : f(G)Rg(G)} = (f × g)−1(R)

is a Borel subset of St(B) since both f and g are continuous. By Proposition 4.1.2 W has the
Baire property and

˚{G ∈ St(B) : f(G)Rg(G)}

is the unique regular open set U ⊆ St(B) such that W∆U is meager. If we identify B and
RO(St(B)) (B is complete), we have that

RM (f, g) =
˚{G ∈ St(B) : f(G)Rg(G)}

is a well defined element of B. We can repeat verbatim the procedure above in order to define
the boolean interpretation of any n-ary Borel relation on X and of any function

F : Xn → X

whose graph is a Borel subset of Xn+1 (we will simply say that F is a Borel function). The
boolean interpretation of the equality can be defined as long as the set

∆X = {(x, x) ∈ X ×X : x ∈ X}

is a Borel set in X ×X. With these definitions it can be checked that M is a B-valued model.
Moreover the set {cx ∈M : x ∈ X}, where cx is the constant function with value x, is a copy of
X in M in the sense that, for x, y ∈ X:

xRy ⇔ JcxRcyK = 1B
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¬xRy ⇔ JcxRcyK = 0B

x = y ⇔ Jcx = cyK = 1B

x 6= y ⇔ Jcx = cyK = 0B

Thus we can infer that M is the boolean extension of an isomorphic copy of X seen as a 2-valued
model.

Remark 4.1.5. If X = C we have that ∆C is closed (C is Hausdorff). Hence, fixed a language L
whose elements are Borel relations and functions in C, we can define in the C∗-algebra C(St(B))
a structure of B-valued extension of C for the language L.

4.2 C∗-algebras as B-valued models

Definition 4.2.1. Let X be a 0-dimensional compact Hausdorff space. Consider the function

ϕX : X → St(CL(X))

x 7→ Gx

with Gx = {A ∈ CL(X) : x ∈ A} the ultrafilter defined in Proposition 2.2.17. We shall call ψX
the inverse map of ϕX and, for G ∈ St(B)

ψX(G) = xG

We recall that {xG} =
⋂
G.

Proposition 4.2.2. Let A be a commutative unital C∗-algebra, X = σ(A) its spectrum and
B = RO(X). Assume furthermore that X is extremely disconnected. Then X is homeomorphic
to St(B) and the map

ΦA : C(X)→ C(St(B))

f 7→ f̂

where f̂(G) = f(xG), is an isometric ∗-isomorphism of C∗-algebras.

Proof. Proposition 1.2.8 implies that X is regular, hence it admits a basis of regular open sets,
and since RO(X) = CL(X) we have that X is 0-dimensional. By Proposition 2.2.17, and the fact
that B = CL(X), we infer that X ∼= St(CL(X)) = St(B). Thus the map

ΦA : C(X)→ C(St(B))

f 7→ f̂

is an homeomorphism. By the definition of f̂ it easily follows that ΦA is an isometric ∗-
isomorphism.

Remark 4.2.3. The previous proposition connects abelian unital C∗-algebras whose spectrum is
extremely disconnected with boolean extensions of the complex field. In fact, assume that A is
a C∗-algebra with such properties, X its spectrum and B = RO(X). If we combine the previous
result with the Gelfand-Naimark Theorem 1.2.10, we obtain :

A ∼= C(X) ∼= C(St(B))
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Now we want to see what happens when we consider a commutative unital C∗-algebra whose
spectrum is not extremely disconnected. In order to do this we will generalize the map ΦA
defined in Proposition 4.2.2. First we need to generalize Definition 4.2.1.

Lemma 4.2.4. Let X be a compact Hausdorff topological space and B = RO(X). The map

ψX : St(B)→ X

G 7→ xG

where xG is the only element in

CG =
⋂
{U : U ∈ G}

is well-defined, continuous and surjective. This map is the function ψX given by Definition 4.2.1
if and only if X is extremely disconnected.

Proof. Well-defined: We have to show that, given G ∈ St(B), CG is a singleton. The set is
non-empty since CG inherits the finite intersection property from G, and X is compact.
The space X is regular, hence if x 6= y ∈ CG there exists a regular open set A such that
x ∈ A and y /∈ A. From this and

A ∈ G⇒ ˚(X \A) /∈ G

follows that
x ∈ CG ⇒ y /∈ CG

which is absurd.

Surjective: For each x ∈ X consider a ultrafilter G which extends the filter of the regular open
nieghborhoods of the point. In this case xG = x.

Continuous: Let A be an open set in X, and let G be such that xG ∈ A. Let B a regular open
set such that xG ∈ B and B ⊆ A. B is open and xG /∈ Bc, so that xG /∈ ¬B. This means
that B ∈ G (otherwise ¬B ∈ G, which is absurd since xG 6∈ ¬B), and from B ⊆ A follows
OB ⊆ ψ−1(A).

The following theorem generalizes Proposition 4.2.2 to any commutative unital C∗-algebra.

