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Introduction

This thesis analyzes the gap structures of ultraproducts of linear orders. Many of the
results that we present appear in a recent article due to Malliaris and Shelah [5], but the
proofs in Section [1.4] and Chapter 2] follow a presentation due to Professor J. Steprans
[10]. The principal aims of the thesis are two: we prove that the two cardinal invariants
p and t are equal and we study Keisler’s order on the countable complete first order
theories. In particular we give some conditions that ensure maximality in Keisler’s order
and prove that a large class of theories, called SOP5 theories, is maximal with respect
to this order. Both results were originally proved in [5]. We conclude the thesis with a
consistency result: we prove assuming Martin’s axiom that the first order theory of the
random graphs is not maximal in Keisler’s order.

In Chapter [I] we introduce the key definitions and prove the harder technical results.
First of all we define the notion of (k, ) gap on a linear order (L, <), that is a couple of
sequences (aq)ack, (b3)ges with the property that for every a € s and 8 € 6 we have a, <
bg and that no x € L separates the two sequences. For a given ultrafilter U, we study
the relation between the existence of certain gaps in ultraproducts of finite linear orders
modulo U and two specific cardinals p(U),t(U) which are defined as follows: the first
represents the minimal size of a gap in some ultraproduct of finite linear orders modulo
U and the second represents the minimal size of an unbounded increasing sequence in
some ultraproduct of finite pseudo-trees modulo U. In the last part of the chapter, we
prove the main technical result of this thesis i.e. that p(U) = t(Uf), hence that there
exists no (k,0) gaps for k + 6 < t(if) on any ultraproduct of finite linear orders modulo
U. Our presentation expands on Steprans’ handout [10].

In Chapter [2] we define two cardinal invariants p and ¢ p is the minimal size of
a family F C [w]™ such that every finite subfamily of F has infinite intersection and
there exists no A such that A C* F for every F' € F; t is the minimal size of a family
F C [w]® such that the order D* is a well-order on F and there exists no A such that
A C* F for every F' € F. In the main theorem of this chapter, we prove that p = t. This
result appears in [5], but we follow the proof given in [10] and which can be deduced in
a rather straightforward manner from the results of the first chapter. In order to obtain
it, we study the relation between p,t,p(G) and t(G), when G is a V-generic ultrafilter
over the notion of forcing ([w]™0, C*).

In Chapter [3| we first prove the existence of a special class of ultrafilters, the A-good
ultrafilters, and we show that for a A-good countably incomplete ultrafilter over a set
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I every ultraproduct [[;.; M;/U of first order structures is A-saturated. In the second
part of the chapter we introduce the notion of strong chain of L-structures, that is a
sequence of structures (M, : @ < k) indexed by an inaccessible cardinal x such that:
at successor steps, M1 is an ultrapower of the structure M, modulo an |[M,|*-
good ultrafilter and at a limit step, M, is the direct limit of the already constructed
structures. In the last part of the chapter we deduce a characterization of elementarily
equivalent structures using the existence of strong chains of arbitrarily large size. This
will require us to assume the existence of a proper class of inaccessible cardinals to
obtain our characterization, more precisely we will show that: if there are class many
inaccessible cardinals, two L-structures M, N are elementarily equivalent if and only
if there exists two isomorphic (and saturated) structures M’, N’ (of inaccessible size

k> |M|,|N]) such that M < M" and N' < N".

In Chapter {4l we define and analyze Keisler’s order on the class of countable complete
theories, that is we write 77 <) Tb, if for all models My, My of T1, T, respectively,
and each regular ultrafilter & on ), if M3 /U is A\t saturated, then so is M3 /U. In
section we prove the basic properties of this order, and in section [4.2] we give a
condition equivalent to maximality, more precisely we prove that a theory is maximal
if and only if for all cardinals A\ the only ultrafilters which saturate the ultrapowers
of models of T are A*-good. We continue the study of maximal theories proving in
section that every SOP theory, that is a theory which can define a partial order
with infinite chains, is maximal in Keisler’s order. This result appears in Shelah’s book
“Classification theory”, but here we present a simpler proof. In section 4.4 we use the
theory of gaps studied in Chapter [1]to characterize the AT-good ultrafilter. In particular
we obtain a characterization of good ultrafilters in terms of gaps that we can find in
an ultrapowers of the linear order (w,<). We next introduce the notion of treetops.
This notion generalizes the idea of unbounded chain given in Chapter [1| and is useful
to analyze the properties of unbounded increasing chains on ultraproducts of arbitrary
pseudo-trees (i.e. the pseudo trees appearing as factors of the ultraproduct can now
be infinite). We conclude this section showing that the existence of certain treetops on
a given ultraproduct of pseudo-trees is equivalent to the goodness of the ultrafilter by
which the ultraproduct is taken. In the last two sections of this chapter we first
define what is the SOP5 property, that is: T has the SOPs-property if in some model M
of T and for some formula v (z,y) in the language of T, there is an interpretation of a
tree ({as | s € p<F}, <) in M with the property that a i-type with parameters in T is
consistent if an only if the parameters are <-compatible. We next show that every SOP
theory has SOP4 property and we conclude the chapter proving that every SOPo-theory
is maximal in Keisler’s order, which (together with the proof that p = t) is one of the
main results of [5].

In Chapter |5| we continue the study of Keisler’s order showing that the theory of the
random graph is not maximal in this order if we assume Martin’s axiom. To this aim we
first introduce two-step iterated ultrapowers and recall some basic facts on the first order
theory of random graphs. Finally, under the assumption that Martin’s axiom holds, we
construct an ultrafilter & on X; such that I/ is not Rg-good, but each ultrapower M U
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is No-saturated for every random graph M. In this way we deduce that the statement
the theory of random graphs is not maximal in Keisler’s order is consistent with ZFC'.

In Appendix [A] we give a short introduction to the method of forcing sufficient to
understand its use in Chapter [2| In the last part of the appendix, we introduce Martin’s
axiom and prove some of its consequences.

In Appendix [B] we give a brief introduction to model theory recalling some classical
results such as: the Compactness Theorem, the Lowenheim-Skolem’s Theorem, and Lo$’s
Theorem. In the last part of this appendix, we prove that the theory of discrete linear
orders with minimum element and without maximum has quantifier elimination in the
language {<,s,0}.
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NOTATIONS

when M is a linear order, this is the set of all functions from
an initial segment of M to X
the set of the predecessors of p
the minimum element L
the maximum element L
the immediate successor of z in a dicrete linear order
in a discrete linear order this is the element obtained by x
applying n times the function successor
the immediate predecessor of z in a dicrete linear order
in a discrete linear order this is the element obtained by x
applying n times the function predecessor
the set of all subsets of X
the domain of the function p
the range of the function p
p° and p' are the projection of p
into B and C, respectively
the cofinality of «
the set of all subsets of k of cardinality A
the name of a set a € V[G]
the canonical name of a set a € V
the class of P-names
the generic extension of a transitive model M
the canonical name of a M-generic filter
the forcing relation
holds if f(n) < g(n) for all but finitely many n € w
the set of all finite subsets of X
the set of all sentences ¢ such that M |= ¢
the satisfaction relation
the structures M and N are elementarily equivalent
M is an elementary substructure of A/
the direct limit of the family {M, |i € I'}

the filter generated by F
Keisler’s order
Martin’s axiom
the set of all finite function from I to J
the theory of random graphs
the tensor ultrafilter of &/ and V
the transitive closure of X
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Chapter 1

Gaps in infinite ultraproducts

In this chapter we introduce the notion of (k,6) gap in linear orders, that is a couple of
sequences in a linear order such that there is no element that separates the sequences.
Many of the results, that we present, appear in a recent article by Malliaris and Shelah
[0], that studies the theory of gaps in more general way. Here we concentrate our
attention on the existence of gaps in ultraproducts of finite linear orders modulo a fixed
ultrafilter 4. To this aim we define two cardinals p(U) and t(U): the first cardinal
represents the minimal size of a gap in some ultraproduct of finite linear orders modulo
U and the second represents the minimal size of an unbounded increasing sequence in
some ultraproduct of finite pseudo-trees.

In Section we concentrate our attention on ultraproducts of finite partial orders
modulo an ultrafilter U and we give the definitions of gap and of cardinals p(i/) and t(Uf).
In the last part of this section, we recall the notion of internal subset of an ultraproduct
and we study some basic properties that these sets have.

In Section we show the relation between the size of symmetric gaps, that is
(k, k) gaps, and the cardinals p(Uf), (). In particular, we construct symmetric gaps
when k = t(U) and we prove that there exists no (k, k) gaps for “small” k.

In Section [I.3] we show that the structure of certain gap is rigid, that is, for some
K, the existence of (k, 6) gaps characterizes uniquely 6. Moreover, for these cardinals &,
the (k, ) gap appears in every ultraproduct of linear orders modulo Y.

The results of Sections appear for the first time in [5], but the proofs, that
we present, are due to J. Steprans and appear in a manuscript not published. After
proving some technical lemmas, we give the proof of the main theorem of this chapter.
In particular, we show that (i) = p(U), hence there are no (x, 8) gaps for kK +6 < t({U).

1.1 Some basic definitions
In the rest of the chapter, we concentrate our attention on ultraproducts of finite orders,

see Appendix [B] for a brief introduction. From now on, we fix an infinite cardinal A and
a non-principal ultrafilter I/ on A.
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Definition 1.1.1. Denote by L(l{) the class of all ultraproducts on A modulo U of finite
linear orders with cardinality not uniformly bounded (i.e. ultraproducts [ [;.; L;/U such
that

{iel:|Lj|>n}elU

for all n € N).

Definition 1.1.2. Let M be a linear order and X be a set. We write X <M to indicate
the set of all functions from an initial segment of M to X. For a subset P of X <M we
say that (P, C) is a pseudo-tree, if it is closed under initial segments: that is, if t € P
and s C ¢, then s € P. When the sets X, M are finite, we say that (P,C) is a finite
pseudo-tree.

Note that a pseudo-tree (P, C) has always a unique root () and, for each p € P, the
set pred(p) = {s € P | s C p} is linearly ordered by inclusion.

Definition 1.1.3. Let P({) be the class of ultraproducts [[;c, (5, C)/U, where (P;, C)
is a finite pseudo-tree and the cardinality of the sets is not uniformly bounded.

Remark 1.1.4. By Lo$’s Theorem and the hypothesis that the cardinality of the
sets is not uniformly bounded, we have that the ultraproducts of L(i/) and P(i/) are not
finite.

Now we fix some notation.

Notation. Fvery L in L(U) has a minimum and a maximum, that we indicate with O,
1, respectively. By Los’s Theorem if L is in L(U), then every element x # 0,
x # 1 of L has an immediate successor and predecessor, that we indicate with x + 1,
x — 1, respectively. Moreover, for n € w we write x+mn, x —n to indicate x+1+ ...+ 1

——

k times
and x — 1 — ... — 1, respectively, unless it is well defined.
S

k times

Definition 1.1.5. In our notations, we say that x is near 1, if there exists n € w such
that x +n = 1.

Now we define the objects of our studies.

Definition 1.1.6. Let (X, <) be an infinite partial order and x be an infinite regular
cardinal. We say that a sequence (cq)acy 18 unbounded in X, if there exists no ¢ € X
such that ¢, < ¢ for all o € k.

Let (X, <) be an infinite linear order and k1, k2 be an infinite regular cardinals. We
say that two sequences (o )acr;, (Ya)ack, represent a (K1, ke) gap in X, if the following
properties hold:

(i) g < Ta < Yor <yp, forall B € a € k1 and B’ € & € k.

(ii) There exists no z € X such that z, < 2z <y, for all @ € k1 and o’ € ka.
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Now we let
C(U) = {(k1, K2) | there exists a (k1,k2) gap in some linear order L € L(U)}.

In order to study the size of the gaps of a linear orders of IL(1/), it is natural define these
cardinals: p(i/) is the minimum of the set

{K | there exists (k1,k2) € €(U) such that k1 + ko = Kk}
and t(U) is the minimum of the set
{k > Nq |k is regular and there is an increasing
unbounded sequence (24)qaex in some P of P(U) }.

Finally set
CSPU) ={(k1,k2) € EU) | kK1 + k2 < tU)}.

Remark 1.1.7. If L is in L(U), then no infinite sequence (x4 )ack is cofinal in L, since L
has a maximum element.

An elementary fact about the ultraproducts of finite partial orders is that lots of their
bounded subsets have neither minimum nor maximum. But there are special subsets
that have many of the properties that we want.

Definition 1.1.8. Let X = [],., X;/U be an ultraproduct of L-structures. A subset Y’
of X is internal, if there exists a sequence (Y;);cx such that the following holds for all
re X andi e X

1) Y; C X5
2) z €Y ifand only if {i € A\ | z(i) € Y;} € U.

In a similar way, a map f: X" — X is internal, if there exists a sequence (f;);ex such
that

2) f(z1,...,2y) =y if and only if {i € X\ | fi(z1(i),...,zn(2)) = y(i)} € U, for all
(T1,...,zp) € X™.

Now it is obvious that a non-empty internal set Y of P in P(i/) has minimum and
maximum, where min(Y) = [(min(Y;));ex] and max(Y') = [(max(Y;))iex]-

Lemma 1.1.9. Let X = [[,.\ Xi/U be an ultraproduct of L-structures. The set of all
internal subsets of X is closed under finite unions, finite intersections and complements.
Moreover, for every L-formula 1¥(x), the set

P(X) = {la] € X | X = 9([a])}

1s internal.
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Proof. Assume that A, B are internal subsets of X, that is there exists two sequences
(A;)iex and (B;);en such that the clauses 1),2) of the above definition hold. We have

r€e AUB<z€cAorxz e B
= {ici|z@i))edifelUor{ie|z(i)e B} el
— {ieX|z(i)e A;UB;} €U,

where in last equivalence we have used that U/ is an ultrafilter, and in the same way
reEX\A<—=zxdA

= lie N ali) e Ay eu
e lie M (i) ¢ A el

To prove the second part of the lemma, put
P(Xi) ={a€ Xi | X; Ey(a)}.

By Los’s Theorem [B.1.13] the sequence ((¢(X;))iex witnesses that ¢(X) is internal, in
fact

[a] € ¥(X) =X |=¢([a])
—{ie X X; Eylali)} el
—{ieX|ai) ev(X;)} elU.

1.2 On the existence of (k,x) gaps

Notation. Given a cartesian product B x C' we indicate with mp and ¢ the projections
into B and C, respectively. When p is a function from A to B x C, we shall write often
p=(p°,p'), where p° = g op and p' = wc o p.

Theorem 1.2.1 (Lemma 6.1 [5]). Let x be a regular cardinal such that k < t(U) and
k <p(U). Then we have that (k, k) & C(U).

Proof. Assume for contradiction that (L,<) = [[;c.(Li, <;)/U has a (k,k) gap, wit-
nessed by the sequences (aq)ack and (by)ack. Put P; the set of all function p: L; — L?
such that:

1. dom(p) is an initial segment of L;.
2. p(d) <; p*(d') <; pt(d’) <; p'(d), where p = (p°,p!) and d <; d’ belong to dom(p).

Put (P,C) = [[;c.(F, ©)/U and note that (P, E) belongs to P(U/). We construct induc-

tively an increasing sequence (ca)acx of P such that c,(ds) = (c2(dy), cL(da)) = (aa,ba),

where d,, is the maximal element of dom(c, ), and it is not near 1. Put ¢y = [(p;)], where
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p; has domain the minimum of L; and range {(ap,bo)}. In the successor step, put
Cat1 = o U{(do+1, (aa+1,ba+1))} and note that do41 = do + 1 is well defined, since d,
is not near 1. In the limit step, assume that (cg)geq is defined, then there exists ¢ € P
such that cg C ¢ for any f € a, since o € K < t(U). Let d. be the maximal element of
the dom(c). Put
do = max{e < d. | () < aa < ba < c'(e)},

and note that d,, is well defined, since it is the maximum of an internal not empty set. If
d, is not near 1, we complete the construction defining ¢, = c|{e<da} U {(da, (aa,ba))}-
Otherwise note that the sequences (dg)gea, (da — n)new don’t represent a (cof (), Ro)
gap, since cof (a)+Rg = cof(a) < p(U). Hence there exists d, such that dg < dy < do—n

for any 8 € a, n € w. The element d, is not near 1 and
A(dy) < P(da) < g < by < ¢H(da) < cH(dy),

hence we can define ¢, = C’{e<ci y U {(da, (@, ba))}. This completes the construction.

By hypothesis there exists ¢ € P such that ¢, C ¢ for each o € k. Let d be the maximal
element of dom(c), we have

ao = A(dy) < (d) < cl(d) < cH(dy) = ba,
for all o € K, contradiction. ]
Theorem 1.2.2 (Lemma 6.2 [3]). If kK = t(U), then (k,k) € CU).

Proof. Let (P,E) = [[;c\(#;, €)/U be an ultraproduct of finite pseudo-tree, such that
there exists an increasing unbounded sequence (c¢q)ack in (P,C). Assume that P; C
X,L-<Mi, where M; is a finite linear order. For i € A, choose a linear order <; on X;. Note
that if p, ¢ € P; are C-incompatible, there exists a maximal s,; € P; and n,,n, € X; such

that s, € p,4q, Spgnp C p and spyng C g. Define a binary relation <; on Q; = P; x {0, 1}:
1) If p = q, then (p,0) <; (¢, 1).
2) If p C q, then (p,0) <; (¢,0) <; (¢, 1) <; (p,1).
3) If p, g are C-incompatible and n, <; ny, then (p,h) <; (q,7) for h,j € {0,1}.
Claim 1.2.3. The binary relation <; on Q; is linear order.