Theorem 4.2.5. Fix a commutative unital C∗-algebra A, let X be its spectrum, and let B =
RO(X). The function

ΦA : C(X)→ C(St(B))

f 7→ f̂

where f̂(G) = f(xG), is an injective ∗-homomorphism of C∗-algebras. Moreover, the map ΦA is
an isometric ∗-isomorphism if and only if X is extremely disconnected.

Proof. The map clearly preserves sum, product and involution.

Continuous: These inequalities guarantee continuity:

‖ΦA(f)‖ = max
G∈St(B)

∣∣∣f̂(G)
∣∣∣ = max

G∈St(B)
|f(xG)| ≤ ‖f‖
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Injective: Consider f 6= 0, hence there exists x ∈ X such that f(x) 6= 0. From Lemma 4.2.4 we

know that there exists G ∈ St(B) such that x = xG, thus f̂(G) 6= 0.

Surjective: As we have showed earlier, if X is extremely disconnected the map ΦA is an isometric
∗-isomorphism. Suppose X is not extremely disconnected and consider the surjective con-
tinuous map ψX in Lemma 4.2.4. Since both X and St(B) are compact Hausdorff spaces,
the map can not be bijective, otherwise it would be an homeomorphism, which is impossi-
ble since St(B) is extremely disconnected. Thus injectivity of ψX must fail, and there exist

two ultrafilters G and H such that xG = xH . We conclude that for every f̂ ∈ Im(ΦA)

f̂(G) = f̂(H)

(even more, f̂ is constant over the fiber of ψX at any point x ∈ X). Since St(B) is a normal
space we can always find an h ∈ C(St(B)) which assumes different values on different points
which are on the same fiber of ψX . We conclude that h can not belong to Im(ΦA).

Remark 4.2.6. Summing up, given A a unital commutative C∗-algebra and B = RO(σ(A)), the
map ΦA ◦ΓA is a ∗-homomorphism which embeds A in C(St(B)), a B-valued extension of C. We
have also showed that this map is a ∗-isomorphism if and only if σ(A) is extremely disconnected.
We may ask whether this request is too strong and if only exotic examples of C∗-algebras satisfy
it. This is not the case, and we will provide an example.

Example 4.2.7. Let A = L∞(C) and X be its spectrum. Working directly with B = RO(X)
is a bit laborious. We consider then MALG, the complete boolean algebra of measurable sets
in C modulo null measure sets. We will work in this more familiar context, and show that
X ∼= St(MALG). This will be enough, in fact this will guarantee thatX is extremely disconnected,
hence X ∼= St(RO(X)), and by Corollary 2.2.20 (which implies B ∼= MALG) we conclude that
L∞(C) is isomorphic to C(X) ∼= C(St(RO(X)) ∼= C(St(MALG)).

Linear combinations of characteristic functions of measurable sets are dense in L∞(C). Thus
any character k in the spectrum X of L∞(C) is univocally determined by its value on character-
istic functions {χA}A∈MALG. In addition, since k ∈ X is a non zero homomorphism, given any
A ∈ MALG:

k(1) = k(χA + χAc) = 1

k(0) = k(χAχAc) = 0

This means that every characteristic function is mapped by k or in 0 or in 1, and if k(χA) = 1
then k(χAc) = 0, and vice versa. Assume G ∈ St(MALG), then the function kG defined as

kG(χA) =

{
1 if A ∈ G
0 if A /∈ G

and extended by linearity and continuity to L∞(C) belongs to the spectrum. Conversely, given
k ∈ X, we can consider the set Gk = {A : k(χA) = 1} which can be easily verified to a ultrafilter.
The maps

Θ : X → St(MALG)

k 7→ Gk
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Ξ : St(MALG)→ X

G 7→ kG

are one the inverse of the other. If we show that one of them is continuous we obtain X ∼=
St(MALG), since X and St(MALG) are both compact Hausdorff spaces. We will work on Θ.
Consider OA a clopen set in St(MALG). Its preimage is the set of all k ∈ X such that k(χA) = 1,
which is closed with respect to pointwise convergence, hence closed in X. In particular we get
that the preimage of OAc is open in X, thus we conclude that Θ is continuous. We can therefore
write the isomorphism Λ (which is ΓL∞(C) composed with the isomorphism between C(X) and
C(St(MALG))):

Λ : L∞(C)→ C(St(MALG))

f 7→ f̃

where f̃(G) = kG(f).

4.3 B-names for complex numbers

Through this section we will assume V to be a transitive model of ZFC and B ∈ V a boolean
algebra which V models to be complete. If G is a V -generic ultrafilter in B, V [G] will denote the
generic extension of Definition 3.3.6.

Definition 4.3.1. σ ∈ V B is a B-name for a complex number if

Jσ is a complex numberK = 1B

We denote with CB the set of all B-names for complex numbers modulo the equivalence relation:

σ ≡ τ ⇔ Jσ = τK = 1B

Remark 4.3.2. Let

B = {Un : n ∈ ω}

be the family of the open balls in C whose radius and centre coordinates are rational. Every
Borel subset of C is obtained, in fewer than ℵ1 steps, from the elements of B by taking countable
unions and complements. It is possible to code these operations with a real number r. A
detailed explanation of this procedure is given in section “Borel Codes” of [6, Chapter 25]. For
our purposes it is enough to say that if R is a Borel subset of C, there is a real number r ∈ R
and a (ZFC provably) ∆1-property P (x, y) such that

x ∈ R⇔ P (x, r)

Lemmas 25.24 and 25.25 in [6] show that these Borel codes and the inclusion relation between
these sets are absolute for transitive models. Consider two Borel sets R,S associated to r, s ∈ R
respectively, and V a transitive model of ZFC such that r, s ∈ V . Let B be a complete boolean
algebra in V and assume there could be G a V -generic filter for B. The generic extension V [G]
would be a transitive model of ZFC which contains V , hence the absoluteness properties between
V and V [G] would guarantee that

RV ⊆ SV ⇔ RV [G] ⊆ SV [G]
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where
RV = {x ∈ V : P (x, r)}

RV [G] = {x ∈ V [G] : P (x, r)}

and similarly for S. Guided by these considerations we define in V the following B-name:

Ṙ = {(τ, JP (τ, ř)K) : τ is a B-name for a complex number}

It is easy to see that:
ṘG = RV [G]

whenever G is a V -generic filter for B. In particular Ṙ ∈ V B is a canonical name to interpret the
Borel relation R in any generic extension of V by a generic filter G.

We return now to CB. Observe that, given τ ∈ CB and a first order formula ϕ(x), the element

Jϕ(τ)KV
B

is well-defined in B, even if τ is an equivalence class. This follows from Lemma 2.3.11.
Keeping this in mind we give the following:

Definition 4.3.3. Given R a Borel n-ary relation on C we define, for σ1, . . . , σn ∈ CB:

JR(σ1, . . . , σn)KC
B

=
r

(σ1, . . . , σn) ∈ Ṙ
zV B

and similarly for Borel functions.

Lemma 2.3.11 and Soundness Theorem 2.3.14 applied in V B guarantee that items i-vii in
Definition 2.3.1 hold for the structure

〈CB, RCB

1 , . . . , RCB

k , FCB

1 , . . . , FCB

l 〉

where each Ri (Fj) is an arbitrary Borel relation (function) on Cni (from Cmj to C). As a
consequence, CB is B-valued extension of C when we consider languages composed by Borel
relations and functions. We have seen that this is the case also for C(St(B)), and we will be able
to build an embedding of this space in CB. Unfortunately these two spaces are not isomorphic as
B-valued models. In order to have an isomorphism we need to consider a larger set of functions
from St(B).

Definition 4.3.4. Let X be a compact Hausdorff extremely disconnected space. C+(X) is the
set of continuous functions f from X to the one point compactification of the complex field
C ∪ {∞} ∼= S2 such that f−1[{∞}] is nowhere dense.

We can define on C+(St(B)) a structure of B-valued extension of C as we did for C(St(B)) in
Example 4.1.4. Our aim is the following:

Theorem 4.3.5. Fix a set
L = {Ri : i ∈ I} ∪ {Fj : j ∈ J}

where:

• for i ∈ I, Ri is a Borel subset of Cni ;

• for j ∈ J , Fj is a Borel function from Cmj to C.

Then the B-valued models C+(St(B)) and CB in the language L (as defined in Example 4.1.4 and
Definition 4.3.3 respectively) are isomorphic.
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With some more effort we will be able to show how the study of complex numbers in a generic
extension can be reduced to the study of C(St(B)), and we will derive the following:

Theorem 4.3.6. Let V be a transitive model of ZFC, B ∈ V which V models to be a complete
boolean algebra, and G a V -generic filter in B. Assume R1, . . . , Rs are ni-ary Borel relations
and f1, . . . , ft mj-ary Borel functions on C. Then

〈C, R1, . . . , Rs, f1, . . . , ft〉 ≺Σ2
〈C(St(B))/G,R1/G, . . . , Rs/G, f1/G, . . . , ft/G〉

Before getting to these theorems, we need several intermediate results.
Something similar to Remark 4.3.2 can be performed in St(B). In this case the parameters for

the “code” have to be taken among real numbers (to code the complexity of the Borel relation)
and elements of B (to code the basic open sets), since a basis for St(B) is

{Oa : a ∈ B}

We will show explicitly the absoluteness of the inclusion relation for generic extensions in the
case of open and closed sets, since it will be needed later.

Lemma 4.3.7. Let V be a transitive models of ZFC, B ∈ V a boolean algebra which V models
to be complete, and G a V -generic filter over B. Assume RV , SV are two open or closed sets in
St(B)V . Then

RV ⊆ SV ⇔ RV [G] ⊆ SV [G]

Proof. Clopen ⊆ Clopen: Given a, b ∈ B:

OVa ⊆ OVb ⇔ a ≤ b

The order relation in B is absolute for generic extensions, therefore the thesis follows.