Proof. By definition, the relation <; is clearly irreflexive and for every two elements
(p,1), (q,4) we have (p,l) <; (q,7) or (q,7) <i (p,1). Hence it is sufficient to prove that
<; is transitive. Assume that (p,l) <; (¢,7) <i (r, k). There are four possible cases:

(i) Assume that p C ¢ C r. By definition, we have necessarily [ = 0 and p C r. Hence
(p,0) <; (r, k) holds for each k € {0,1}.

(ii) Assume that p C ¢ and ¢, are C-incompatible. Hence we have [ = 0. If p C r,
then (p,0) <; (r,k) for each k € {0,1}. Otherwise, p and r are C-incompatible,
hence ng = ny,. Since we have (g, j) <; (r, k), we conclude that (p,1) <; (r, k).
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(iii) Assume that p,q are C-incompatible and ¢ C r. Clearly p,r are C-incompatible
and sp, = spq. By clause 3), we conclude that (p,1) <; (1, j).

(iv) Assume that p,q are C-incompatible and ¢, are C-incompatible. If sp, = sq,
then we have n, <; ny <; n,. Hence we conclude (p,1) <; (r, k). If spq C s¢r, we
have sp; = sp, hence (p,l) <; (r, k). Finally, if sg C spq, we obtain sg = Spp,
hence the thesis.

O

Put (Q,<) = [[;ex(Qi,<i)/U. For j = 0 or j = 1, denote by f7 € {0,1}* the
constant function j. We show that the sequences (c2)acr and (cl)aex represent a (k, k)
gap in Q, where ¢ = (cqa, f7). For B < a € ), the set

{ieX|cg(i) Ceali)} €U

is contained in {i € A | c%(i) =i (i) =4 k(i) =y cé(z)}, hence C% < <cl < Cé. Now
suppose for a contradiction that there exists (¢, f) € Q such that ¢ < (¢, f) < cé for
any o, 8 € k. Without loss of generality we can assume f = f0 or f = f1. If f = fO°,
there exists o € x such that ¢, Z ¢, since (ca)acx is unbounded. We have ¢ < (e, f9),
hence for almost all i € A the clause 3) holds, then we obtain (cl) < (¢, %) < (cl),

« (63
contradiction. In a similar way we conclude if f = f1. O

Corollary 1.2.4. IfU is an ultrafilter on X, then p(U) < t{U).

Proof. By Theorem there exists a (t(U), t(U)) gap. O

1.3 On the existence of (k,0) gaps

Given a (k,0) gap in L, it is easy to see that there is a linear order of L(U) with a (0, k)
gap. In fact, it is sufficient consider the set L with the dual order. The next simple
claim shall be very useful to characterizes the structure of the (x, ) gaps.

Lemma 1.3.1. Let L be a linear order of L(U). Assume that the sequences (ag)eer,
(b2)§€90 and (ag)eer, (bé)éegl witness a (k,6p) gap and a (k,01) gap in L, respectively.
Then 90 = «91.

Proof. Assume for a contradiction that 6y < 6. Consider the map f: 6y — 61 such that
f(€) =min{y € 61 | b} < bY}.

The map f is well defined, since for every bg there exists a b# such that b}Y < bg. Moreover,

the map f is cofinal in #;. In fact, if v € 61, then there exists bg < b#, since (ag)eer,

(bg)geeo witness a gap; hence we conclude f(§) > ~, absurd. O
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Theorem 1.3.2. Let x be a regular infinite cardinal, such that k < t({Ud) and k < p(U).
In every infinite linear order L of L(U), there exist a (k,00) and a (61, k) gap, for some
infinite reqular cardinals 6g, 01 .

Proof. Fix an ultraproduct (L,<) = [[;cy(Li, <i)/U of linear finite orders. We prove
the existence of a (k,0) in L for some regular cardinal 6. Let (cq)ack be a sequence
such that every ¢, is not near 1. Choose cg = 0r and cq41 = ¢, + 1. If @ limit ordinal,
there exists a d, not near 1 such that dg < d,. Otherwise the sequences (dg)gecof(a);
(1—n)pew represent a (cof(a),No) gap, but cof(a)+Ro = cof (o) < p(U), contradiction.
When the construction is completed, note that the sequence (¢4 )aex i not unbounded
in L. Hence the set A = {a € L | ¢, < afor all @ € K} is not empty. Let 6y be the
cofinality of A, considered with the dual order. Note that 6y is not finite, otherwise
the set A has a minimum a, hence the sequence (cq)ack is cofinal below a. Since a has
an immediate predecessor, we obtain a contradiction. We conclude that there exists a
(k,6p) gap in L.

To prove the existence of a (01, k) gap in L, put ¢ = 1 and c441 = ¢o — 1. In the
limit step, use the hypothesis £ < t(U), to choose ¢, such that ¢, < cg for all § € «
and ¢, —n # 0 for all n € w. As above it easy to conclude that there exists a (61, ) in
L. O

Theorem 1.3.3 (Theorem 3.2 [5]). Let k a regular infinite cardinal, such that k < t(U)
and k < p(U). Then there exists a unique regular cardinal 0 such that (k,0) € €(U).

Proof. By Theorem [1.3.2] it is sufficient to prove that the cardinal € is unique. Assume
for a contradiction that 6y < #; and the sequences (ag)gem (bg)éeeo and (aé)ge,{, (b%)geel
represent a (k,6p) and (k,60;) gap in (M, <ps) and (N, <py), respectively, where M =
[Lica(M;, <ar,)/U and N = [[;c(Ni, <n,)/U. Let P; be the set of all functions p with
the following properties:

1. Domain of p is an initial segment of M; LI N; and range of p is a subset of M; x Nj.

2. If d < d' belong to dom(p), then p°(n) < p°(n’) and p'(n) < p'(n’), where p =
»°,p").

Put (P,C) = [[;c\ (P, ©)/U. We construct inductively an increasing sequence (cq)acx
in P such that c,(da) = (*(da),c'(ds)) = (a2,al), where d, the maximal element
of dom(c,) and it is not near 1. For o« = 0, put ¢y = [(pi)ic)], where p; has domain
the minimum of M; U N; and range {(a8,a})}. For a + 1, put cot1 = o U {(do +
1,(ad, i, ab, 1))} and note that dai1 is well defined since dq is not near 1. For a limit
ordinal, assume that (cg)geq is defined, then there exist a ¢ € P such that cg C c¢ for
any 3 € a, since a € k < t(U). Let d. be the maximal element of dom(c). Put
0

do = max{e < d. | (e) < al, cl(e) < al}

and note that d, is well defined since it is the maximum of an internal not empty set. If
dy, is not near 1, define ¢, = c‘{e<d U {(da, (a2, al))}. Otherwise choose d, such that

o) o
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dg < do < do —n for any € o, n € w, it is possible since cof (a) + o = cof(a) < t(U).

Hence define ¢, = C‘{e<d y U {(dw, (a®,al))}. This completes the construction. By

) o
hypothesis there exists ¢ € P such that ¢, C ¢ for each o € k. Let d be the maximal
element of dom(c). To complete the proof, we shall construct two sequences (d2)5€90
and (dé)gegl such that (d¢)eck, (dg)gego and (d¢)eer, (d%)gegl witness a (K, 6p) gap and a
(k,01) gap in [[;c(M; U Ny, <agun,)/U. When the construction is complete we obtain
a contradiction by Lemma [1.3.1 The construction of the sequences is similar, hence it
is sufficient construct the sequence (dg)feeo- If dg is defined, put

g, = max({d € dom(c) | ”(d) <as b2,,, d < dg}).

Note that the maximum exists since the set is not empty and internal, moreover d, <
dg 1 < dg for all n € k. Suppose £ limit ordinal and that the sequence (dg)neg has the

property that co(dg) <m bg for all n € £. We say that there is d with the following
properties:

1. d € dom(c).

2. A(d) < bg.

3. dy < d for each vy € k.
4. d<d9] for each n € €.

Assume for a contradiction that such an element d don’t exists. Let f: & — 8y be such
that

Fn) = minfy € b | (d) > 12},
Claim 1.3.4. The map f is well defined and cofinal in .

Proof. . The map [ is well defined since (ag)geﬁ, (bg)geeo represent a (k,0p) gap in M
and co(dg) > AV(dg) = ag for any £ € k. Finally, we show that f is cofinal. Fix v € 6.
If v € £, then we conclude that f(7) > «. In the other case, we know that

e = max{d € dom(c) | °(e) <pr bg}

has the properties 1),2), 3), since bg < bg. Then e > d% for some € £ and bg > cV(e) >
co(d%) holds; hence we conclude f(8) > 7. O

By the Claim and the regularity of 6y, we obtain a contradiction, then there
exists d with the properties 1),2),3),4). This completes the construction of sequence
(dg)gego. Finally, we have to prove that the sequences (d¢)ec, and (dg)gego witness a
(k,0) gap. By construction we have

0 0
de < dy < dy, < dyg,
for all £ € n € kand & € g € Op. If there exists a « such that

de < x < dg,
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for all £ € k and &y € 6y, then
ag =c(dg) < P(2) < Co(dgo) < bgo

for all £ € k and & € 6. We obtain a contradiction since the sequences (ag)geﬁ and
(bg)geeo witness a (k,0p) in (M, <pr). O

Corollary 1.3.5. Let k be an infinite reqular cardinal such that k < t(U) and k < p(U).
If there is no (k,6) gap in some linear order L of L(U), then (k,0) & €(U).

Proof. By theorems |1.3.2| and [1.3.3] if (k,8) belongs to €(U), then there exists a (k, )
gap in every L. O

1.4 pUU)=tU)

The aim of this section is to prove that for all ultrafilter ¢/ that the cardinals p(U), t(Uf)
are equal. This result is proved by Malliaris and Shelah in [5], but here we present the
proof due to Steprans [I0]. In order to prove the main theorem, we need the following
technical lemmas.

Lemma 1.4.1. Let {(X;, <;)}iex be a family of linear orders and U be a non-principal
ultrafilter on . Put

(x,<) =[x <)/u.
1EN
Assume that there exist an infinite set U C X and a family Z of internal sets of X such

that |U|,|Z| < p(U),t(U) and U C Z for all Z € Z. Then there is an internal set Y
such that U CY C (N Z.

Proof. Let Z = (Z¢)¢er, be an enumeration of the family Z. Let Q; be the set of the
functions f with the following properties:

1. dom(f) is an initial segment of Xj.
2. range(f) € P(X5).
3. fy) € fla), if @ < y.

Put (Q,E) = [[;c2(Qi, €)/U. We construct inductively an increasing sequence (qa)acx
in @, such that, called d, the maximal element of dom(g,), the following hold:

(i) dq is not near 1.
(ii) U C qa(z) for all d < d,.

(iil) ga(da) C Za.
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Put go = (0. Assume that ¢, is defined. Put gat1 = go U {(da + 1, Zo+1 N qa(da))},
which is an element of @), since the set Z,1 is an internal set. Now we suppose « limit
ordinal. The sequence (¢3)geq is increasing and || < t(U), so there exists ¢ € @ such
that gg E ¢, for all § € a. For u € U, put

e, = max{d € dom(q) | u € q(d)}

and note that dg < e, for any 8 € o. By hypothesis |U|, |a| < p(U), hence there exists
d, such that dg < do < e, for all w € U and f € a. We conclude the limit step
defining ¢, = q‘da U {(da, Za Nq(dy))}. Finally the set Y = qr(dy) has the required
properties. ]

Lemma 1.4.2. Let {(X;, <;)}ien be a family of finite linear orders, U be an ultrafilter
on X and D = {dy}ack be a decreasing chain in

(x, <) = [[ (X0 <o/,

1EA

where k < tU). For any F: D* — X there exists an internal function H: X? — X
such that F' C H.

Proof. Firstly we prove the one-dimensional case of the lemma, that is we assume that
F: D — X. Let P; be the set of all partial functions f such that dom(f) = {z € X; |
x >; bj} for some b; € X; and range(f) C X;, that is we consider the finite pseudo-tree
of the functions from X; with the order >;, to X;. Put (P,C) = [[,c,(F;, €)/U. We
construct inductively an increasing chain (cq)acx such that:

1. dom(cy) ={z € X | x > du};
2. caldg) = F(dg) for p € a.

Let ¢y be a function with domain {x € X | x > dp}. Given cq, put c441 so that:

Colx if x € dom(c,);
s () = (z) ‘ (ca)
F(dy) ifdy>x>dot.
Now suppose « limit ordinal, then there exists ¢ such that cg C c for all 3 € a. Define

c y When the construction is completed, use the hypothesis k < t(Uf) to

a = C‘{xEX|z>da
find ¢ such that ¢, C ¢ for any a € k. If necessary extend ¢ on X and this completes
the one-dimensional case.

Now we prove the lemma. Let P, be the set of all partial functions f such that
dom(f) = ({x € X; | x >; b;})? for some b; € X; and range(f) C X;. As in the one-

dimensional case, construct an increasing chain (¢4 )aex with the following properties:
1. dom(cy) = ({z € X | 2 > do})%

2. ¢o(dp,dy) = F(dg,dy) for 8,7 € a.
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Obtained the sequence we conclude as in one-dimensional case. If « is limit ordinal, we
can proceed as previously said. In order to define c,t1, we know that there exist two
internal functions f, g such that f(d,) = F'(dq,dy) and g(d,) = F(dy,ds). Extend ¢, on
{x € X | x> day1}? so that

ca(,y) if (z,y) € dom(cq);
Coz+1(x7 y) = f(y) it do, = x;
g(x) otherwise

and this concludes. O

To prove the main theorem, we need a result of cardinal combinatorics due to
Todorcevié.

Theorem 1.4.3 (Corollary 15.8 and Remark 15.10 [I1]). If x is a regular infinite car-

dinal, then

+

KT - [/{"]2

Kt

In other words, there exists a map
fr kTP = kT,
such that f([A]?) = kT for any A C k" of cardinality k™.
In the next proof we shall use an easy corollary of this theorem.
Corollary 1.4.4. If k is a regular infinite cardinal, then there exists a function
FRP s
such that |f([A]?)| = &, for all cofinal subset A C r™.

Proof. Let f: [k*]2 — k* be the function of Theorem Define f: [k*]?2 — k in
such a way that

F) = {fm if f(7) € s

0 otherwise.
For each cofinal A C kT, we have f([A]?) = kT, hence f([A]?) = . O

The next theorem is the main result on gaps of linear orders appearing in [5]. We
give the (unpublished) proof provided by Steprans [10] of this result.

Theorem 1.4.5 (Theorem 8.5 [5]). If U is an ultrafilter on X, then p(U) = t{U) holds.

Proof. By Corollary we have p(U) t
tU) < p(U) holds. Let (X, <) = [[;er(Xi, <i)/U be a linear order of L(U), such that

< t(U), hence it is sufficient to show that
there exists a (k, ) gap, where § < k = p(U). If § = k, then we conclude t({d) < k =
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p(U), by Theorem Now suppose that § < k = p(Ud) < t(U) and the sequences
{x%}geﬁ, {mg}geg witness the existence of a (k,6)-gap in X, that is

for all « € k, B € 0. We will reach a contradiction. For each x € X;, put Xi‘x =
{2’ € X; | 2’ <; v}. Let P, be the set of all partial functions with domain D?, for
some D C X;, and range included in X;. Define @); the set of the functions ¢ with the
following properties:

1. dom(¢)) = X;|_ for some z € X;.

2. range(y) C X; x P and ¢(2) = (¢'(2),92(2)).

3. p2(2)(a,b) >; ' (2) for any z <; z e (a,b) € dom(¢?).
4. PL(z) < (), if 2 < 2 <

5. If 2 <; 2/ <; x and {a,b} is a subset of dom(¥)?(w)) for any z <; w <; 2/, then

V?(2)(a,b) = Y (w)(a,b) = *(')(a,b) for all such z <; w <; 2.

Put (Q,C) = [[;icA(Qs, S)/U. If c is an element of @, we denote by d. the maximal
element of dom(c) For z < d., we write c(2) = (c!(2),%(2)) and (D.(z))? = dom(c?(z)).
Define ¢! = c¢!(d,),c? = ¢*(d.) and D. = D.(d.).

By Corollary [1.4.4] there exists a function Gp: [#7]?> — @ such that, if A C 6%
is cofinal in @7, then |Go(A?)] = 0. First of all we extend Gy trivially to a function
G : [k]? — 6 such that G | [#T]? = Go. Now construct a sequence (¢ )acx in Q with the
following properties:

1. co = (ck,c2).

) o

2. o Ecgif a € B and d., is not near 1.

3. There exists yg € D,, so that if 8 € a € K, then:

s
(A) Ya < yp;
(B) c2(¥s:Ya) = T84 );
(C) yp € De,(2), if dey < 2 < de,

4. ¢l > gl

o a’
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To conclude the proof it is sufficient to prove that such a sequence (¢, )aex €xists and it
is unbounded: if this is the case we would get t(d) < k = p(U) < t(U), a contradiction.
First we show that such a sequence (¢4 )aes is unbounded. Suppose that there is ¢ such
that ¢ C ¢ for all a € k. Now for n € 6%, let z, be the maximal element of the set

Ay ={z e dom(c) | V2'[d., < 7' < z—y, € Dc(2)]}.

By condition 3(C), we have z,, > d,, for all & € k. By condition 4, we have c!(z,) >
cY(d.,) = ¢l >zl for all @ € k. Hence there exists F(n) € 6, such that c'(z,) > l‘OF(n).

Let A C 0" be a cofinal set such that F(n) = v for some v € § and any n € A. Note
that such an A exists since 07 is regular and

0" = J{F (o) |« €6}

Choose ¢,n in A such that G(¢,n) > 7. Put z* = min{z,, 2¢}, we have {y,,y;} C
D.(z*), since dc,,dc, < 2z* < 2zy,2¢ holds. Let p the maximum between 7,(, then
{ym,uc} € De(2') for all d, < 2’ < z*. Hence we have

A2y, yc) = A (de,) (Y ye) = "L‘OG(U,C) < xg

and

Ay yg) > (=) > ayy = 2

contradiction.