Open ⊆ Closed: Let A,B ⊆ B. Then:⋃
a∈A
OVa ⊆

⋂
b∈B

OVb ⇔ ∀a ∈ A∀b ∈ B(OVa ⊆ OVb )

⇔ ∀a ∈ A∀b ∈ B(OV [G]
a ⊆ OV [G]

b )

⇔
⋃
a∈A
OV [G]
a ⊆

⋂
b∈B

OV [G]
b

Closed ⊆ Open: Given A,B ⊆ B, assume that we have⋂
a∈A
OVa ⊆

⋃
b∈B

OVb

We define the set
¬B = {¬b : b ∈ B}

The hypothesis guarantees that A∪¬B does not have the finite intersection property. Since
this property of A ∪ ¬B as a subset of B is absolute for generic extensions, this is true in

V [G] as well, therefore there is no H ∈
⋂
a∈AO

V [G]
a such that

H ∈
⋂
b∈B

OV [G]
¬b =

(⋃
b∈B

OV [G]
b

)c
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Now assume that ⋂
a∈A
OVa 6⊆

⋃
b∈B

OVb

Then the family A ∪ ¬B has the finite intersection property in V as well as in V [G], thus
we can find H ∈ St(B)V [G] such that

H ∈
⋂
a∈A
OV [G]
a ∩

⋂
b∈B

OV [G]
¬b

Open ⊆ Open: Given A,B ⊆ B, consider ⋃
a∈A
OVa ,

⋃
b∈B

OVb

Since every OVa ∈ ∆0
1 ⊆ Π0

1, from previous items we have that:

OVa ⊆
⋃
b∈B

OVb ⇔ OV [G]
a ⊆

⋃
b∈B

OV [G]
b

thus: ⋃
a∈A
OVa ⊆

⋃
b∈B

OVb ⇔
⋃
a∈A
OV [G]
a ⊆

⋃
b∈B

OV [G]
b

Remark 4.3.8. In the following part, given B a complete boolean algebra, we will often confuse
it with RO(St(B)). If U is a regular open set of St(B) and G ∈ St(B), we may write equivalently

G ∈ U,U ∈ G

depending if we are considering U as an element of RO(St(B)) or as the correspondent element
in B.

We recall the definition of B in Remark 4.3.2, the countable basis of C whose elements are
the open balls with rational radius and whose centre has rational coordinates:

B = {Un : n ∈ ω}

The following lemma characterizes the elements of C+(St(B)).

Lemma 4.3.9. Assume f ∈ V is an element of C+(St(B)). For H ∈ St(B) we define

ΣHf = {Un :
˚

f−1[Un] ∈ H}

Then, for H ∈ St(B), we have:
f(H) = σHf

where σHf it is the only element in
⋂

ΣHf if ΣHf is non-empty, and σHf =∞ otherwise.

Proof. Assume ΣHf is empty. If f(H) ∈ Un for some n ∈ ω it follows that:

H ∈ f−1[Un] ⊆ ˚
f−1[Un]

hence
˚

f−1[Un] ∈ ΣHf , which is absurd. Suppose now that ΣHf is non-empty.
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Claim 4.3.9.1. Assume ΣHf is non-empty. Then
⋂

ΣHf is a singleton.

Proof. Let m ∈ ω be such that Um ∈ ΣHf .

Existence: The family

Σ̂Hf = {Um ∩ Un :
˚

f−1[Un] ∈ H}

is a family of closed subsets of Um. ΣHf inherits the finite intersection property from H,

hence so does Σ̂Hf . We can conclude that

∅ 6=
⋂

Σ̂Hf ⊆
⋂

ΣHf

Uniqueness: Suppose there are two different points x, y ∈
⋂

ΣHf . There exists p ∈ ω such that

x ∈ Up, y /∈ Up. The last relation implies Up /∈ ΣHf . Now we show that if an element in⋂
ΣHf is in a certain Un, then

˚
f−1[Un] ∈ H. Therefore x ∈ Up implies Up ∈ ΣHf , which is

absurd. Suppose
˚

f−1[Up] /∈ H, we have that:

H ∈ ¬ ˚
f−1[Up] ∩ ˚

f−1[Um] ⊆ f−1[Um \ Up]

For each z ∈ Um \ Up there exists Unz such that

z ∈ Unz ∧ x /∈ Unz

This family of open balls covers the compact space Um \Up, so that there are z1, · · · , zk ∈
Um \ Up which verify the following chain of inclusions:

f−1[Um \ Up] ⊆
⋃

1≤i≤k

f−1[Unzi ] ⊆
⋃

1≤i≤k

˚
f−1[Unzi ]

There is therefore a zj such that
˚

f−1[Unzj ] ∈ H, hence Uzj ∈ ΣHf . This is absurd since

x /∈ Uzj .

Suppose f(H) 6= σHf and consider two open balls U1, U2 in B such that

U1 ∩ U2 = ∅

f(H) ∈ U1

σHf ∈ U2

It easily follows that both
˚

f−1[U1] and
˚

f−1[U2] are in H (the second assertion, can be shown
along the same lines of the uniqueness proof in Claim 4.3.9.1). These two sets are disjoint, a
contradiction follows.

Remark 4.3.10. Previous lemma shows that in ZFC, given f ∈ C+(St(B)), it holds

f(H) = x⇔ x = σHf
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The latter is a (ZFC provably) ∆1-property with ω and {an =
˚

f−1[Un] : n ∈ N} as parameters.
Thus, given V a transitive model of ZFC, B a complete boolean algebra in V , G a V -generic filter
in B, any f ∈ V element of C+(St(B))V can be extended in an absolute manner to V [G] by the
rule:

fV [G] : St(B)V [G] → CV [G]

H 7→ σHf

where σHf is defined as in the previous lemma through the set

ΣHf = {Un : an ∈ H}

Remark 4.3.11. The next proofs will often use Proposition 3.4.14 in order to show that for a
certain formula ϕ and for some b ∈ B

JϕK ≥ b

In that proposition we work with M , a countable set which reflects enough axioms of ZFC as
well as the formula JϕK ≥ b (precisely M reflects Θϕ ∧ (JϕK ≥ b)), and with N , its transitive
image through the Mostwoski’s Collapse. From now on, when using Proposition 3.4.14, we will
work under the assumption that there exists a countable M ≺ V with M ∈ V for V a model of
ZFC containing the relevant parameters of the formula JϕK ≥ b. If the reader is disturbed by this
assumption (which is consistencywise stronger than ZFC), she/he can apply some compactness
arguments in combination with Proposition 3.4.14 to remove this assumption, keeping in mind
that in each of the following proofs we need to reflect only a finite number of properties of V ,
thus we could always reduce our attention to a countable M ≺ Vα for a certain ordinal α.

Lemma 4.3.12. Fix V a transitive model of ZFC and B ∈ V a boolean algebra which V models
to be complete. Let f ∈ C+(St(B)) and consider

B = {Un : n ∈ ω}

the countable basis of C defined in Remark 4.3.2. For each n ∈ ω let

an =
˚

f−1[Un]

There exists a unique τf ∈ CB such that

r
τf ∈ U̇n

z
= an

Proof. Consider the B-name
Σf = {(U̇n, an) : n ∈ ω}

We start showing that r
∃!x(x ∈

⋂
Σf )

z
= 1B

which, by Proposition 3.4.14, is a consequence of the following:

Claim 4.3.12.1. Assume M ≺ V is a countable model of ZFC such that ω ∪ {an : n ∈ ω} ∪
{B, f} ⊆M , and π : M → N is the Mostowski’s Collapse. Let G be an N -generic filter for π(B).
Then:

N [G] |= ∃!x
(
x ∈

⋂
ΣGπ(f)

)
where ΣGπ(f) = {UN [G]

n : π(an) ∈ G}.
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Proof. Notice that since ω ⊆M is transitive, rational and complex numbers (the power-set of a
transitive set is transitive) are preserved by π and that CN = C∩N . First, we prove that ΣGπ(f)

is non-empty (observe that π(f) preserves all the properties of f since π is an isomorphism).
The preimage of CN through π(f) contains an open dense subset of St(π(B))N , hence (observe
that π(f)−1[UNn ] = π(f−1[Un])) it follows that⋃

n∈ω
π(an)

is an open dense subset of St(π(B)) as well. By Lemma 3.3.4 we can infer that

D = {a ∈ π(B)+ : ∃n ∈ ω(a ≤ π(an))}

is open dense in π(B)+. Since G is N -generic, G ∩ D 6= ∅. There exists therefore m ∈ ω such

that π(am) ∈ G, thus U
N [G]

m ∈ ΣGπ(f). The proof that
⋂

ΣGπ(f) is a singleton can be carried in N
as in Claim 4.3.9.1.

V B is full, there is therefore a B-name τf such that

r
τf ∈

⋂
Σf

z
= 1B

This is a B-name for a complex number. Moreover, if τ is a B-name for a complex number and
r
τ ∈

⋂
Σf

z
= 1B

then, from

(τf ∈
⋂

Σf ) ∧ (τ ∈
⋂

Σf ) ∧ (∃!x(x ∈
⋂

Σf ))→ τ = τf

it follows that (by the Soundness Theorem 2.3.14):

Jτ = τf K = 1B

Now we focus on the proof of the thesis of the lemma. We will use again Proposition 3.4.14. Let
M ≺ V be a countable structure as in Claim 4.3.12.1, π : M → N its Mostowski’s Collapse, and
G an N -generic filter for π(B). On the one hand we have (using the same proof of the uniqueness

part in Claim 4.3.9.1) that if τGπ(f) ∈ U
N [G]
n then π(an) ∈ G, which means by Proposition 3.4.14

¬an ≤
r
τf /∈ U̇n

z

or equivalently r
τf ∈ U̇n

z
≤ an

On the other hand

G ∈ π(f)N [G]−1
[UN [G]
n ]⇒ π(f)N [G](G) = τGπ(f) ∈ U

N [G]
n ⇒

r
τπ(f) ∈ U̇n

zNπ(B)

∈ G

which means, interpreting
r
τπ(f) ∈ U̇n

zNπ(B)

as a clopen subset of St(π(B))N [G], that

π(f)N [G]−1
[UN [G]
n ] ⊆

(r
τπ(f) ∈ U̇n

zNπ(B))N [G]
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Lemmas 4.3.7 and 4.3.9 guarantee that this is equivalent to

π(f)−1[UNn ] ⊆
r
τπ(f) ∈ U̇n

zNπ(B)

Since
r
τπ(f) ∈ U̇n

zNπ(B)

is clopen this implies that

π(an) ≤
r
τπ(f) ∈ U̇n

zNπ(B)

and therefore: (
an ≤

r
τf ∈ U̇n

z)M
which guarantees the thesis in V since M ≺ V .