So, it is sufficient to prove that the sequence (cq)aer exists. We need a technical
claim.

Claim 1.4.6. Assume £ € k and
o U= {uatace C X is decreasing in the order <.

o F: &2 X‘{xeX|$>w} is a function.

o p € [lcn Pi/U is such that p(ua,ug) = F(a, B3) for all o, B such that (ua,ug) €
dom(p) hold.

Then there exists p € [, Pi/U such that:

1EA
1. p(uq,ug) = F(a, B) for all o, B.

2. p(z,y) > w for all (z,y) € dom(p).

3. If (x,y) € dom(p) N dom(p), then p(z,y) = p(z,y).

Proof claim. By Lemma there exists an internal function p; : X2 — X that extends
F. Define ps so that:

o(z,y if (z,y) € dom(p);
pa(y) = {p( ) ) & doml)
p1(z,y) otherwise.
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Note that also ps extends F', so ps satisfies 1 and 3 above, but 2 is as yet unclear. For
ueU,put Z, ={x € X | p2(x,u) > w}. Hence U C Z, and Z, is an internal set. More
precisely, since the function py is internal, we have py = [[;c\ oy /U, where pb € P; for
each 7 € A. Set

Zy =A{xi € Xi | py(wi, u(i)) > w(i)},

for each i € A\, we obtain that Z, is internal, since
x € Z, < x(i) € Z.
By Lemma there exists an internal set Y such that U CY C Z,, for u € U. Put
V'=Y\{yeY |3 €Y)n(yy) <w}

and observe that U C Y™ and ps(x,y) > w for any xz,y € Y*. Then p = p2|(Y*)2 has all

required properties. ]

Now we construct ¢, for @ € K < t(U) as follows: In the successor case, we define
Ca+1 as follows: We choose y,4+1 below y,. By Claim we can find p such that:

i p(y’yayﬁ) = xog(%gy if i < 0 <a+1.
e p(z,y) >zt | +1forall z,y € dom(p).
e p(x,y) = c(x,y), if 2,y € dom(p) N dom(c3).

Then we define cat1 = co U{(de, + 1, (x4, +1,0))}-
If a € k is a limit ordinal, we also have that cof(«) < (i), hence we can find a c
such that cg C c for all 8 € a. For 3 € «a, put

eg = max{z € dom(c) | Vz'[d., < 2’ <z — yg € De(2)]}.

The set {es}gea is entirely above every d, for all { < a and |a| < k = p(U), hence
there exists d, such that de, < do < eg for all 3 € a. Otherwise {ch | B € a} and
{eg | B € a}isa (cof(e),§) gap where ¢ is the coinitiality of the set {eg | 5 € a} in the
linear order (X, <) and is thus a regular cardinal smaller or equal than |«|. But

cof(a),€ < la| <x = pU),

this contradicts with the very definition of p(U/). Put ¢ = c’ 4. then we can find y,
which is below y, for all n € «, since cof(a) < k < t(U). Now we can proceed to find
the required p as in the successor case applied to the function ¢’ (instead of ¢,) and the
element y, (instead of yo+1). We can now let ¢, = ¢ U {(dq, (za + 1,p))}. O

Corollary 1.4.7. IfU is a non-principal ultrafilter on \, then CSP(U) = ().

Proof. By Theorem we have t(U) = p(U), hence there are no (k, ) gap for k+6 <
(W) = p(u0) .



Chapter 2

The cardinals p and t

The aim of this chapter is to prove that two cardinal invariants p, t are equal. This result
is proved recently by Malliaris and Shelah in [5], but we follow a presentation due to
Professor J. Steprans that appears in a manuscript not published [10].

In Section [2.1] we work in a generic extension V[G], where G is a V-generic ultrafilter
over ([w]R0, C*), to investigate the existence of certain gaps in some ultraproducts of w
and we study the relation between cardinals p, t, p(G), t(G). Working in V' and V[G], we
show that t < ¢(G) and, assuming p < t, we obtain a contradiction, by a theorem due to
Shelah.

2.1 p=t
We recall some central definitions.

Definition 2.1.1. For A, B C w we write A C* B to indicate that |A\ B| € w.
Let F be a subset of [w]"°. We say that:

e F has the strong finite intersection property , abbreviated as s.f.i.p., if each finite
family of sets of F has infinite intersection.

o F has the infinite pseudo-intersection property, abbreviated as p.i.p., if there exists
a infinite set A C w such that A C* F for all ' € F. This set A is called pseudo-
finite intersection.

e We say that a set {X, € [w]™ | a € k} is a tower, if X, D* Xg for all a € B € k.
In particular the family {X, € [w]™0 | a € x} is well ordered by D*.

Now define
t = min{|F| | F C [w]"is a tower and has not i.p.i.p.},
p = min{|F| | F C [w]™has s.f.i.p., but not i.p.i.p.}.

Lemma 2.1.2. Cardinals p and t are regular and ¥; < p < t.

15
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Proof. The regularity of t follows by definition. For a proof of the regularity of p see
Theorem 7.15 in [I]. Obviously p < t, since any tower has the strong finite intersection
property. Finally, we conclude proving that X; < p holds. Let F = {F; € [w]®° | i € w}
be a countable family with s.f.i.p. We construct an infinite set A such that A C* F; for
all i € w. Choose ay € Fp and a, € FyN...N F,, such that a; # a; for all ¢,j € w.
Conclude putting A = {a; | i € w}. O

The next theorems required some basic notions on the method of forcing, see Section
of the appendix to a summary of all facts that we use.

Remark 2.1.3. The notion of forcing ([w]®°, C* w) is a t-closed, hence any cardinal less
or equal to t is preserved by Corollary

Now we concentrate our attention on ultraproducts of finite orders modulo a non-
principal ultrafilter on w.

Lemma 2.1.4. Let G C [w]® be an ultrafilter V-generic, then V[G] = t < Q).

Proof. In V[G], let (Q, <) = [];c,(@n, <n)/G be the ultraproduct of finite pseudo-trees
(Qn, <) modulo G. Without loss of generality we can suppose that the sets @, are
pairwise disjoint. Assume for a contradiction that there exists k < t such that

V[G] |= (g¢)¢er is unbounded increasing chain in Q.
By Forcing Theorem there exist B € G such that
B IF (g¢)¢cy, is unbounded increasing chain in Q,
that is
B (de)gey 1s an unbounded and {n € & | g¢(n) < gy(n)} € I for all E<hER,

where (g (n))new is an element of the equivalence class of g¢ and I' is the canonical name
of G. Note that {(¢a(n))new | @ € K} € V. In fact, fixed n € w and « € kK, we have
da(n) € V, since @y, is finite, then, using Transfinite Recursion many times, we obtain
that the sequence (o (n))acw is in V for each a € k, hence {(¢a(n))necw | @ € K} is a set
of V. Put
A= J{g € Qnlan) <n g,
neB

this give that {A¢ | £ € k} € V. We have A, C* A¢ for any £ < 7, otherwise the set
Ay \ Ag is infinite: hence there exists an infinite set C' C B, such that g¢(n) £ ¢,(n) for
all n € C. Now let H be a V-generic ultrafilter on [w]*0 such that C € H. By Forcing
Theorem [A.1.74] we have

VIH E {new]|gn) <gy(n)}eHforall{ <ner

and
VIH] E{n€w|q(n) £ @m(n)} € H,
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contradiction. Hence we conclude that A, C* A, for any £ < 7. Since k < t, there exists
an infinite set A C* A¢ for all £ € k. Now we can construct a countable set B* C* B and
a sequence (¢*(n))nep+ such that g(n)s <, ¢*(n) for any £ € x and for all but finitely
many n € B*. In fact, it is sufficient to choose ¢*(n) € A for all but finitely many n € B.
Extend arbitrarily the sequence on w and put ¢* = [(¢*(n))new]. Let H be a V-generic
ultrafilter on [w]®° such that B* € H, then

VIH] = (g¢)¢ex is unbounded in @ and g¢ < ¢* for all £ € &,
contradiction. O
On w® we can consider the partial order <* defined as:
[ < g <= there exists N € w such that f(n) < g(n) for all n > N.

Definition 2.1.5. Let k1, ko be infinite regular cardinals. We say that two sequences
(fa)acky> (9a)ack, represent a (K1, k2) tight gap on (w¥,<*), if they witness a (K1, K2)
gap in (w¥, <*), that is following properties hold:

o f; <* fi holds, if i < j < k1.

e g; <" gj holds, if i < j < ko.

g; <* fi holds, if i < k1 and j < Ka.

o If f € w® is such that f <* f; for all i < k1, then f <* g; for some j € ka.

o If f € w¥ is such that g; <* f for all j € ko, then f; <* f for some i € k1.
Lemma 2.1.6. If there exists a (ki1, k2) tight gap, then there exists a (ka, k1) tight gap.

Proof. Assume that the sequences (fa)ackis (9a)ack, represent a (ki,k2) tight gap in
(w¥, <*). Define two new sequences (fo — ga)ack, and (fo — fa)ack,, where we assume
that (fo — ga)(n) = 0 and (fo — fa)(n) = 0 if ga(n) > fo(n) and fa(n) > fo(n),
respectively. Now it is clear that the sequences (fo — fa)ack; and (fo — ga)ack, are
increasing and decreasing, respectively. Now we prove that no function separate the
sequences. Assume for a contradiction there exists A € w* such that

fo—fa<"h<*fo—gs

for all @ € k1 and 8 € ky. Consider the sequence fy — h, defined zero when fj is less
than h. Then, we have

98 <" fo—h <" fa,

for all & € k1 and 8 € kg, absurd. So we conclude that the sequences represent a (K2, K1)
tight gap in (w®, <*). O

The next is a technical result due to Shelah.
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Theorem 2.1.7 (Shelah, Theorem 1.12 [8]). Ifp < t, then there exists a (k,p) tight gap
in (W, <*) for some reqular cardinal Kk < p.

Lemma 2.1.8. Ifp < t and G C [w]®0 is a V-generic ultrafilter, then V[G] = p(G) < p.

Proof. By Theorem there exist a regular cardinal k < p and a (k,p) tight gap in
(w9, <*). Let (fe)eeps (9¢)eew be the sequences that represent the tight gap in w®. Put

(X,<) =[] (9(n), <n)/G,
1€W
where <,, is the standard order on w. For any £ € p and £ € k we have f¢(n), ge(n) <
go(n) for all but finitely many n € w. Hence we can assume that range(fe), range(ge) C
range(go) for any £ € p, £’ € k, provided that the function ranges are modified in a finite
number of points. Put [f¢] and [g¢/] the equivalence classes in X € V[G] of the sequences
fe, ger, respectively. Finally we have to show that the sequences ([fe])eep, ([9¢])eer rep-
resent a (p,x) gap in X € V[G]. The monotonicity of the sequences is obvious. To
conclude the proof it is sufficient to show that there is no [h] such that

VIG] & [fe] < [h] < [gy) for all £ € p and 7 € k.
Assume that there exists [h] € X such that
VIG] = [h] < [ge] for all € € s,
that is for some A € G we have
AlF{n €& | h(n) <, ge(n)} €T for all £ € &,
by Forcing Theorem where I' is the canonical name of G. Put
Ac ={necw|h(n) <, ge(n)}

and note that A¢ € G for all £ € k. For each { € k, we have A C* A¢, otherwise the
set A\ Ag is infinite, hence there exists an infinite set A’ C A such that g¢(n) <, h(n)
for all n € A’. Now let H be a V-generic ultrafilter over [w]®° such that A’ € H. Since
A’ C* A, we have

VIH] = [n] < [g¢]
and

VIH] = [g¢] < [h],
contradiction. Hence we obtain that A C* A, for all £ € k. Let h € w¥ be so that

i h(n) ifn e A
0 otherwise;

We have h <* ge for all £ € K, hence there exists v € p such that h <* f~- Since A € G,
we conclude

VIG] E [n] = [h] <* [f3].
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Theorem 2.1.9. We have V |=p =t.

Proof. We know that p < t. Assume for contradiction that p < t. By lemmas [2.1.8

we have
VIGI Et<HG) <p(G) <p <,

where G C [w]™0 is a V-generic ultrafilter, contradiction. O
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Chapter 3

A characterization of elementary
classes

In this chapter we give an algebraic characterization of elementarily equivalent struc-
tures under the assumption that there exists proper class of inaccessible cardinals. In
particular, we show that two L-structures M, N are elementarily equivalent if and only
if there exists two isomorphic L-structures M’ and N’ (saturated and of inaccessible
size) such that M < M’ and N’ < N'.

In Section we concentrate our attention to a class of ultrafilters, called \-good.
We prove the existence of A*-good ultrafilters on A and we show that these ultrafilters
ensure a certain saturation of all ultraproducts of L-structures.

In Section we recall the definition of direct limit of a family of L-structures and
prove some basic properties.

In Section we define a strong chain for a structure M, that is a sequence of
structures such that: at the successor step, M,+1 is an ultraproduct of the structures
M, modulo a good ultrafilter and, at the limit step, we keep the direct limit of the
already constructed structures. Finally, we deduce a characterization of elementarily
equivalent structures by the existence of strong chains.

3.1 Good ultrafilters and saturated structures

Definition 3.1.1. Let U be an ultrafilter on I and A an infinite cardinal. We say that
U is A-regular, if there exists a A-regularizing family € C U, that is a family of sets such
that |£] = A and for any i €

HEef|i€ E}| <w.

We write regular if U is |I|-regular. We say that an ultrafilter is Nj-incomplete or
countably incomplete, if there exists a countable family & C U such that (€ € U.

By definition follows immediately that a A-regular ultrafilter I/ is p-regular for each
< A.

21
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Proposition 3.1.2. Let U be an wultrafilter on I. Then the following properties are
equivalent:

1. U is Ng-regular.
2. U is countably incomplete.

3. There ezists a countable family {I, | n € w} CU such that Iy =1, I,, O I,,+1 and
N1, = 0.

Proof.

1 = 2 If the family {E, | n € w} regularizes U, then (., En = 0. Hence we conclude
that (), .., En € U.

new

2=3 Let £ ={FE; | i € w} CU be a family such that € ¢ U. Put E =TI\ )€ and
note that £ € U. Define In = I and I,,41 = EgN ... E, N E for n € w. Then the
family {I,, | n € w} has the required properties.

3 = 1 Obvious.

O]

Remark 3.1.3. For an ultrafilter U on w, we have that I/ is non-principal if and only if
U is regular. In fact, if U is non-principal, then the set I,, = w \ {1,...,n} belongs to U
for every n € w and (¢, In = (). If U is principal, then U is generated by some n € w
and we conclude that n € (U.

From now on, we assume that each ultrafilter is non-principal.
Notation. For a set I, we indicate with S,,(I) the set of all finite subsets of I.
We show the existence of A-regular ultrafilter on A.
Lemma 3.1.4. Let I be a set of cardinality A\. There exists a regular ultrafilter U on I.

Proof. Since |S,,(A)| = A, it is sufficient to prove this lemma when I = S,,()). For a € A,
put
Xo={ue Sy(N) | a € u}.

The family X = {X, C Su(A) | @ € A} has the finite intersection property, in fact, for
all ag,...,a, € A we have

Xoy N...NXq, 2 {oa,...,an}.

Then there exists an ultrafilter U that extends the family X and clearly X is a A-
regularizing family for U, since every u € S, () is finite. O

Lemma 3.1.5. IfU is an ultrafilter on A, then U is not \*-reqular.
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Proof. Assume for a contradiction that the family {X, | @ € AT} regularizes U. For
every o € AT, choose iq € A such that i € Xo. Then AT = Jge {a € AT [ iq = 8},
hence there exists 3 € A such that [{a € AT | i, = 8} = AT. We conclude that 3 € X,
for all a such that i, = 3, absurd. O

Definition 3.1.6. Let I be a set and f,g: S, (I) — U be two functions. We write f < g,
if f(A) C g(A) for all A € S,(I). We say that f is monotone, if for any A, B in S,,(I):

A C B implies f(B) C f(A).
We say that g is additive, if
9(BUA) =g(A) Nyg(B).

Definition 3.1.7. Let « be an infinite cardinal. An ultrafilter & on [ is called a-good
if for every cardinal 8 < « and every monotone function f: S, (8) — U, there exists an
additive function g: S, (8) — U, such that g < f.

Lemma 3.1.8. Let U be a countably incomplete ultrafilter over a set I. IfU is X -good,
then U is A-reqular.

Proof. Let {I, € U | n € w} be a family such that I, 2 I,41 and (¢, In = 0. Put
f:8w(A) — U such that f(u) = I,;. The map f is monotone, hence there exists g
additive such that g < f. Fort € g({a1})N...Ng({an}), we have t € f({an,...,an}) =
I,,. Hence the family {g({a}) | @ € A} is A-regularizing. O

The next lemma give an equivalent condition to A™-goodness.

Lemma 3.1.9. An ultrafilter U over a set I is AT-good if and only if the following
statement holds:

For every monotne map f: Su,(X) — U there exists an additive map g: S,(A\) — U such
that g < f.

Proof. 1t is sufficient to show that the implication from right to left holds. For v < A,
let f: S,(v) — U be monotone. Put f: S, (\) — U such that f(u) = f(uN+). The map
f is clearly monotone, hence there exists an additive map g < f. We conclude noting
that the restriction of g to S, () has all required properties. O

The next aim is to prove the existence of AT-good ultrafilters on A. To do this we
need some technical lemmas.

Lemma 3.1.10 (Theorem 6.1.6 [2]). Let A be an infinite cardinal and {Y, | v € A} be a
family of subsets of A, such |Yy| = X for every v € A. There ezists a family {Z, | v € A}
with the following properties for each v,n € A:

(1) Zy C Y, and |Zy| = A.
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(it) ZyNZy =0, if v #n.