Corollary 4.3.13. With the hypotheses of Lemma 4.3.12, if G is a V -generic filter in B then:

fV [G](G) = τGf

Moreover, fix R (F ) an n-ary Borel relation (function) over C and f1, . . . , fn+1 ∈ C+(St(B)).
Then:

JR(τf1 , . . . , τfn)KC
B

∈ G⇔ RV [G](f
V [G]
1 (G), . . . , fV [G]

n (G))

q
F (τf1 . . . , τfn) = τfn+1

yCB

∈ G⇔ FV [G](f
V [G]
1 (G), . . . , fV [G]

n (G)) = f
V [G]
n+1 (G)

Proof. This follows from the previous result and from the definition of boolean interpretation of
Borel relations and functions in CB (Definition 4.3.3).

The map we have built in the lemma above is surjective.

Lemma 4.3.14. Assume τ ∈ CB. Consider

fτ : St(B)→ C ∪ {∞}
H 7→ σHf

where, given

ΣHf = {Un :
r
τ ∈ U̇n

z
∈ H}

σHf is the only element in
⋂

ΣHf if ΣHf is non-empty, σHf =∞ otherwise. The function f belongs

to C+(St(B)) and τfτ = τ .

Proof. The proof that if ΣHf is non-empty then its intersection has one single point can be carried

as in Claim 4.3.9.1 substituting
˚

f−1[Un] with
r
τ ∈ U̇n

z
.

Preimage of {∞} is nowhere dense: We show that the preimage of C through fτ contains an
open dense set. We use the following abbreviation

an =
r
τ ∈ U̇n

z

and consider the set A = {an : n ∈ ω}. First we show that:∨
n∈ω

an = 1B
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We use Proposition 3.4.14. Let M ≺ V be a countable structure such that B, τ ∈ M ,
ω,A ⊆M , and as usual let π : M → N be the Mostowski’s Collapse. Since τ is a B-name
for a complex number in M , π(τ) is a π(B)-name for a complex number in N . Let G be
an N -generic filter over π(B), we have therefore:

N [G] |= π(τ)G ∈ C

we can infer
N [G] |= ∃n ∈ ω(π(τ)G ∈ Un)

Since generic extensions and π preserve ω, we get that ω̌G = ωN [G]. Thus, by Proposition
3.4.14: ∨

n∈ω
an =

r
∃n ∈ ω̌(τ ∈ U̇n)

z
≥ 1B

This means that A is predense because if b ∈ B+:

b = b ∧
∨
n∈ω

an =
∨
n∈ω

b ∧ an

so that 0B 6= ak ∧ b ≤ b for some k ∈ ω. We can conclude with Lemma 3.3.4.

Continuous: Let H ∈ St(B) be in the preimage of C, hence there exists m ∈ ω such that am ∈ H
and as a consequence

fτ (H) ∈ Um
Let U be an open subset of C containing fτ (H), and consider Uk ∈ B such that

fτ (H) ∈ Uk

Uk ⊆ Um ∩ U

Since

fτ (H) ∈ Uk ⇒ ak ∈ H (1)

which can be showed as in the uniqueness part in Claim 4.3.9.1 substituting
˚

f−1[Un] withr
τ ∈ U̇n

z
, and since the following inclusion holds:

Oak ⊆ f−1
τ (U)

the continuity of fτ for points in the preimage of C is proved.

Consider now H ∈ f−1
τ ({∞}). Let A be an open neighborhood of ∞, and let Uk be an

open ball centred in zero with rational radius such that

U
c

k ⊆ A

We also consider Ul such that
Uk ⊆ Ul

By definition of fτ we have that H ∈ Ocal , and by (1) the image of any element in the open
set Ocal can not belong to Ul. Thus

Ocal ⊆ f
−1
τ [U cl ] ⊆ f−1

τ [U
c

k] ⊆ f−1
τ [A]
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τfτ = τ : We already know that (see (1)):

f−1
τ [Un] ⊆ Oan

The second set is clopen, thus:

r
τfτ ∈ U̇n

z
=

˚
f−1
τ [Un] ⊆ Oan (2)

Toward a contradiction, assume Jτ = τfτ K 6= 1B. By Proposition 3.4.14 we can find M ≺ V
a countable structure with B, τ, f ∈M , ω ⊆M , and where π : M → N is the Mostowski’s
Collapse, such that there is an N -generic filter G which verifies

N [G] |= π(τ)G 6= π(τfτ )G

Thus there exists n ∈ ω such that:

π(τfτ )G ∈ UN [G]
n

π(τ)G /∈ UN [G]
n

The inclusion relation (2) implies

r
π(τfτ ) ∈ U̇n

z
≤

r
π(τ) ∈ U̇n

z

and by Cohen’s Forcing Theorem
r
π(τfτ ) ∈ U̇n

z
∈ G. This is a contradiction.

Finally we can show that the map f → τf is an isomorphism of B-valued models between CB

and C+(St(B)).

Theorem 4.3.15. Fix a set

L = {Ri : i ∈ I} ∪ {Fj : j ∈ J}

where:

• for i ∈ I, Ri is a Borel subset of Cni ;

• for j ∈ J , Fj is a Borel function from Cmj to C.

and consider C+(St(B)) and CB as B-valued models in the language L as defined in Example
4.1.4 and Definition 4.3.3 respectively. The map

Ω : C+(St(B))→ CB

f 7→ τf

is an isomorphism of B-valued models.
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Proof. We will first consider the case of R ⊆ C a unary Borel relation in C. Given f ∈ C+(St(B)),

consider JR(f)K and
r
τf ∈ Ṙ

z
as regular open subsets of St(B). By Proposition 4.1.2, in order

to show that they overlap, it is sufficient to prove that their symmetric difference is meager. By
definition, we already know that JR(f)K has meager difference with the set

{H ∈ St(B) : f(H) ∈ R} = f−1[R]

Therefore it suffices to prove that
r
τf ∈ Ṙ

z
and f−1[R] have meager difference. The proof

proceeds step by step on the hierarchy of Borel sets Σ0
α, Π0

α, for α a countable ordinal, as defined
in [6, Chapter 11, Section 1].

Σ0
1: Let R be an element of the basis

B = {Un : n ∈ ω}

defined in Remark 4.3.2. The thesis follows from Lemma 4.3.12, in fact

r
τf ∈ U̇n

z
=

˚
f−1[Un]

which has meager difference with f−1[Un]. Consider now

R =
⋃
i∈I

Ui

where I is a countable set of indexes. In this case we have that

f−1[R] =
⋃
i∈I

f−1[Ui]

and r
τf ∈ Ṙ

z
=
∨
i∈I

r
τf ∈ U̇i

z
= Å

where A =
⋃
i∈I

r
τf ∈ U̇i

z
. For each i ∈ I, the sets f−1[Ui] and

r
τf ∈ U̇i

z
have meager

difference, thus f−1[R]∆A is meager. This is true since meager sets are closed for countable
union, and the following property holds:(⋃

k∈K

Bk

)
∆

(⋃
k∈K

Ck

)
⊆
⋃
k∈K

(Bk∆Ck)

The proof is therefore concluded because A∆ Å is meager.

Σ0
α ⇒ Π0

α: Suppose R ∈ Π0
α, and that the thesis holds for Borel sets in Σ0

α. By definition

Rc ∈ Σ0
α, therefore:

f−1[Rc]∆
r
τf ∈ Ṙc

z
is meager

Since
B∆C = Bc∆Cc

we have that

f−1[R]∆
r
τf ∈ Ṙc

zc
is meager
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Thus we can conclude, in fact

r
τf ∈ Ṙ

z
= ¬

r
τf ∈ Ṙc

z

and the last set is the interior of
r
τf ∈ Ṙc

zc
, therefore they differ by a meager set.

Π0
α ⇒ Σ0

α+1: This item can be proved as the second part of the case α = 1, substituting the Un

with Borel sets in Π0
α.

Σ0
β for β limit ordinal: If the thesis holds for α < β, then the proof can be carried similarly to

the case Π0
α ⇒ Σ0

α+1.

This proves the theorem for unary Borel relations. The m-ary case (for both relation and function
symbols) can be shown similarly starting from the open basis of Cm

{Un1
× · · · × Unm : n1, . . . , nm ∈ ω}

Base step holds due to Lemma 4.3.12, and then we proceed by induction as we did earlier.
Lemma 4.3.14 guarantees that Ω is surjective, thus the proof is concluded.

The morphism Ω had to be defined on C+(St(B)) in order to be surjective. Nevertheless,
when passing to a generic extension of V , it is enough to consider the equivalence classes of the
element of the C∗-algebra C(St(B)).

Proposition 4.3.16. Assume V is a model of ZFC, B a complete boolean algebra in V and G a
V -generic filter in B. Then

C+(St(B))/G ∼= C(St(B))/G

Proof. We need to show that for each f ∈ C+(St(B)) we can find a f̃ ∈ C(St(B)) such that

r
f = f̃

z
∈ G

which, by Corollary 4.3.13, is equivalent to

fV [G](G) = f̃V [G](G)

We denote again:

an =
˚

f−1[Un]

Proceeding as in Claim 4.3.12.1, we can find m ∈ ω such that am ∈ G. For each H ∈ Oam we
have that:

f(H) ∈ Um
by Lemma 4.3.9. We can therefore consider the restriction of f to Oa and extend it to a
f̃ ∈ C(St(B))1 The implication

f �OVam= f̃ �OVam⇒ fV [G] �OV [G]
am

= f̃V [G] �OV [G]
am

guarantees the thesis since G ∈ OV [G]
am .