Proof. For each ordinal v < A, put

Xy ={(a,8) |a<Band B <y} Cyxn.

We have X, = U76 \ X5, since A is limit ordinal. We construct inductively a family
{f+ | v < A} of injective functions such that

(i) the function f, has domain contained in X, and f, C f, for every n <y < A.
(ii) If & < B <, then f,(a, ) € Y.

At the successor step, assume that f, is defined. Note that | X,| < A and |Y,| = X for
all @ < A\. We can define

f((,B) ifa< B <y

Frnl(en B)) = {h((a,"y)) fa<y<y+1.’

where h is an injective map such that dom(h) N dom(f,) = 0 and h(w,7) € Y, for all
a < 7. At the limit step, choose f, = Un@ fn- When the construction is completed,
put

Zo = {f)\(avﬁ) | a < B < >‘}

Since the map f) is injective, follows that the clauses (i) and (i) hold. O

Definition 3.1.11. Let II be a non-empty family of partitions of a cardinal X, such that
every P € II has exactly A many sets. For a filter F' on \, we say that the couple (II, F)
is consistent, if the following assertion holds:

foreach X e F,newand X; € P elly,..., X, € P, €11,

if Pp,..., P, are distinct, then X N ﬂ X; #0

i<n

Notation. Let I be a set and F' C P(I) be a family with the finite intersection property,
we indicate with [F| the filter over I generated by the family F'.
Definition 3.1.12. An ultrafilter U on A is uniform, if every set of U has cardinality .

Lemma 3.1.13 (Theorem 6.1.7 i) [2]). Let F' be an uniform filter on A\ generated by a
family E C F such that |E| < X. Then there ezists a family I of partitions of \ such
that |TT| = 22, every P € 11 has exactly A\ many sets and the couple (II, F) is consistent.

Proof. Let {J, | v € A} be the family of all finite intersections of members of E.
Note that J, has cardinality A for all v < A. By Lemma [3.1.10} there exists a family
{I, | v € A} such that |I,| = X, I, € J, and I, N I, = 0 for all v # 7. Put

B ={(s,7) | s € S,(\) and r: P(s) = A}
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and note that |B| = A. Consider an enumeration B = {(s¢,7¢) | £ € A} with possible
repetitions in such a way that for all v € A

B ={(s¢,re) | £ € Iy}
For each non-empty J C A, define the map Fy: A — X such that

FJ(&) _ Té'(Jﬂ 85) if&e UWEAIW;
0 otherwise.

Claim 3.1.14. Every map F is surjective and Fj, # Fy,, for every distinct sets Jy, Jo.

Proof. First of all we prove that for every J C A the map Fy is surjective. Fix v € A
and x € J. Put s = {z} and r = {(s,7)}. We have (s,7) = (s¢,7¢) for some £ € A,
hence we conclude
Fy(§) = re(J Nsg) = re(se) = .
Finally, we prove that F;, # Fj, for J; # Jo. Without loss of generality we can
assume that there exists z € J; \ Jo. Set s = {z} and r = {(s,0),(0,1)}. Since
(s,7) € B, there exists £ € A such that (s,7) = (s¢,7¢). Then we conclude

FJI (f) = Tg(Jl N Sg) = 7“5(85) =0

and
Fj, (&) =re(JanNsg) =re(0) = 1.

By the claim we obtain the family
O={F'()yer|JcA

has cardinality 2* and every partition has exactly A equivalence classes. To conclude the
proof it is sufficient to show that (II, F') is consistent. Fix distinct Jy...,J, C A and
Y, V15 -5V € A, we have to find § € I, such that

Fr,(§) = for1<i<n.
Let s € S,,(A) be such that
sNJd; #sNJdp for 1 <i< h<n.
Now define r: S,(A) — A in the following way:
r(Jins) =7 forl<i<n.
For some £ € I, we have (s,r) = (s¢,7¢), hence

Fy, (&) = re(JiNs¢) = i
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Lemma 3.1.15 (Theorem 6.1.7 i) [2]). Let (I, F') be consistent and J C X, where
X is a cardinal. Then for some cofinite II' C 11 either (I, [F U {J}]) is consistent or
(I, [F U{AN J}]) is.

Proof. There are two cases:

(i) F U {J} has not the finite intersection property, then there exists X € F such
that X NJ = (. Clearly F U {\\ J} has the finite intersection property, hence
it is sufficient to show that (IL,[F U {\\ J}]) is consistent. For X' € F and
Xie P €ll,..., X, € P, €1l, we have

XN\ X 2X'nXn\Jn( X=X nXn[)X;#0.

i<n i<n i<n

(ii) The families F'U{J} and F'U{\\ J} both have the finite intersection property.
Now assume that (II, [F'U{J}]) is not consistent, hence for distinct Py,... P, € II,
there exist X € F' and X; € Py,..., X, € P, such that

« XnJn[)X:i=0

i<n

Put I' =1\ {P,..., P,}. Now we prove that (IT', [FU{\\ J}]) is consistent. For
distinct P{,...P,, € II', consider X| € P{,...X], € P), and X’ € F. We have

X'nMN\HN X 2X'nXn\J)n [ X/n[]Xi#0,

<m i<m <n
since * holds and

X'nxn () Xin()X:#0.

i<m i<n
O

Lemma 3.1.16 (Theorem 6.1.7 i) [2]). For a cardinal A, let (II, F') be consistent,
p: Su(A) = F be monotone and P € II. Then there exist an extension F' of F and an
additive function q: S,(\) = F’ such that ¢ < p and (I \ {P}, F’) is consistent.

Proof. Let P = {X,, | v € A} and S,(\) = {t, | ¥ € A} be some enumerations. For
v € A, define a function ¢, : S, (A) = P(A) such that

p(ty) N X, if s Cty;
qw(s)_{ Y Y Y

0 if s Zt,.

Put ¢(s) = UW@\ g (s).

Claim 3.1.17. The function q is additive, ¢ < p and F U range(q) has the finite inter-
section property.
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Proof. For s € S,(\) and v € A such that s C t,, we have
4y(s) = p(ty) N Xy C p(s) N Xy € p(s),

hence q(s) = U, ¢+(s) € p(s). Now we prove that ¢ is additive. For v € A the map ¢,
is additive, since
3U3'§t7<:>sgt7 and S’Qtv.

We obtain

q(sUs’) Uq,ysUs) Uqu(s) N UqV q(s) Nq(s),

YEA YEA Y'EA

where in the second equality we have used that ¢,(s) N ¢y (s") = 0 for v # /. Then
we conclude ¢(s U s") = ¢(s) Ng(s’). To conclude the proof, we prove that the family
F Urange(q) has the finite intersection property. Fix Y3,...,Y,, € F and s1,...,8, €
Sw(A). We have

Yin...nY,Ng(si)N...Ng(sm)=Y1N...0Y,Ng(s1U...Usp)

since ¢ is additive. Note that s; U...U sy, € S,()), hence s; U ... U s, =t for some
v € A. We obtain

Yin..nY,Nnq(ty) 2Y1iN...NnY,Ng(ty) =YiN...0Y, Np(t,) NX,

eFr

where the last set is not empty since (II, F) is consistent. ]

Finally, we have to prove that (IT \ { P}, F’) is consistent. Fix distinct Pi,..., P, €
I\ {P}, X € FF s € Sy(\) and X; € P1,...,X,, € P,. There exists 7 € A such that
s =t, then

X Nq(ty) N[ Xi 2 X Ngy(ty) N () X = X Np(ty) NX, N[ X #0,
i<n i<n "’ i<n
€F
since (II, F') is consistent and X, € P. O

Now we prove the existence of AT-good ultrafilter.

Theorem 3.1.18 (Theorem 6.1.4 [2]). Let I be a set of cardinality . Then there exists
an \*-good countably incomplete ultrafilter U over I.

Proof. Without loss of generality we can assume I = . First of all, let {p, | n € 2*}
be an enumeration of all monotone maps form S, (A) to P(\) and {J,, | n € 2*} be an
enumeration of P(\). For n € w, consider the set

I =M\ [){y+i|v € \is limit ordinal}.

i<n
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We have I, 2 Inq1, |I,| = XA and ()¢, In = 0. Let Uy be the uniform filter generated by
the family {I,, | i € w}. By Lemmal3.1.13] we can find a family of partitions Iy of A such
that |TIy| = 2* and (Tly, Up) is consistent. We shall construct two families {IL, | v € 2*}
and {U, | v € 2*} with the following properties:

(i) ¢ D II, and Ug C Uy, for all £ < v € 27,

(i) 1Ly = 2*, |IL, \ II,11| € w and II, =, . I, for 7 limit ordinal.

ney

(i) (II,,U,) is consistent for each vy € 2*.

At the limit step, put Il, = O, ., II; and Uy = U, U, and note that the clauses
(i), (74i) are trivial. To check that i) holds, observe that [IIy \ II,| = |y - w|. Now
assume that U, and II, are defined. If v + 1 is odd, let J,, be the first element of P(\)
not already in U,. By Lemma there exist Uy41 and II,4; such that neither
Jy € Uyyq nor A\ J, € U,41 and clauses (i), (), (¢4i) hold. If v + 1 is even, let
P Sw(X) = Uy be the first function which we have not already dealt with. By Lemma
we can find U,41, I1,41 and an additive map ¢: S, () = U,41 such that ¢ < p,,
Uyy1 = [Uy U {range(q)}] and clauses (i), (i), (i7) holds. When the construction is
completed define U = U,y€2)\ U,. Clearly U is a countably incomplete ultrafilter on .
Moreover, if p: S,,(\) — U is monotone, there exists v € 2* such that range(p) C Uy for
all £ > v, since cof()\) < cof(A\) = cof(2*). Hence, by construction of U, we conclude
that U is AT-good. O

Note that this result of existence is the best possible, in fact, by lemmas
there exists no AT -good countably incomplete ultrafilter on .

To continue our studies we introduce a class of rich structures, called saturated, but
first of all we recall the following definition.

Definition 3.1.19. Let T be a theory and M be a model of T. A type p(z) with
parameters in A C M is a set of formulas of 7" with parameters in A. We say that p(z)
is finitely satisfiable in M, if for every ¢1(x),...,dn(x) € p(z) we have

M=z pr1(z) Ao A dn(x).
Definition 3.1.20. Let A be an infinite cardinal and M be an L-structure. We say that
M is A-saturated, if for every A C M, with |A| < A, M realizes every type p(z) such
that
1. p(x) has parameters in A;

2. p(x) is finitely satisfiable in M.

We say that M is saturated, if it is | M|-saturated.
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Remark 3.1.21. Assume that M is an infinite k-saturated L-structure, then |[M| > k.
Otherwise, M = {ay | v € A} for some X < x and the type

p(x) ={~(z=ay) |y €A}
should have a realization.

Definition 3.1.22. Let M, N be two L-structures. A partial map f: M — N is called
elementary if for every L-formula ¢ (x1,...,z,) and a1, ...,a, € dom(f) we have

MEdlar,. .. an) <= N Ed(f(ar), ..., flan))

Remark 3.1.23. Let f: M — N be an elementary map and p(z, (a)sedom(y)) be a finitely
satisfiable type in M with parameters in dom(f). It is easy to check that the type

p(z, (f(a))acdom(s)) is finitely satisfiable in N. In fact, for ¢y (z, f(@1)), ..., ¥Yn(z, f(a))
in p(.%', (f(a))aedom(f)) we have

N E 3w \ iz, (@) <= M 3z \ vz, @)
=1 =1

Lemma 3.1.24. Let M be a A-saturated L-structure, where |L| < X\. For A C M of
cardinality less than X, let p((zq)acx) be a type with parameters in A and with infinite
variables {xq | a € K} for some k < A. If p((xo)aek) is finitely satisfiable in M, then it
is realized.

Proof. By Corollary there exists an elementary extension M’ of M that realizes
the type p((za)ack). We indicate by (ba)acx the realization of p((zq)aex) in M’. By
Lowenheim-Skolem Theorem, there exists an £-structure N' < M’ such that b, € N for
all v € K, AC N and |[N| =~ < A Fix N = {cy | @ € v} an enumeration of N. We
construct a set of partial functions {f, | @ <~} with the following properties:

(i) fa: N — M is partial elementary map and fixes A.
(i) cq € dom(fot1)-
(ili) fg C fo holds for all € a <.

When the construction is completed, the sequence ( fy(ba))acs is a realization of the type
P((Za)ack). Put fo =ida and note that fy is elementary since M < M’ and N' < M'.
In the successor step, assume that f, is defined and ¢, & dom(f,). Put

q(z, (@) aedom(f)ua) = {¥(x) | ¥(x) has parameters in A U dom(f,) and N E(ca)t.

By inductive hypothesis, the type

q(z, (fa(a))acdom(fa)ua)

with parameters in range(f,) U A is finitely satisfiable in M, hence this is realized by
some ¢ € M. Put fo+1 = fo U{(ca,c)}. In the limit step, put f, = U,Bea fs-
O
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The next result is simple application of back and forth constructions.

Theorem 3.1.25. Let M,N be L-structures elementarily equivalent. Assume that
M, N have the same cardinality \. If M, N are saturated, then M = N .

Proof. Let M = {ay | v € A} and N = {by | v € A} be an enumeration of M, N,
respectively. We construct inductively a family of partial functions {f, | v < A} with
the following properties:

1. the map fy41: M — N is elementary, a, € dom(fy4+1) and by € range(fy41).
2. f, € f, holds for all n < v < A

For v = 0, we put fo = (. Note that fy is elementary, since M = N. Assume that f is
defined, ay ¢ dom(f,) and b, ¢ range(fy). Put

p(z, (@)aedom(fﬂ,)) = {¢(x) | ¥(x) has parameters in dom(f,) and M = 9(a)}.

The type p(, (fy(a))acdom(s,)) is finitely satisfiable in \V, since f, is elementary, so there
exists a realization b in M. Now consider the map g = Iy LU {(b,a,)} and repeat the
preceding argument to find ¢ such that g U {(by,c)} is an elementary map. Finally, put
fy+1 = fyU{(ay,0)} U{(c,by)}. For v limit ordinal, define f, = J,c, f;. When the

construction is complete, the map f) is an isomorphism. O
Notation. In the sequel of this thesis if p(x) is a type, we write S,,(p) to indicate Sy, (|p|).

The following result shows how the existence of a-good ultrafilter allows to construct
saturated structures.

Theorem 3.1.26 (Theorem 6.1.8 [2]). Let U be a A-good countably incomplete ultrafilter
on I. Assume that {M; | i € I} is a family of L-structures with |L| < . Then the
L-structure [ [, Mi/U is A-saturated.

Proof. Let p(x, (ag)gea) be a finitely satisfiable type in M = [],.; M;/U with param-
eters (ag)geq for a € A\. We can expand the language £ to L', adding o new constants
{cg}peca, such that cg/’ = ag. Note that the language £’ has cardinality less than A.
Moreover, the type p(x) = p(z, (cg)geq) is finitely satisfiable without parameters in M.
Hence it is sufficient to show that every finitely satisfiable type p(z) without parameters
has a realization in M. Let {I,, | n € w} C U be a family such that

I=0)hOoL2...2I,2...

and () I, = 0. Note that |p(z)| < A since |p(x)| < {¢(z) | ¥(z) is L-formula}| = |£| <
A. Define the map
f:Sulp) = U

such that
flu) =Ty n{i el | M; k=3I \u@)}.
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The map f is monotone. In fact, if u C u/, then
Tpup 2 )

and
{iel|M; =3z \u@)}2{iel| M3\ ()}
Hence there exists an additive map g such that g < f. For ¢ € I, define
(i) = (J{¢(@) € p(x) | i € g({(x)})}-
We prove that |7(i)| € w for all i € I. Otherwise, for all n € w we have
|m(i)] > n={¢1(x),...,on(x)} € 7(i) =

{o1(2)}U...U{on(2)} € 7(i) =
icg({or(@)})n...Ng({on(x)}) =

(
icg({h(@)tu...U{on(z)}) =
i€ f({or(x), ..., on(x)}) C In,

that is ), ., In # 0, contradiction. For i € I we have 7 (i) € S, (p) and

new

i€ (g} | é(x) € n(i)} = g(n(0)) C f(n(i)).

For i € I such that 7() # (), we can choose h(i) € M, such that

Mi E N\ ().

We complete the proof showing that [(h(7))cr] is a realization of p(z). Let ¢(x) be a
formula of p(z). Since i € g({¢(x)}) implies ¢(x) € 7 (i), we have

U g({¢(@)}) C{i el | Mk o(h(i)}-
We conclude by Los$’s Theorem. O

3.2 Direct limit of L-structures

Definition 3.2.1. A partial order (I, <) is a directed set, if for any i,j € I there exists
a k € I such that 4,5 < k. A directed system {(M;,e;j) |i,5 € I, i < j} of L-structures
consists in a directed set (I,<), a family {M; | i € I} of L-structures and a family
{eij | 4,5 € I, i < j} of morphisms of L-structures such that:

1. €ij: Ml — Mj;
2. ey = Idpm, for all i € I;

3. ejp =ejpoe foralli < j <k
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Lemma 3.2.2. Let {(M;,e;5) | 4,5 € I, i < j} be a directed system of L-structures,
where the morphisms e;; are elementary maps. There exists an L-structure M and a
family {e; | i € I} of elementary morphisms such that

1) ej: M; — M;
2) e; =ejoe; foralli <j.

3) If {gi | © € I} is a family of morphisms such that g;: M; — N for some L-
structures N and for all i < j the following diagram commutes

M;

there exists a unique g: M — N such that g; = g o e;.

The L-structure M is called direct limit of the family {M; | i € I} and it is denoted by
el

Proof. First of all we construct the L-structure M. Define an equivalence relation ~
over | J;c; M; such that, if x € M;, y € M; and i < j,

x ~y <= ejp(x) = eji(y) for some k > 1, j.

Let M = {J;c; M;/ ~ be the domain of the structure M. Now we have to define the
interpretation of the symbols of constant, relation and function. If ¢ in £ is a symbol of
constant, put ¢ = [¢™¢] and note that ¢c™i ~ ¢Mi for every i,j € I. Let R(x1,...,,)
be a relation symbol of £ and a; € M, for 1 <17 < n, we say that

RM([al], ey [an])

holds if there exists a k > h; for any 4, such that

RMe(ep, (1), - - ennr(an)).
In a similar way, suppose that f(xi,...,2,) is a function symbol and a; € My, for
1 <i<n+1, wesay that

(21, [n]) = [2nga]

holds, if there exists a k > h; for any ¢, such that

M (emn(ar), s enr(an)) = e, k(ans1)-
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By the definition of ~, it is easy to see that the interpretations are well defined. Now
put
ei: M - M

such that e;(a) = [a] and clearly 1),2) hold. We prove that the clause 3) holds. Assume
that there exist g;: M; — N for each i € I, such that g; = e;; o g; for any i < j. Define
g: M — N such that g([a]) = gi(a) if a € M,;.

Claim 3.2.3. The map g is a well defined morphism such that goe; = g; for everyi € I.

Proof. We prove that g is well defined. Assume that a ~ b, a € M; and b € M, then
for some k € I such that i, j < k we have e;,(a) = e;;(b). We have

9([a]) = gi(a) = gr(eir(a)) = gr(e;r(b)) = g;(b) = g([b]),

thus ¢ is well defined. By definition we have g o e; = g; for every i € I. Now we
prove that g is a morphism, that is the clauses of Definition [B.1.10{ hold. If [¢*i] € M

is the interpretation of a constant, we have g([c*]) = f;(c™¢). Now consider a term
fM([a1], ..., [an]). We can assume that a1,...,a, € My for some k € I, then
g(fM([al]a SRR [an])) = gk(ka(alv SRR an))

= Ngr(ar), ..., gr(an)) =
= (g([a]), ..., g(lar]))-

In a similar way we can prove that if RM([a1], ..., [as]), then RN (g([a1]), ..., 9([an]));
hence we conclude that g is a morphism.
O
Finally, we prove that the maps e; are elementary, that is, for any £-formula ¢ (x1, ..., z,)

and a1,...,a, € M;, we have

MEY(ai],...,|an]) = M; = ¥(al,...,a,).

We proceed by induction on the complexity of the formula ¢ (x1, ..., z,). When ¢ (z1,...,z,)

is atomic, we conclude since the maps e;; are elementary. Assume ¥ (z1,...,2,) =
1z, ..o xn) Aoz, ..., xy), then

M= (lar, ... [an]) =

M= i([a], - an]) Adba(lad], - [an]) <=

M= di([ad], - .., [an]) and M = @02([&1] - lan)) =

M, Ei(ay,.. andMi):wg(al,..., n) <=

, )
M | Pi(ar, ... an) Apa(ar, ... an) <=
MZ‘ }zw(al,...,an).
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Assume ¥(x1,...,z,) = 2p(z1,...,Ty), then

M E=p(la],. .. Jan]) =M E =¢((ad], ..., [an]) <=
M ¢(lar], - .., lan]) <=
M d(a,. .. a,) <=
M; = —d(a,. .. a,) <
M; Ev(ar,. .. an).

Finally, assume (21, ...,x,) = Jzd(z, 21, ..., 2y,), then

M; E(ay,...,an) =M, |E Jzd(z,a1,...,a,) =
M; E ¢(a,ay,...,a,)for some a € M; =
M E ¢([al,[a1], ..., |ay]) for some a € M; =
M = Jxo(x, |ai], ..., [an]) =
M E=Y([a], ..., [an]).

Now we show the reverse implication:

M EY([a],- .- [an]) =

M = Jzgp(x, [a1], ..., [an]) =

M = ¢(la], [a1], . .., [ayn]) for some a € M; =

M E é(leji(a)], [eix(ar)], - - ., [eir(an)]) for some a € M; and k > i,j =
M, = d(eji(a), eix(ar), . .., eir(an)) for some a € Mj and k > i, j =
My E Jxo(z,ei(ar),. .., eix(ay)) for some k > 1, 7,

By hypothesis the map e; is elementary, hence M; = Jxo(x, a1, ..., a,). O

3.3 The strong chains

Definition 3.3.1. Let M be an L-structure and x be an infinite cardinal. We say that
a family {M, | a € k} of L-structures is a strong chain for M, if My = M and the
following properties hold:

e for every a € x there exists a cardinal A > a such that My, 1 = M2 /U for some
ultrafilter & on A.

e If o € k is limit ordinal, then M, = lig/\/lﬁ.
BEQ

Remark 3.3.2. Note that a strong chain is a directed system of L-structures. By Lemma
and Corollary there exist some elementary maps eg,: Mg — M, for every
B < a. Hence, given a strong chain { M, | a € k} , is well defined the direct limit of the
structures M, and the maps e,: M, — lig./\/la are elementary, by Lemma [3.2.2

aER
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Theorem 3.3.3. Let M be an L-structure. Assume that k is an inaccessible cardinal
such that |L],|M| < k. There exists a strong chain {M, | « € K} for M, such that

@Ma has cardinality k and it is saturated.
ack

Proof. Let (\;)iex be an increasing sequence of cardinal such that Ao = max{|M|*,|L|*}
and \; k. Note that each increasing cardinal sequence that converges to x has
cardinality &, since k is regular. We construct inductively a strong chain for M such
that

1) |My] < & for all a € k;
2) M1 is Al-saturated for all a € &.

Put Mo = M. At the successor step assume that M, is defined. Let U be a A\%-good

countably incomplete ultrafilter on A\, and put Mgy1 = M2 /U. Note that U exists

by Theorem [3.1.18] The condition 2) holds by Theorem [3.1.26] Moreover, |My41| <

|M)«| < &, since  is inaccessible. At the limit step, define M, = @Mﬁ. Note that
BeEa

(Mol <> sc, [Mp| < K, by regularity of k. When the construction is completed, put

M* = lim M,
ack
and note that the maps eq: M; — M™* are elementary for all « € x, by Lemma [3.2.2
Obviously |M*| < k holds. To conclude the proof it is sufficient to prove that M* is
r-saturated. For A < r, let p(z, ([a,])yex) be a type of M*, with parameters ([a,]) e
By regularity of x, we can assume that there exists o € x such that a, € M, for any
v € A. Note that p(z, (ay),e)) is a type finitely satisfiable in M, since the map e, is an
elementary. Let 8 > a be such that Ag > A, then we have that Mg, is )\g—saturated.
Hence there exists a realization a € Mgy of the type p(x, (eag+1(ay))yer). Since egyq
is elementary, we conclude that [a] realizes the type p(x, ([a4])yen)- O

Theorem 3.3.4. Assume the existence of a proper class of inaccessible cardinals. Let
M, N be L-structures, then the following are equivalent:

(i) M=N;

(ii) for some inaccessible cardinal K larger than |L|+|M|+|N|, there exist two isomor-
phic and saturated L-structures M’ and N of cardinality x such that M < M’,
N <N

Proof.
(i) = (i1) Put
k =min{\ > |L] 4+ | + M|+ |N| | X is an inaccessible cardinal}.

By Theorem there exists two strong chains { M, | @ € k} and {N, | « € K}
for M, N, respectively, such that M’ = lim M, and N = ligj\/a have the same

ackK ackR
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cardinality x and they are saturated. Moreover, we have M = M’ and N = N,
by Lemma By Theorem [3.1.25, we obtain M’ = N,
(74) = (i) By Lemma [B.1.11} we have M’ = N’. Hence we conclude M = M' =N = N.

O



Chapter 4

Keisler’s order

In this chapter, we define Keisler’s order on the class of complete theories on a countable
language. Our aim is to characterize of the maximal theories in combinatorial terms.
We will link the theory of gaps, studied in Chapter [I, with the properties of Keisler’s
order.

In Section we define a binary relation between the complete countable theories:
we write T7 < Tb, if for all models M1, My of T, T5, respectively, and each regular
ultrafilter U on A, if M3 /U is AT saturated, then so M7 /U. We show that this relation
is a preorder, that we call Keisler’s order.

In Section[.2], we show that a theory is maximal if and only if the only for all cardinals
A the only ultrafilters which saturate the ultrapowers of models of T are A*-good.

In Section -3 we prove the maximality of every theory with the SOP property, that
is a theory in which we can define a partial order with infinite chains.

In Section [4.4] we show that every gap of some ultrapower of finite linear orders
appears in an ultrapower of (w, <). Hence, we obtain a characterization of good ultra-
filters in terms of gaps that we can find in an ultrapowers of the linear order (w, <).
We introduce the notion of treetops, that generalizes the idea of unbounded chain given
in Chapter In fact, now we study unbounded increasing chains in ultraproducts of
arbitrary pseudo-trees. We conclude the section showing that the existence of certain
treetops is equivalent to the goodness of the ultrafilter.

In Section we define a theory with the SOPy property, that is: in some model
M and for some formula v(z,7), there is an interpretation of a tree ({as | s € <"}, <)
in M with the property that a ¢-type with parameters in T is consistent if an only if
the parameters are <-compatible. For a model M of a SOPs-theory, we prove that the
realization of -types is an ultrapower of M is equivalent to the existence of special
functions, called distributions.

In Section 4.6] we show that every SOP2-theory is maximal in Keisler’s order. In
particular, an ultrapower of a model M of a SOPa-theory is A\*-saturated if and only if
U has the \*-treetops property.

37
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4.1 Basic properties

We shall assume that every language is countable and every theory is complete, that is
any two models of a theory T are elementarily equivalent.

Definition 4.1.1. Let A be an infinite cardinal and 77, T5 theories. We say that 17 <, 15
if and only if for every M7, Mo models of T7, T5, respectively, and any regular ultrafilter
U on \ we have

if M3 /U is AT-saturated, then M3 /U is AT-saturated.

We write T1 < 15, if T7 <) 15 holds for every infinite cardinal A.

Lemma 4.1.2 (Keisler, Theorem 2.1 [3]). Let M and N be elementarily equivalent L-
structures and I be a set of cardinality \. If U is a reqular ultrafilter on I and N1 /U is
Mt -saturated, then ML /U is \*-saturated.

Proof. Let v < X be a cardinal and p(z, (aq)acy) be a complete finitely satisfiable type
in M’ /U. By hypothesis £ is countable, then the type has cardinality . Let

{¢a(r,a) | v €7}

be an enumeration of the formulas of the type, where a, is a finite tuple for any a € 7.
Let X = {X, | @ € A} be a A-regularizing family of I/ that is [, Xa = 0 for all infinite
u C A. For ¢ €I, put

acu

2(i) = {da(z,aa(i)) | i € Xa}
and note that 3(7) is finite.

Claim 4.1.3. Fiz i € I. For every a € vy, we can choose by (i) € N such that for any
subset {Pa, (T, a0, (1)), ..., Pa, (T, 00, (1))} of sentences of X(i) we have

(1) M3z do; (2,80, (i) <= N |= Tz /\ da,; (2, ba; (1)).

J=1 Jj=1

Proof. Consider the set A(7) of all formulas:

3z N o, (@, Za, (1))
j=1
if .
M ': El.’IJ /\ ¢C¥j (x7aa]‘ (Z))
j=1
and otherwise

—dz /\ gf)aj (x, Tay (4)),

j=1
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for every subset {¢q, (%, G0, (7)), ..., da, (T, 0q, (7))} of sentences of X(7). The set A(7) is
finite, hence let 1)(Z) be its conjunction, where we indicate by & a finite tuple of variables.
Since M and N are elementarily equivalent and

M |= 3z 4(2),
we have
N E 3z (z).
In N a realization {b, () | « € v} of the formula () is the required set. O

Now, for every o € ~, let b, the class of equivalence modulo U/ of the sequence
(ba(i))ier- We claim that the type p(z, (b;)iey) is finitely satisfiable in NT/Y. In fact, if
Gay (X, 04y), -+, Do, (T, ba,, ) are formulas of the type, then

Xoy N KXo, N{i €T M =T N\ bo; (2,80, (i)} €U
j=1
is a subset of {i € I | N |= 3z N\ ¢a, (2, ba, (i)} since (x) holds. We obtain that
NTJU = Tx |\ ¢a, (2,00,(1))).
j=1
Let b be a realization of p(z, (b;)iey) and put

F(Z) - {(ba(x?aa(i)) € E(Z) ‘ N 'Z ¢a(b(2)76a(z))}

Note that I'(7) is finite and M |= Jx AT'(i)(x), since (x) holds. We may choose a
realization a(i) € M of the sentence 3z AT'(7)(x). Put a = [(a(?))icr]. Now we show
that a is a realization of the type p(z, (aa)aey) in M*/U. If ¢po(x,a4) is a formula of
p(.%, (aa)a€7)7 then

U {i € TN ¢a(b(i), ba(i))} N Xa C{i € I | M = dalali), aa(i))},
hence we conclude that M’ /U |= ¢a(a,ay). O

Lemma 4.1.4. The relations <y and < are preorders, that is, the reflexive and transitive
properties hold.

Proof. 1t is sufficient to show that < is a preorder for all cardinal A. Obviously the
transitive property holds. The reflexivity follows by Lemma |4.1.2 O

The preorder < is called Keisler’s order.
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4.2 A characterization of the maximal theories

Lemma 4.2.1. A theory T is mazimal in Keisler’s order < if and only if it is mazximal
in <y for any cardinal X.

Proof. Follows by definitions. O

For every cardinal ~, let
(Sw (7)a gv P)

be a structure such that
P30 () = u # 0.

The next result is a useful criterion to check the goodness of an ultrafilter.

Lemma 4.2.2 (Theorem 2.2 Chapther VI [9]). Let U be an ultrafilter on I. If for each
v < X and every A-saturated elementary extension M of (S, (v),C, P), the ultrapower
M /U realizes all types of the form

P(@, (aa)aey) = {7 C aa | @ €7} U{P(2)}
that are finitely satisfiable in M! JU, then U is A-good.

Proof. Let v < A and
f:Su(y) —=U

be a monotonic function. For i € I, consider the type p;((za)aey) in M such that for
every u € S, () the following holds:

if i € f(u), then ¢, € pi((za)acy)s

if i & f(u), then —p, € Pi((ﬂfa)aev),

}
|

Claim 4.2.3. For every i € I, the type p;((a)acy) is realized in M.

where

cpu:{ﬂx[/\xgxa/\f’(x)

acu

and

TPu = {ﬁEI:c [/\ x Cxq N\ P(x)

acu

Proof. Fix i € I. By Lemma it is sufficient to show that p;((zq)aey) is finitely
satisfiable in M. Let {u1,...,upn,v1,...,vm} € S,(7) be such that ¢ € f(u;) and
i ¢ f(u) for every j <nand I <m. Put {o,...,ax} = U;; uj Uvi. To complete the
proof, we find some finite subsets Ay, ..., Ay of w such that

[ A;#0 and ] 4; =0

JEU; JjEUL
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for all I <n and h < m, then To; = A;j for j < k provides a realization of

{@Ul?“'?‘pun?SOUl?“'7<p'Um}'

We construct the sets Ay, ..., A as follows: consider an injective map
h:{uj|j<n}—k
such that h(u;) = ly;. For every o € {az1,...,ax}, put
F(a) = {ly; | a € uj}.

Now we show that the sets F'(«) for o € {ai,...,ax} have the required properties. For
Jj < n we have ﬂa@j F(a) 3 l,;. Now assume for a contradiction that there exists
such that [ € ﬂaEvl F(a) for some I < m. For some u;, we have | = l,,;, then v; C u;.
By monotonicity of f, we conclude i € f(u;) C f(v;), contradiction. O

For every i € I, let {an(i) | @ € v} € M be a realization of the type p((za)aey),
that is for every finite set u € S, (y) we have

Mz | \ 2 Canli) AP(x)| <> i€ f(u).

Now, in M! /U consider the type

(7, (aa)acy)) = {2 C aa | @ € v} U{P(2)},

where a, = [(aq(7))icr] for every a € v. We show that ¢(x, (aq)acy)) is finitely satisfiable
in M!/U. For every finite set u C v we have

iel|ME3 \ 2 Canli) AP@)} = (i €T|ic flu)} €U,

acu

hence
MU = 3 /\ x Cag A P(x).

acu

Now let b € MZ /U be a realization of ¢(z, (aa)ac~)) and define

glu)={ie T | M N\ b(i) C aali) A P(b(i)} € U.

acu
Obviously ¢ is an additive function on S, (7), range(g) CU and g < f. O

Theorem 4.2.4 (Lemma 4.2 Chapter VI [9]). A theory T is maximal in the preorder <y
if and only if for any model M and any regular ultrafilter U on A, the following property
holds:

M’\/L{ is ANV -saturated if and only if U is AT -good. %
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Proof. We first assume that the property * holds. Let T” be a countable complete theory
and N be a model of 77. Assume that M |= T. If M*/U is A\T-saturated, then U is
AT-good. By Theorem we conclude that N /U is A*-saturated, hence T' <1 T.
Hence T is maximal in the preorder <.

Note that in % the implication from right to left holds for all theories T', by Theorem
Now assume that T is maximal. Let M be a model of T, such that M*/U is
AT-saturated, for some regular ultrafilter /. By maximality of 7', we have

Th((Sw(7), S, P)) S\ T,

for every v € At that is S, (y))/U is A\*-saturated. By Theorem [4.1.2, we conclude
that AN /U is AT-saturated, for every elementary extension N of (S,(7), <, P). Thus
the ultrafilter I is AT-good, by Lemma [4.2.2] O

4.3 SOP-theories

Definition 4.3.1. A complete L-theory T has the strict order property, abbreviated as
SOP, if in some model M of T there is an L-formula 1 (z,y) that defines a partial order
with infinite chains.