1This is a fact of general topology, known as Tietze’s Extension Theorem. For a proof of the latter see [15,
Theorem 15.8].
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Remark 4.3.17. Once we fix a language of Borel relations and functions in C, the theorems
proved so far guarantee that the following two first order models are isomorphic whenever G is
V -generic for B:

C(St(B))/G ∼= CB/G

If we consider for instance L = {+, ∗, }, we obtain that C(St(B))/G is an algebraically closed
field which extends C (modulo isomorphism).

We conclude combining the results of this section with Cohen’s Generic Absoluteness Theorem
3.5.3.

Theorem 4.3.18. Let V be a transitive model of ZFC, B ∈ V which V models to be a complete
boolean algebra, and G a ultrafilter on B. Assume R1, . . . , Rs are ni-ary Borel relations and
f1, . . . , ft mj-ary Borel functions on C. Then

〈C, R1, . . . , Rs, f1, . . . , ft〉 ≺Σ2 〈C+(St(B))/G,R1/G, . . . , Rs/G, f1/G, . . . , ft/G〉

Moreover, if G is V -generic, then the following holds:

〈C, R1, . . . , Rs, f1, . . . , ft〉 ≺Σ2
〈C(St(B))/G,R1/G, . . . , Rs/G, f1/G, . . . , ft/G〉

Proof. Cohen’s Generic Absoluteness Theorem 3.5.3 implies that

V ≺Σ1
V B/G

Thus the thesis is a consequence of

C+(St(B))/G ∼= CB/G

and of Lemma 25.25 in [6], which provides a translation of Σ1
2-formulae to Σ1-formulae in V .

The second part follows from Proposition 4.3.16.

This is the last theorem we present. The results of this chapter might be a starting point and
useful tools in order to prove properties of the complex field using ideas arising from the theory
of C∗-algebras, and vice versa. Applications of these results are topic of present research.







69

Bibliography

[1] John L. Bell, Set theory, third ed., Oxford Logic Guides, vol. 47, The Clarendon Press,
Oxford University Press, Oxford, 2005, Boolean-valued models and independence proofs.
MR 2257858 (2007d:03087)

[2] Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Univer-
sitext, Springer, New York, 2011. MR 2759829 (2012a:35002)

[3] F.R. Drake, Set theory: An introduction to large cardinals, Studies in logic and the Foun-
dations of Mathematics, North-Holland, 1974.

[4] Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathemat-
ics, CRC Press, Boca Raton, FL, 1995. MR 1397028 (98c:43001)

[5] Steven Givant and Paul Halmos, Introduction to Boolean algebras, Undergraduate Texts in
Mathematics, Springer, New York, 2009. MR 2466574 (2009j:06001)

[6] Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin,
2003, The third millennium edition, revised and expanded. MR 1940513 (2004g:03071)

[7] Sabine Koppelberg, Handbook of Boolean algebras. Vol. 1, North-Holland Publishing Co.,
Amsterdam, 1989, Edited by J. Donald Monk and Robert Bonnet. MR 991565 (90k:06002)

[8] Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102,
North-Holland Publishing Co., Amsterdam-New York, 1980, An introduction to indepen-
dence proofs. MR 597342 (82f:03001)

[9] David Marker, Model theory, Graduate Texts in Mathematics, vol. 217, Springer-Verlag,
New York, 2002, An introduction. MR 1924282 (2003e:03060)

[10] Walter Rudin, Principles of mathematical analysis, third ed., McGraw-Hill Book Co., New
York-Auckland-Düsseldorf, 1976, International Series in Pure and Applied Mathematics.
MR 0385023 (52 #5893)

[11] Bryan P. Rynne and Martin A. Youngson, Linear functional analysis, second ed., Springer
Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2008. MR
2370216 (2008i:46001)

[12] Joseph R. Shoenfield, Mathematical logic, Association for Symbolic Logic, Urbana, IL;
A K Peters, Ltd., Natick, MA, 2001, Reprint of the 1973 second printing. MR 1809685
(2001h:03003)

[13] Matteo Viale, Martin’s maximum revisited, 2015, Not yet published;
http://www.personalweb.unito.it/matteo.viale/.



70 Bibliography

[14] , Notes on forcing, 2015, Not yet published;
http://www.personalweb.unito.it/matteo.viale/.

[15] Stephen Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-
London-Don Mills, Ont., 1970. MR 0264581 (41 #9173)


	Introduction
	Functional Analysis
	Banach Spaces and Weak Topologies
	C* -algebras and Gelfand Transform

	First order logic and Boolean Valued Models
	First order logic
	Boolean Algebras
	Boolean Valued Models

	Set Theory and Forcing
	Basics
	Boolean Valued Models for Set Theory
	Generic extensions
	More on Cohen's Forcing Theorem
	Absoluteness results

	C* -algebras and B-names for complex numbers
	A boolean valued extension of C
	C* -algebras as B-valued models
	B-names for complex numbers