Remark 4.3.2. Note that if M and ¢ (z,y) have the properties of the definition above,
then 1 (z,y) define a partial order in every structure N such that A" = M.

Theorem 4.3.3. For every complete theory T with the strict order property, we have
Th((Q,<)) 2T.

Proof. Let X be an infinite cardinal, U be a regular ultrafilter on A and {X,, | & € A} be a
A-regularizing family for /. Assume that for some model M of T, the ultrapower M?* /U
is AT-saturated. By Lemma m it is sufficient to prove that Q* JU is A\t-saturated.
Let p(z) be a finitely consistent type in Q* /U with parameters in A, where |A| = v < .
By quantifier elimination of dense linear orders without endpoints, every formula ()
with parameters aq,...,a, is equivalent, modulo the theory, to a finite conjunction of
formulas of the form
> a; Ve <da.

Hence we can assume without loss of generality that p(z) = {¢a(z,aq) | @ € v} is a set
of atomic formulas. Put

A1 ={a|{z > a} € p(z)}
and
Az ={a[{z <a} € p(a)}.

If Ay =), for every & € A consider the finite set X(§) = {¢n(2,aq) | £ € Xa}. For every
&€ € A, choose a(§) = max{an(§) | £ € Xo} and note that

QA dala(é)aa(9)).

¢o¢ (x7aa)ez(£)
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Not put a = [(a(§))ecr]. For every formulas ¢q(x,aq) € p(x) we have

Us X, C {§ €A ‘ Q ): ¢a(a(§)aaa(§))}a

hence a is a realization of the type p(x). Using a similar argument we conclude that
p(z) is realized, when A; = (). To conclude the proof, assume that A; and Ay are not
empty. Hence for some cardinals k1, k3, we want to find an element a that separates
two sequences (al)acx;, and (a2)aecn,- Since k1 + kg < A, we can find a subfamily

(X} aermU{X2|achy
of the A\-regularizing family {X,, | « € A\}. For £ € A, consider the finite set
2(€) = {aa(§) | € € Xo} U{ad(§) | € € X3}
Since M has an infinite chain, we can copy () in a finite subset
{ba(€) | € € X} U {b5(9) | € € X3}
of M so that the order is preserved, that is
Q | a} (&) < ah(§) <= M b, (€) < bL(9).

In this way we have obtained two sequences (b))acr, and (b2)acx, in M?* /U such that
for every ay < as € k1 and 1 < B2 € k3 we have

MU b, <BL, < b3, < b3

Since M* /U is A*-saturated, there exists b that separates the two sequences in M*/U.
Now consider

L(€) = {aa(§) | € € Xa, M Eb,(6) <b(€)}U{ag(§) | € € X2, M Eb(€) < b2(6)}-
It is possible to find a(&) € Q such that
Q | aa(8) < al€) < aj(€),

for all al (), a% (&) € T'(§). Let a be the class of equivalence modulo U of the sequence
(a(€))een. For every al, and a%, the set

XoNXEN{E €N | MEbo(§) <b(§) <b3(O)} U

is a subset of
{¢ e X ab(§) <a(§) <aj(é)}

We conclude that a separates the two sequences (al)aex, and (a2)aex, in Q*/U. O

Theorem 4.3.4. The theory Th((Q, <)) is maximal in Keisler’s order.
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Proof. Let X\ be an infinite cardinal and U be a regular ultrafilter on A such that the
ultrapower Q*/U is At-saturated. We have to prove that U/ is AT-good. By Theorem
it is sufficent to prove that if M is a AT-saturated elementary extension of

(Sw(N), €, 0),
then M* /U realizes all types

P(; (aa)aer) = {2 C aa [ € A} U {~(z = 0)},

that are finitely satisfiable in M?* /Y. Consider a new binary relation symbol R and
expand the language with R in such a way that

M E R(a,b) <= MEaCbAa#0.

Set
L= {s € M | M =3 [ \{R(z,5() | < [s]}]}

and note that I" has the power of M, hence there exists a bijection g: M — I'. We
expand the language, defining the following new functions and relations on M:

e a < bif and only if g(a) is extended by g(b).

o F1: M — M is such that Fj(a) is a witness of
M e [ \{R(@,g(a)(0) | i < lg(a)]}

e P(b,a) if and only if a € I' is a sequence extended by g(b).
e (QQ(b,a) if and only if g(b)~a € T.

o Fh(b,a) = cif and only if M = Q(b,a) and g(c) = g(b)"a or M = =Q(b,a) and
c=0b.

e F5(b,a) = c if and only if g(c) € T is extended by g(b) and g(c) is the longest
initial segment of g(b) such that g(c)~a is in I' (notice that g(c) is always an initial
segment of g(b)).

Let N1 = (M, R, <, F1, Fy, F5, P, Q, ¢*) and M; be the reduct of N7 to L = {R}. For the
sake of simplicity let us denote by their usual names in the language the interpretations
in N /U of the relation and function symbols of the signature of N7/U. We just note
that for example

N U = QUIf) [a) <= {i < X[ M g(f(i)"a(i) e T} €U,
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and similarly for the other relation and function symbols. Fix a family {f, | a € A} C
N} /U and a type

p('T’ (foz)aek) = {¢a($7fa) | a € )‘}’

of size A and finitely satisfiable in N} /U, where every formula ¢, (z,%) is a finite con-
junction of zRy. Without loss of generality we can assume that the type is closed under
finite conjunction. Before showing how to realize the type p(x, (fa)acx) We need two
claims.

Claim 4.3.5. 1) Every a € Ni/U has an immediate successor b. Moreover, every
element has infinitely many immediate successors.

2) For every a,b € N /U there exists a maximal element ¢ € N* JU such that ¢ < a,b.

Proof. 1) Fix a € N{/U. For every £ € ), the element a(¢) € N; has an immediate
successor b(§) € N, since the partial order (N7, <) is isomorphic to the partial
order (I',C). Now the element [(b(£))cen] has the required properties. The sec-
ond observation follows noting that in (IV, <) every element has infinitely many
immediate successors.

2) For every £ € \, we can find a maximal ¢(§) € Nj such that ¢(€) < a(€), b(€), since
the order (N7, <) is isomorphic to the order (I, C). Now the element [(c¢(§))een]
has the required properties.

O

Claim 4.3.6. For k, k1, ke < XA we have:

(i) If ((ca)acx) is an increasing chain in [[(N7,<)/U, then there exists ¢ € N{ /U
such that co < ¢ for all a € k.

(ii) If ((aa)acr,) and ((ba)ack,) are sequence in (N /U, <) such that
Aoy < Aoy < bg, < bg,

for all a1 < ag < K1 and B1 < Py < ko. Then there exists an element ¢ € Nf‘/Ll
that separates the two sequences in [[(N7\, <)/U.

Proof. For every c € ./\/'1)‘ /U, the set S, of immediate successors of ¢ is infinite, by Claim
1). Choose a dense linear order <. on S, and consider the following binary relation
< on N x {0,1}: (a,i) < (b,7) if and only if

(A) a=bandi<j.
(B) If a < b, then (a,0) < (b,0) < (b,1) < (a,1).

(C) If a,b are not <-compatible, there exists a maximal ¢ € Nf/u such that ¢ < a, b,
by Claim 2). Now let a’, b’ € N7 /U be the first elements such that ¢ < a’ < a
and ¢ < ¥ <b. Then o’ <. V.
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By Claim < is a linear order, moreover it is easy to check that < is a dense order
with first and last element (c¢*,0) and (c¢*, 1), respectively. Hence the structure

(M x {0, 10 U, <) = (NN U x {0,1}, <)

is a dense linear order with first and last element and thus is a model of the theory of
(Q, <). We conclude the proof of (i) and (ii) of the claim as follows:

(i)

In (N} /U x{0,1}, <), consider the sequences (cq, 0), (Ca, 1). Since we are assuming
that Q*/U is A\T-saturated, we have that

N U< {0, 13\ {(e*,0), (¢", 1)}

is AT-saturated dense linear order. Hence there exists (c,j) such that (cq,0) <
(¢,j) < (cg,1). We conclude proving that ¢, < c for all . Since the argument is
similar we can assume that j = 0. Assume for a contradiction that we have c,, £ ¢,
for some v € A. Hence condition (C) holds and we obtain (¢4, 1) < (¢,0) < (¢q, 1),
contradiction.

Consider the sequences (aq,0), (aq, 1), (ba,0) and (by, 1). By hypothesis we have
(@a,0) < (bg,0) < (bs,1) < (aa,1).

Since
N U x {0, 13\ {(c*,0), (c", 1)}

is AT-saturated dense linear order, there exists (d,j) such that
(@a,0) < (d,j) < (bg,0) < (bg,1) < (aa,1).

Since

(a0, 0) < (d,j) < (aa, 1),

we obtain a, < d for all @ € A, by properties (A), (B), (C) in the definition of
the linear order <. If d < bg for all 8 € A, we conclude the proof, otherwise there
exists a 3 € A such that d £ bg. Let d € N}*/U be the maximal element such
that d’ < bg,d. Now we prove that d’ has the required properties. Clearly we have
an < d' for all @« € A\ . Now observe tha for each o € A, the elements d’, b, are
<-compatible in N7\ /U since by, is in the thread of N{/U determined by bg and d’
is also in that thread. Observe also that (d’,j) < (ba,0) for all a, hence d’ < b,
for all « is forced to be the case by properties (A), (B), (C) in the definition of the
linear order <.

O]

In order to realize the type p(z, (fa)acx) in N7 /U, we build a family

{ei[i <A}

in N7 /U with the following properties:
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i)
ii)
iii)

case

case

case

i < j if and only if N} /U = ¢; < ¢;.
N} U = Q(ci, fa), for all o € .
N} U = P(cisa, fi), for alli € A

i =0: Put cg = [(c*)ien] € N?/U. The conditions i),iii) are clearly satisfied for
¢op. The clause i) holds, since g(co) = 0.

i =j+1: Put ¢cj11 = Fa(cj, f;) € N /U. By inductive hypothesis we have

hence g(cj+1) = g(c;)" f;, by definition of the function F,. Clearly the clause i)
and 7i7) hold, by definition of ¢;41. To check the second requirement we have to
prove that

N U = Qe [,

for all n € A. Clearly we have the following equivalences:

MU EQej1, ) <= {leX | M Eglcj) f() €T YelU
= {leX| M Egle) fi el el

Since the type p(z, (fa)aex) is closed under finite conjunction and for all ¢ € A

N U E Qe fo),

that is B
{leX M Eglg) fc() e} el,

we conclude that

{leXIMEgle) [ el el

¢ limit: By Claim there is f € Nf/u such that ¢; < f for all j <4, but f
may not satisfy the second requirement on ¢;. To solve this problem we need the
following claim.

Claim 4.3.7. There exists a sequence {d¢ | £ < A} such that c; < d¢ < d,) for all
j€iandn <& <A Moreover, for n < A we have

MU = Q(da, fr)-

Proof. For n = 0, put dy = f. At the successor step, set d,11 = Fg(dn,fn). We
have to prove that for all j < i we have ¢; < d,11 < d,,. By definition of d,+q
follows that dy,4+1 < d,,. Now remember that d, 1 is the largest initial segment of
dy, such that

{Le XN = gldnia)” fo() €T} €U
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Since the inductive hypothesis holds and
N U Qg o)
for all j <4, we have ¢; < d, and
{le XM Egle) f() Ty el

for all j < i, hence ¢; < dyq1 for every j < i. At the limit step use Claim [4.3.6]
to fill the gap (¢j)jei (dy)pee in (NP /U, <). To complete the claim, we prove by
induction on & < A that

MU = Q(de, f)

for all n < €. At the successor step, we have N}*/U = Q(dy+1, f,), by construction
of dy+1. Moreover, NP} /U = Q(dg, f,) for n < & by inductive hypothesis. Since
dey1 is an initial segment of d¢, we conclude that N}/U = Q(dgy1, fy) for all
n < {. At the limit step the thesis holds since d¢ is an initial segment of d; for all

cegé. O

To conclude the limit step, put ¢; = dy, where (d¢)e<y is the sequence of Claim
We have to check that ¢; satisfies all three prescribed requirements. The
clause (i) follows by construction, (i) is trivial and (i) follows by Claim [4.3.7]

Finally, assume that the construction of the sequence (c;)i<) is completed. We

have to prove that ¢ = Fj(cy) realizes the type p(x, (fa)ac)). By clause ii) we
have

{L <X M Egle®) fall) €T} U,

for each av € A. By clauses (i), (i74) we have that g(c) extends g(c¢) for £ € A and
g(ceq1) extend fg for every £ € A. By definition of the function F; we obtaint that

{lex| M3z [/\{R(«'Eag(f?(l))(i) li <|g(c(D)[}|} eU
and this concluded the proof.

O]

Corollary 4.3.8 (Shelah, Theorem 4.3 Chapter VI [9]). Every theory with the strict
order property is mazimal in Keisler’s order.

Proof. Follows by Theorems and ]
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4.4 Treetops
Definition 4.4.1. Let U/ be a regular ultrafilter over a set I. We define
CU) = {(r1,k2) € |I|* x [I|T | k1, ko are regular and w! /U has a (k1, k2) gap}.

Remark 4.4.2. Assume that k1 is an infinite regular cardinal and k2 > 0 is finite. Since
every a # 0 of w! /U has an immediate successor and an immediate predecessor, follows

that (K1, k2), (K2, k1) &€ C(U).

Lemma 4.4.3. For any infinite reqular cardinals ki, ke < |I|, we have (k1,0) & C(U)
and (0, ko) & C(U).

Proof. Clearly we have (0, x2) € C(U), since w! /U has a minimum element. Now assume
for contradiction that (k;,0) € C(U), hence there exists a cofinal sequence (aq)ack, i
wl/u. Let {X, | a € |I|} € U be a family that regularizes U. For every i € I, the
set YV; = {aq(i) | © € Xy} is finite. Put a(i) = max(Y;), if Y; is not empty, otherwise
a(i) = 0. For any « € k1, we have

U X, Cliel]an(i)<ali)},
hence [((a(i))ier] is an upper bound of the sequence (aq)acr,, contradiction. O

The next result shows that an ultrapower w! /U is enough saturated if there are no
gaps of a certain size. In order to obtain this, we use that the theory of discrete linear
orders with minimum element and without maximum has quantifier elimination in the

language £ = {0, s, <}, see Theorem for a proof.

Theorem 4.4.4. Let U be a reqular ultrafilter on X. Then C(U) = 0 if and only if U is
AT -good.

Proof. If U is A*-good, then w*/U is A*-saturated, by Theorem [3.1.26, Hence we
conclude that C(U) is empty. Now assume that C(U) is empty.
Claim 4.4.5. The ultrapower w* /U is \T -saturated.

Proof. We can expand the language {<} adding an unary function symbol s and a
constant symbol 0, that interpret the successor function and the minimum element,
respectively. Note that s and 0 can be defined by <, in fact

s(x)=y<=zr<yAN-Jzlx<zAz<y)
and
r=0<=VYy( z=yVzr<y).

Let T be the theory of discrete linear order with minimum and without maximum
and p(x) be a finitely satisfiable type in w/U{ in the expanded language {0, s, <} with
parameters in some A C w”/U of cardinality less than A*. By Theorem B.2.5L p(z)
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is equivalent modulo T to a set quantifier-free formulas. Modulo T, a quantifier-free
formula v (x) with parameters aq, ..., a, is a finite conjunction of formulas of the form

x>a;, Ve <ay,Ve=s(a,) Vs (z)=a,.

Hence we can assume that the type p(x) is a set of atomic formulas with parameters in
A. Put

Ai={acAl{a<z}epx)}and Ay ={ac A|{x <a}ep)}
There are six cases:

1) For some a € A; and n € w we have {s"(a) = z} € p(z). Then p(x) is realized be
s"(a).

2) For some a € Ag and n € w we have {s"(z) = a} € p(x). Then p(x) is realized by
s7"(a).

3) The sets A; and Ay are infinite. Then we find a realization a of p(z), since C(U) = 0.

4) At least one of A; and Ag is empty. Then we find a realization a of p(z), by the
proof of Lemma [4.4.3

5) A; is finite and As is infinite. By cases 1) and 2), we can assume that there
exists no a € A1 U Ay and n € w such that neither {s"(a) = z} € p(z) or
{s"(x) = a} € p(x). Let a1 € Ay be the maximum. Since C(U) = (), the sequences
(5"(a1))new and (az)a,ea, don’t represent a gap, hence there exists a € w! /U such
that s"(a1) < a < ag for all n € w and ag € Ay. Then a realizes the type p(x).

6) As is finite and A; is infinite. We conclude as in 5).
We conclude that p(z) is realized in w* /U, hence w* /U is A*-saturated. O

By Corollary the theory Th((w, <)) is maximal in Keisler’s order, hence U is
AT-good, by Theorem O

Lemma 4.4.6 (Claim 10.17 [5]). Let U be a regular ultrafilter on I. There exists a
sequence (n;)ier € w!, such that for all reqular cardinals k1, ke < |I| = X, the following
are equivalent:

(i) (k1,k2) € C(U).

(ii) The linear order [[;c;(ni, <;)/U has a (K1, k2) gap, where <; is the standard order
on w restricted to n;.

Proof.

(73) = (¢) Obvious.
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(i) = (i) Let {X; |i € A} be a A-regularizing family of sets of /. Put
ni={aer|ie X} +1

and note that n; € w for all i € I. Now assume that (aq)ack; and (ba)ger,
represent a (k1,K2) gap in w! /U for k1 + ke < A Let h: k1 x {0} Urg x {1} — A
be an injective map. Define

fir1x{0}Ukre x {1} = U
that f(z) = Xj(y) and note that [{z € dom(f) |i € f(z)}| <n; for all i € I. Set

Vi ={aa(i) [i € f((a,0))} U{ba(i) | i € f(a; 1))}

and note that |Y;| < n;. Choose an injective map h;: Y; — n; such that range(h;)
is an interval of n; and h; preserves the order. Put h = Hie 7 hi. We conclude
showing that the sequences (h(aa))ack;s (h(ba))ack, represent a (k1,k2) gap in
[Lic;(ni, <i)/U. If B € a € k1, then the set

f((@,0) 0 f((8,0)) N{i € T [ ap(i) < an(i)} €U

is contained in {i € I | h;(ag(i)) < hi(aq(i))}. Hence the sequence (h(aq))ack, is
increasing in [[,.;(ni, <;)/U and in the same way we can prove that (h(ba))acs, 18
decreasing. Assume for contradiction that there there exists ¢ such that h(ay) <
¢ < h(bg) for any a € K1, f € k. Since h; preserves the order and range of h; is
an interval, we can construct a d such that h(d) = ¢ and a, < d < bg, absurd.

O]

Definition 4.4.7. Let x be a regular infinite cardinal and U be a regular ultrafilter
on I, where |I| = X\. We say that U has the k-treetops property if: for every family
{(P;,C) | i € A} of pseudo-trees and every regular cardinal v < &, if (a;)ic, is an
increasing sequence in (P,C) = [[;c;(Pi, €)/U, then there exists a € P such that a; C a
for all ¢ € 7.

Lemma 4.4.8 (Claim 10.25 [5]). Let U be a regular ultrafilter on I, where |I| = A and
Kk < A be a regular cardinal. The following are equivalent:

(i) U has the k™ -treetops property.
(1) kT < HU).
Proof.

(i) = (4i) Obvious.
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(7) = (i) Assume for a contradiction that there exists an ultraproduct of pseudo-trees

(Pv E) = H(Pl’g)/u

i€l

such that the sequence (aq)ac~ is increasing with no upper bound, for some regular
cardinal v < k. Let {X; | i € A} be a A\-regularizing family of ¢/. Define

ni={ael|ie X} +1
and note that n; € w for all 7 € I. Let
fiy—=U

be such that f(a) = X, and put Y; = {an(i) | i € f(a)}. For every i € I let
Q; be a finite pseudo-tree of cardinality n; and h;: Y; — @Q; be an injective order
preserving map. Now set (Q,C) = [[;c;(Qs, €)/U and h = [],c; hi/U. Note that
(Q,C) belongs to P(U). The sequence (h(aq))acy is an increasing sequence in
(Q, D), since for a < 8 the set

{i € I'laa(i) S ap(i)} N f({a}) N f{B}) €U

is a subset of {i € I | hi(aq(i)) C hi(ag(i))}. Hence there exists b such that
h(as) E b for all a € k. Let

flfiy—=u
be a map such that f'(«) = f(a)N{i € I | hi(aa(i) Cb(i)}. Put Z; = {hi(an(?)) |
i € f'(a)} and note that Z; is finite and linearly ordered, hence there exists a

maximum element c(i). Now the element a = [[;.; h; (e(i)) /U is well defined and
it is an upper bound of the sequence (aq)aey, constradiction.

O

Lemma 4.4.9. Let U be a regular ultrafilter on I, where |I| = X is an infinite cardinal.
IfU has the AT -treetops property, then U is AT -good.

Proof. By Lemma we have AT < t(U). By Theorem m, it is sufficient to
prove that C(U/) is empty. Assume for contradiction that there exist two infinite regular
cardinals k1, ke < X such that there is a (k1, k2) gap in wI/Z/{. By Lemma @7 there
exists a linear order L in LL in which there is a (k1, k2) gap. By Corollary @, we have
CSP(U) =0 and k1 + kg < A < AT < t(U), contradiction. O

Lemma 4.4.10. Let U be a regular ultrafilter on I, where |I| = \. Then the following
are equivalent:

(i) If kK < A, then (k,k) & C(U).

(i1) U has the \*-treetops property.
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Proof.
(i1) = (i) By Lemma U is A\*-good. We conclude that C(U) = @, by Theorem [4.4.4]

(i) = (i4) Assume for contradiction that U has not the A™-treetops property. By Lemma
[.4.8] we have A\* > t(/), hence there exists a (¢(i/), t({/)) gap in some linear order
of L(U), by Theorem By Lemma we conclude that (t(U), t(U)) € C(U),

contradiction.

O]

Theorem 4.4.11. Let U be a reqular ultrafilter on I, where A = |I|. Then the following
are equivalent:

(i) U is At -good.
(i) C(U) = 0.
(111) U has the Xt -treetops property.
() If k < X is regular, then (k,k) & C(U).
Proof.
(i) < (ii) By Theorem [4.4.4]
(#i7) < (iv) By Lemma
(1) = 4it) By Theorem every ultraproduct is A*-saturated.
(ii) = (iv) Obvious.
)

(7i1) = (i) By Lemma

4.5 The SOPs-types

Definition 4.5.1. A theory T" has the SOP2 property, if there exist a formula ¢ (z,y)
such that in all models M of T there is a copy of the tree (u=*,C) ({as | s € ="}, <)
inside M such that:

(i) if s,t € u=<" are incompatible sequences, then the the formula ¢ (z,as) A ¥ (z, a)
is not realizable in M.

(ii) For s € pu~, the 1-type {¢(x,ay)) | i € K} is such that all its finite subsets can be
realized in M.

The tree ({as | s € u=*}, Q) is a SOPa-tree for ¢(x, ) in M.
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Lemma 4.5.2. If a theory T has the SOPy property, then in some model N of T there
exists a SOPy-tree ({as | s € 2<¥}, Q) for a formula (z, 7).

Proof. Assume that in some model M of T there exists a SOPs-tree ({as | s € p<"}, <)
for 1(z, 7). Expand the language £ adding a set of finite tuples of contants {as | s € 2<%}
and a binary relation symbol <. Let T” be the theory obtained by T adding the following
axioms:

(i) For all s,t € 2<%
s <y < s C L.

(ii) If s,t are C-incompatible, then
—3a[y(z, @) A p(, ar)).
(iii) If sq,...,s, are compatible, then
Jz[p(z,as,) A ... ANY(z,as,)]

By Compactness Theorem T’ is consistent and a model N of 7" has the required
properties. O

Lemma 4.5.3. If T is a complete L-theory with the strict order property, then T has
the SOPy property.

Proof. Let M be a model of T" and 1 (z,y) be a formula that defines a partial order
with an infinite chain (a;)ie,, in M. To simplify the notation we abbreviate ¢ (z,y) as
r < y. By Compactness Theorem we can assume that there exists a sequence
(a;)icq such that

M):ai<aj<:>(@|:i<j.

In fact, expand £ adding countable symbols of constant {a; | i € Q} and consider the
theory T/ = T'U{a; < a; | i,j € Q and ¢ < j}. The theory T" is finitely consistent, since
the model M of T satisfies every finite ¥ C T”. Hence T" is consistent and a model M’
has the required properties. Now we construct inductively an SOPo-tree

({bs | s €2}, )

for the formula ¢(z,y) = y1 < r Ax < ya. Put by = (ap,a1). In the second step put
beos = (ao,a%) and boys = (a%,al). Now assume that bs = (as,, as,) has been defined

for all |s| = n in such a way s1 — o = 5. Set

1,0 ).

L ) and bsﬂ<1> = <a80+2n+1

bSA<O> = (CLSO, a80+2n+1

By construction it follows that the above tree has all the properties required. ]
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Definition 4.5.4. Let M be a model of a theory T with the SOPy-property and U be
a regular ultrafilter over a set I of cardinality A. Assume that (7', <) is a SOPa-tree for
Y(z,7) in M. A type p(x) = {¥(7,a,) | @ € v} is a SOPa-type for (T, <) in ML /U, if
v < A and the set

X ={je€I]aq(y) belongs to (T, Q) for all @ € v} *
belongs to U.
From now we call ¢-type a type of the form p(x) = {¢(z,a;) | i € v} and we just
say that “p(z) is a SOPa-type in M! /U instead of “p(x) is a SOPa-type in M! /U for

(T, <9)” if the reference to the tree (7, <) is not needed in our arguments.

Definition 4.5.5. Let U be a regular ultrapower on I and p(z) = {¢(x,a;) | i € 7)}
be a 1)-type of cardinality v < |I|. Assume that p(z) is finitely satisfiable in M’ /U/. A
distribution for p(z) is a map

dp: Su(v) = U

such that:

(i) for every u € S, (), we have

dp(uw) C{i € I | M3z )\ ¢(z,a;(i)} €U.

JEU
(ii) the range of d, is a y-regularizing family of U.
(iii) if w C v, then dp(v) C dp(u).

Given an L-structure M with a SOP; tree (T, <), we can add to the language £ a
binary relation < that we interpret as the partial order on the SOPs-tree.

Lemma 4.5.6 (Lemma 11.6 [5]). Let U be a regular ultrafilter on I, where |I| = A, and
M be a model of theory with the SOPs property and (T, <) be a tree contained in M
witnessing the SOPy-property for T in M relative to the formula 1¥(x,y). The following
are equivalent for every ¥-type p(x) on M /U which is a SOPy-type for (T, <):

(i) p(x) has a realization in M!JU.
(i1) p(z) has a distribution dy, such that

i€ dp({a}) Ndp({B}) = (aa(i) L ap(i)) V (ap(i) daa(i)). *

Proof.
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Let p(z) be as in the hypothesis. By hypothesis there exists a realization a € M’ /U
of p(x) and

X ={i €1I]an(i) belongs to T for all « € v} €U
by property * of the SOP,-type p(X). Put
dp({a}) ={i € I | M = ¢(ali), aa(i))} N Xa N X €U,

where {X, | @ € v} is a y-regularizing family of &/ and

dp(u) = () d({a}),

acu

for |u| > 1. The map dy,: S, (p) — U is a distribution of p(z), hence it is sufficient
to show that the condition * holds. If i € d,({a}) N d,({A}), then the sentence
Jxp(z,aa(i)) A P(x,ap(i)) is satisfied in M as witnessed by a and an(i),ag(i)
belong to T'. Hence we conclude that (an (i) < ag(i)) V (ag(i) < aq(i)).

Let p(z) be as in the hypothesis. Choose a distribution d), of p for which condition
* holds. Define the map

d;,: Su(p) = U
such that d,({a}) = dp({a}) and d},(u) = e, d,({a}) for Ju| > 1. Obviously
the range of d}, is a regularizing family of & and d},(uv U v) = d},(u) N d},(v) for all
u,v € Sy(p). Now for i € I, put (i) = J{u € Sw(p) | i € d,(u)} and note that
¥ () is always finite. If ¥(¢) = (J{u1,...,un}, we have

i€ dy(uy) .. N dy(up) = d(|w) = d,(2(9))
I<h
We show that
d,S@) C{jel I METr N\ Y@ a())}

a€eX(7)

as follows: Let X(i) = {a1,..., 0}, then for every j € d,(X(i)) = (L, dp({ai})
the elements aq, (j), ..., aaq, (j) are <-compatible since for all | # k € {1,...,n}
J € dpy({au}) Ndp({ar}) and thus aq,(j) and aq, (j) are <-compatible by condition
* on d,. This gives that the formula

Jz /\ ¢<xaaa(j))
aeX(i)
is realizable in M.
Hence we can choose a(i) € M such that

ME A wlali),an).

aeXi(i)



4.6. THE MAXIMALITY OF THEORIES WITH SOP, PROPERTY o7

Finally, we prove that [(a(i));c)] is a realization of p(x). If ¥(z,a,) is a formula
of p(x), we have

U s dy({}) C (i € T| M E alali),aa(i))).

since i € d,({a}) implies a € %(q).

4.6 The maximality of theories with SOP, property

Lemma 4.6.1 (Lemma 11.6 [5]). Let U be a regular ultrafilter on I, where |I| = X,
and M be a model of theory with the SOPy property and (T,<) be a tree with T C M
witnessing it. The following are equivalent:

(i) Every v-type p(x) in MT /U of cardinality less or equal to \ which is a SOPa-type
for (T, <), has a distribution dy, such that

i € dy({0}) Nd({8)) = (aai) D as(®) V (as(i) D aa(i). *

(ii) If (S,<s) is a tree and (co)ac~y s an increasing sequence of ST /U, where v < X,
then the sequence has an upper bound in (S, <g)' /U.

Proof.

(ii)=(i) Let p(x) = {¢(z,aq) | @ € 7} be a SOPy-type in M!/U. Then the sequence
(@a)ae is linearly ordered by <, hence there exists an upper bound a applying (ii)
to the tree (T', d7). Define the map dj,: S, (p) — U such that

dy({a}) = {i € T | M aa(i) D a(i)} N Xa 1 X
where { X, | @ € v} is a y-regularizing family of ¢/ and
X ={i € I]ay(i) belongs to a SOPy-tree for all « € v} € U.

For |u| > 1, put dp(u) = (\aey, dp({a}). Clearly the range of d, is a y-regularizing
family of U, and dp(v) C dp(u), when v C v. Now if i € d,({a}) Ndy({8}), then
aa(i),ap(i) < a(i), hence an (i) and ag(i) are J-compatible. By the same argument
we can also conclude that

dy(u) C{i e U | M E N o, aa(i))}.

acu

Thus d,, is the required distribution satisfying the conclusion of (i).
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(i)=(ii) Let (7', <) be the subtree of M as in the hypothesis of the Lemma whichwitnesses
the SOPy-property of ¥)(x,y). Let (S, dg) be a tree and (cq)acy be a Jg-increasing
sequence in ST /U, for some v < X\. We show that the type p(z) = {z > co | @ € 7}
is realized in ST/U. Fix a distribution dp: S, (p) — U of the type p(z). For any
i €1, the set ¥(i) = {u € S,(7) | i € dy(u)} is finite. Now, if ¢4, cg are parameters
of some u,v € (i), then we choose a4 (i), as(i) € T such that

ca(t) <5 cg(i) <= aq(i) <r ap(i).

Consider the type q(z) = {¢(x,as) | @ € v}. The set ¢(x) satisfies x of Definition
4.5.4] since a, (i) € T is an element of the SOPg-tree T' of M for each i € I and
a € 7. Now we show that g(x) is a finitely consistent SOPa-type. If ag <... <y,
then the set

d{aa})n...nd({an}) N{i € I|ca (i)<...<¢q, (1)} €U
is a subset of
{i€l]an(i)<...<qaq, (1)}
and this is contained in
{ieI|3x /\ ¢¥(z, aa,i)},
j=1

thus ¢(z) is finitely consistent. By (i) there exists a distribution d; of ¢ with the
property . For each ¢ € I the set A(i) = {co(i) | i € dy({a})} is finite and
linearly ordered by < in (7', <). Let ¢(i) be the maximum of the set A(7) and put
c = [(c(0))ier] € (T, <)! JU. Now for each a € v we have

U3 dy({a}) C{iellcali) <c(i)},
hence ¢ is an upper bound of the sequence (cq)ae~-

O
Theorem 4.6.2. Let U be a regular ultrafilter on I, where |I| = X. The following are
equivalent:

(i) U has the At -treetops property.

(ii) U realizes all SOPy-types of cardinality less or equal to A.

Proof. Immediate by lemmas and O

Theorem 4.6.3 (Lemma 11.11 [5]). If T is a theory with the SOPy property, then T is
maximal in Keisler’s order.

Proof. By Theorem it is sufficient to show that U is A*T-good ultrafilter on \,
when M?*/U is a At-saturated ultrapower and M is a model of a theory with the
SOPs-property. By Theorem U has the A\T-treetops property, when M*/U is a
At-saturated ultrapower. We conclude the proof by Theorem O



Chapter 5

Random graphs are not maximal
in Keisler order

The purposes of this chapter is to prove that the statement The theory of random graphs
is not mazimal in Keisler’s order is consistent with ZFC.

In Section we introduced the technique of two-step iterated ultrapower and
prove that this construction is equivalent to an ultrapower modulo a tensor ultrafilter.
We study how the combinatorial properties of the tensor ultrafilter I/ ® V are linked with
the properties of & and V.

In Section we remark some basic facts on the theory of random graphs. Using
Martin’s axiom, we construct an ultrafilter & on Xy such that U is not Ns-good, but each
ultrapower M™ /U is Ro-saturated for every random graph M. In this way we deduce
that the theory ZFC' does not prove the maximality of the theory of random graphs in
Keisler’s order.

5.1 Iterated ultrapower

Definition 5.1.1. Let U,V be filters on I, J, respectively. Consider the family & ® V
of subsets of I x J such that S € U; x Us if and only if

{jedJ|{iel]|(ij)eSteU}eV.
Remark 5.1.2. When Uy € Uy and Uy € Uy, we have Uy X Us € Uy Q@ Us.

Proposition 5.1.3. (i) Let U and V be ultrafilters on I and J, respectively. Then
U RV is a ultrafilter on I x J, called tensor ultrafilter.

(i) H(z’,j)elxj Mij/(u ®V) = HjeJ(Hz’eI Mij/u)/v-
(iii) M J(U @ V) = (MUY V.
(iv) If U orV is A-reqular, then U @ V is A-reqular.
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(v) Assume V countably incomplete, then U ® V is A-good if and only if V is A-good.

Proof. (i) Assume that S7,S2 belong to i ® V and S; C S. Then the sets
{jedJl{iel|@jesSiteutn{jeJ[{iel|(ij)eSteU}teV

{jedJ|{iel](i,j)eSr}eU}eV

are subsets of

{jed|{iel]|(ij) e SinSz}el},
{geJ|{iel](ij)eS}elU},

respectively, hence S; N Se and S belong to U ® V. Now assume that S ¢ Y ® V,
that is
{jedJ|{iel](i,j)eS}telU} ¢V.

Hence
Va{jeJ[{iell|(@i,j)esSt¢Ur={jeJ|{icl|(ij)¢S}eU}
Then we conclude that I x J\ S el ® V.

(ii) Define the map

f: H Mij/LI®V—>H(HMij/U)/V

(3,5)eIxJ jeJ iel

such that f([a]) = [b], where b(j) = [a( ,j)]. It easy to see that f is a well defined
map and it is an isomorphism.

(iii) Follows by (i).

(iv) Assume that U is A-regular and the family {I, | @ € A} regularizes U. Consider
the family {I, x J | @ € A}. For each a € A\, we have I, x J € U ® V, since

{jed|{iell|(i,j)el,xJ}eU}t=JeV.
If (4,7) € Naey Lo x J for some infinite w C A, then i € [ ¢, 1o, absurd.

(v) Assume that V is A-good. Let M be a A-saturated elementary extension of
(Sw(7), S, P), for some v < \. By i) we have M7 /(U V) = (M!/U)7/V. We
conclude that M2 /(i{ ® V) is A-saturated, hence U ® V is A-good, by Lemma
Now assume that U ® V is A-good. For v € A, let f: S,(y) — V be a
monotone function. Consider f: S, (y) — U ® V such that f(u) = I x f(u) and
note that f is monotone. Then there exists an additive map g such that g < f.
Put g: S,(y) — V such that

glw)={jeJ[{icl](ij)egu}eU}.
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Note that g is well defined since g(u) e U @ V. If j € g(u), then

Us{iel|(i,j)egu)}c{iel] ()€ flu}

Hence g < f. Finally we prove that g is additive. For u,v € S, (), we have

guud)y={jeJ|{iel]|(ij)eguud)}eUd}
={jeJ[{iel|(ij)€gluyng)} €U}
={jeJ|{iel|j)egu)}el, {iel](ij)ecg(u)}el}
={jeJ|{iel|Gj)egu)}eurn{je|{iel](ij)eg)}eU}

=g(u) N g(u).

5.2 Random graphs and Keisler’s order
Recall some facts on the theory of random graphs.

Definition 5.2.1. The theory of random graphs, abbreviated as T4, is the theory in
the language £,, = {R} with the following axioms:

(i) Vo ~zRx.
(ii) Vz,y[zRy «— yRz|.

(iii) For each n,m € w there are the following axioms:

VUYL, -+ Yny 21y - - - » Zm /\yi#zjﬁﬂx /\ T Ry; N /\ xRz
i,J 1<j<n 1<j<m

(iv) For each n € w there are the following axioms:

3.7}1, N 0] /\ —|(xi = $j).
i#]

Definition 5.2.2. Let M be an L-structure. A formula 1(z) possibly with parameters
is algebraic, if ¥ (z) has a finite number of realizations in M, that is for some n € w

M = I "ap(x).

Lemma 5.2.3. The theory T,4 has the elimination of quantifiers. Moreover, for every
model M of T and parameters ay,...,a, € M, a formula ¥(x,ay,...,ay,) is is non-
algebraic, unless x = a; is not a subformula of V¥(x,a1,...,ay).
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Proof. To prove the first part we use Theorem Assume that M = T,,, A C M,
N E T4 is [M|*-saturated and f: A — N is a partial embedding. Let M = {a, | @ €
k} be an enumeration of M. We contruct a family of partial embeddings {f, | @ < K}
such that

(i) the map fo: M — N extends f.
(ii) aq € dom(fat1).
(ili) fg C fo forall B < o < k.
When the construction is complete, the map f, has the required properties. Put fo = f

and fo, = U gea Jo when a is limit ordinal. Now assume that fq is defined and aq ¢
dom(fy). The type

p(x) ={zRfa(ay) | M |= anRay, ay € dom(fy)}U
{—zRfus(a,) | M = naqRa,, ay € dom(f,)}

is finitely satisfiable in N, since clause (iii) of Definition holds in N. Hence
there exists a realization b € N of p(x), since N is | M|T-saturated. Conclude setting

fa+1 = fa U {(aavb)}'
In order to prove the last part, fix M |= T,4 and ay,...,a, € M. By quantifier
elimination of T}.,, we can assume that

V(x,a1,...,a,) = /\ zRaj N /\ —zRa;.

1<j<m m+1<j<n

By the axioms of T, the model M satisfies the sentence (b1, a1, . . ., a,) for some by € M.

Now let by € M be a realization of the formula ¥ (z,a1,...,a,) AxRb;. By axiom 1), we
have b; # by. Repeating this argument, we conclude that the formula ¥ (x, a1, ..., a,)
has infinite realizations. O

From now on, we work under the assumption that Martin’s axiom holds, see Section
of the appendix to a summary of all facts that we use.

Notation. Let I,J be two sets. We denote by Fn(I,J) the set of all finite partial
functions p with domain in I and range in J. On Fn(I,J), we consider the following
partial order <:

PSqs=p24q

Theorem 5.2.4 (Theorem 3.10 (i) Chapter VI [9]). Assume that Martin’s axiom holds
and 2% = Ry, There exists a reqular ultrafilter U on w, such that if M is a 280 -saturated
model of Tq, then M* /U is also 2% _saturated.

The proof of the theorem reposes on the following two Lemmas:

Lemma 5.2.5. Assume Martin’s axiom holds. Let M be a 280-saturated model of Ty
and A be a subset of M of size less than 2%0. Then there exists a countable subset B of
M such that every non-algebraic finite type over A is realized by some element of B.
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Lemma 5.2.6 (Lemma 3.9 Chapter VI [9]). Assume that Martin’s axiom holds. Let
L = L.y U{P} be an expansion of the language of random graphs obtained adding an
unary relational symbol P. There exists a reqular ultrafilter U on w with the following
property: Assume that for each i € w M; is a structure for L (of arbitrary size) such
that:

o M; restricted to the language L., models the theory of the random graph
o PMi s countable.

Then the ultraproduct M = [],c,, Mi/U realizes any type p(x) with parameters in M
which has cardinality less than 2% and is such that P(z) € p(z).

Assume that both Lemmas have been proved. Then the proof of the theorem is
immediately obtained as follows:

Proof. Let U be the ultrafilter given by the Lemma and M be a 2%0-saturated
model of the theory of the random graph. We show that M¥ /U{ is still 2%0-saturated.
Let p(x) = {¢(z,aq) | @ € pu} be a type over M“ /U such that p < X and put A4; =
U{aa(i) | @ € pu}. Now use Lemma to expand for each i M to M; = (M, PMi)
where PMi is a countable subset of M such that every non-algebraic finite type in the
theory of the random graph over the parameters in A; is realized by some element of
PMi. Now observe that the ultraproduct [];., M;/U realizes the type p(z) U {P(z)}
by Lemma [5.2.6] in particular M* /U realizes p(z). O

So we start with the proof of Lemma [5.2.5

Proof. Let |A| = v. Since the theory T4 has quantifier elimination, we can assume that
every non-algebraic formulas 1 (z) with parameters in A has the form

P(x) = /\ rRaq; N /\ —rRaq,;,

1<j<m m+1<j<n
for some aq,, ..., aq, € A. We can associate to every non-algebraic formula v (z) with
parameters aq,, ..., aq, € A a partial function g: g — 2 such that

(i) dom(q) = {v € 1 | ay is a parameter of 9(z)}.

(i) ¢(y) =1, if zRa, is a subformula of ¢(x), and ¢(y) = 0, if ~zRa, is a subformula
of Y(x).

Let P be the set of all these functions and
Q=A{(q0,...,qn) |n €wand ¢; € P for all i <n}.
Define a partial order < on () such that:

(q0s -+ qn) < (q),---,qp) = m <nand g, C g for each i < m.
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Now we show that (@, <) has the countable chain condition. Every ¢ = (qo,...,qn) € Q
can be seen as a finite function
q:w X pu—2

such that ¢(h,~v) = qn(7v). The order on (@, <) is a dense sub-order of

Fn(w % 14, 2), <pn(wxp,2));

in fact every functions p € Fn(w x u,2) can be extended to a function of @ and, for each
p,q € @, we clearly have

p SQ q<——=Dp SFn(wXuJ) q.

Then, by Lemma we conclude that (@, <) has the countable chain condition. For
every q € P, the set

is clearly dense. Put D = {D, | ¢ € P} and note that D has cardinality yu < 2%, since
P has cardinality p. By Martin’s axiom, there exists a D-generic filter G such that
G N Dy # 0 for each ¢ € P. For h € w, put

Cp = U{q | there exists (q1,...,q,) € G with q, = q}.

If (qi,---qn),(q1,---,4q),) € G, then g, and ¢, are compatible, hence C}, is a partial
function from p to 2. For every h € w the type

ph(z) = {xRag | £ < p such that Cp(§) = 1} U {—xRa¢ | £ < p such that Cp(€) = 0}

is finitely consistent in M, since M satisfies

YYLy e oo s Yny 215+ -5 Zm /\yi;«ézj—>3x /\ TRy; N /\ TRz, )

1] 1<j<n 1<j<m

for each n,m € w. Hence we can choose a realization by, of py(x). Finally, we prove that
the set {by, | h € w} has the required property. Let ¢(z) be a non-algebraic formula with
parameters in A. Let ¢ € @ be the partial function associated to ¢(z). Since GND, # 0,
for some h € w there exists a finite sequence (qo, . .., ¢n) € G such that ¢, O ¢. It follows
that ¢ C Cp, and hence by, realizes (z). O

We now prove Lemma [5.2.6}

Proof. Without loss of generality it is enough to prove the conclusion of the lemma for
the structures [];c,, M;/U such that each M; has cardinality less than 2%0: Assume that
we have proved the lemma for this type of ultraproducts, let [ N;/U be an ultraproduct
such that some N; has size at least continuum and p(z) be a type in [[N;/U of size less
than continuum. Let A € [][N; be a set of size |p(z)| such that

{laly : a € A}



5.2. RANDOM GRAPHS AND KEISLER’S ORDER 65

is the set of parameters appearing in some formula of p(z). Let
A;={a(i):a€ A} CN;.

Let M; be the skolem hull of A; inside N;, if N; has size at least continuum, and M; be
N otherwise. Then p(z) is a type on [],.,, M;/U and the lemma applies to [[;c,, M;/U
which is an elementary substructure of [];., Ni/U.

So we are left with the proof of the Lemma for ultraproducts of structures of size
less than continuum. Let {S, C w | @ € 2% is odd} be an enumeration of all subsets
of w. Consider the enumeration {(pa, (M2 | i € w)) | @ € 2% is even} of all couples
(p, (M; | n € w)) where M; is an L-structure, M;, PMi have cardinality less than 2%
and p(z) is a type with parameters in [[,., M; of cardinality less than 2%°; moreover
we fix the enumeration so that every couple appears 280-times in the enumeration. Now
define by induction a set {U, C P(w) | a € 2%} such that

1Ew

(i) The family U, generates a filter on w, which we denote by [Uy].

(ii) If B € «a, then Ug C U, and, if « is limit ordinal, then U, = g, Us and
Uq| < 2%,

(iii) For every o odd, we have Sy € Uy41 or w\ Sy € Ugt1.

(iv) For a even, if for every ¢ (z,a1),...,¢n(x,an) € po we have

n

{icw | M{ =3JzP(x /\ i(z,a;(i))} € [Ual,

then for some b € [],.,, M we have

{i e w | M7 = P(b(2)) A ¢(b(i), (i)} € [Uata]
for every ¢(x,a) € pq.

When we complete the construction, the ultrafilter U = [|J,cqx0 Ua] has the properties
required. For a = 0, put Uy = {I,, | n € w}, where I,, = w\ {1,...,n}. The construction
is clear when « is limit or « is odd. Hence we can assume that « is even and (pq, (M |
i € w)) satisfies the hypothesis of (iv). Define a partial order (P, D), where D is reverse
inclusion. An element of P is a finite set p of equations z(i) = a, where i € w and
a € PMi| such that z(i) = a,z(i) = ' € p imply a = a’. Since PMi is countable, the
partial order P is countable, hence it has the countable chain condition. Put p/, = {A ¢ |
q C po is finite }. For every ¢(z,a) € pl, and finite intersection S of members of U,,
define the set D(S, ¢(z,a))

{pe P| M ¢(b,a(i)) for some i € S and b € PMi such that {x(i) = b} C p}.

It can be easily shown that each D(S,¢(x,a)) is open dense in P, since the premise
in condition (iv) holds for the type p,. The cardinality of this family of dense open
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subsets of P is less than 280, hence there exists a generic filter G C P such that G N
D(S,¢(xz,a)) # 0, for every ¢(x,a) € pl, and finite intersection S of members of U,.
Put b(i) = a € M; if and only if z(i) = a € |J{p | p € G}. Note that (b(7))icw is an
element of J[,c,, M, in fact if 2(i) = a € v € G and x(i) = o’ € w € G, then v,w are
compatible, hence a = a’. Now we conclude putting

U1 = Ua | JUi € w | MT = 0(b(3),a(i))} | (@) € pa}-

We must show that U,y; has the finite intersection property: for any T € [U,]| and
¢(z,a) € pl,, we can first find S finite subset of U, contained in 7" and then a p €
GND(S,¢(x,a)), such that for some i € S x; = b(i) € p and M; = ¢(b(i),a(i)). This
gives that for all ¢1(z,a1),...,¢x(z,ax) € pa,

{i e w | M= o(b(i),a1(i)) A A i, ax(i))) }

has non empty intersection with all members of [U,], thus U,41 still has the finite
intersection property, as it is required to carry on the induction anc conclude the proof
of the Lemma. O

Theorem 5.2.7 (Theorem 3.10 ii) Chapter VI [9]). Assume that Martin’s axiom holds
and 280 = Ny, There exists a reqular ultrafilter F on Ry, such that for any model M of
Tyq the model M®' | F is Ro-saturated, but F is not Re-good. Hence it is consistent with
ZFC, that the theory T,4 is not mazximal in Keisler’s order.

Proof. Let V be a No-good countably incomplete ultrafilter on N;. By Lemma V
is regular. Let U be the regular ultrafilter on w given by Theorem [5.2.4] The ultrafilter
YV &U is regular on Ny X w by Proposition Let M be a model of T}4. Since M¥1/V
is No-saturated by Theorem then M™NX@ /Y QU =2 (MR1/V)¥ /U is Ro-saturated,
by Theorem We prove that V ® U is not No-good. Assume for a contradiction
that this holds, then U is a regular R9-good ultrafilter on w, by Proposition (v) By
Lemma the ultrafilter ¢/ is Ni-regular. We obtain a contradiction by Lemma 3.1.5
Noting that [N x w| = R; we conclude the proof. O



Appendix A

Set theory

In this Appendix we prove some results of set theory, that we use in Chapter [2] and
Since many results of this appendix are without proof, we refer the reader to Kunen’s
book [4] for a complete treatment.

In Section we give a short introduction to forcing. Under the assumptions of
the existence of a transitive countable model M € V of ZFC, we define the class of
P-names, the relation of forcing and remark some classical theorems. Then we define
the A-closed notion of forcing and we prove that this combinatorial property is sufficient
for the model V[G] to preserve each cardinal x < A\, whenever G is V-generic for some P
which is A-closed. We conclude the section explaining how all proven results of Chapter
can be interpreted without the hypothesis of the existence of a transitive countable
model M € V of ZFC.

In Section we work under the assumptions that Martin’s axiom holds and we
show how this statement influences cardinal exponentiation. In particular, we prove that
2f = 2% for every k < 20,

A.1 Forcing

We assume that M € V is a transitive countable model of ZFC.

Definition A.1.1. A set (P, <, 1p) of M is a notion of forcing, if (P, <) is a preorder
of M and 1p is the maximum element of P. A subset D of P is dense, if for each p € P,
there is ¢ € D such that ¢ < p. A subset D of P is dense below p € P, if D is dense
in the notion of forcing {q € P | ¢ < p}. Two element p, q of P are compatible, if there
exists r € P such that r < p, q, they are incompatible otherwise. A subset A of P is an
antichain, if their elements are pairwise incompatible.

Definition A.1.2. Let (P, <, 1p) be a notion of forcing in M. A set G C P is a filter if
the following hold:

(i) if p,q € G, then there exists r € G such that r < p, q.

(ii) If p € G and p < q, then q € G.

67
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A filter G is M-generic over P, if GG is a filter that meets every dense subset of P, that
is if D € M is dense in P, then GN D # (.

The hypothesis that M is countable ensures that for each notion of forcing P there
exists a generic filter over P, in fact the following holds:

Lemma A.1.3. Assume that M is a transitive countable model of ZFC and (P, <, 1p)
is a notion of forcing in M. If p € P, then there exists an M-generic filter G over P
such that p € G.

Proof. Working in V', let {D,, | n € w} be an enumeration of all dense subsets of P. It
easy to construct a set G = {p, | n € w} such that pg = p, ppy1 € Dy and ppi1 < pn
for all n € w. Let

G={q|3Incwp, <q},

then G is a filter and meets every D,. O

Lemma A.1.4. Assume that M is a transitive countable model of ZFC with P € M.
Let G be an M-generic filter over P. Assume that the set D € M is dense below some
p € G, then GND # 0.

Proof. Consider the set
D={qeP|3reD(qg<r)}U{qeP|Vre D(rq are incompatible)}.

Notice that D € M. We prove that D is dense. Assume that ¢ & D, then there exists
r € D such that ¢,r are compatible, that is there is s < ¢,7. We conclude s € D.
Assume for a contradiction that G N D = (), hence

GNn{geP|3IreD(g<r)}=0.

Since G is M-generic, there exists ¢ € G such that ¢,r are incompatible for all r € D.
Since p,q € G, there is s € G with s < p, g, then we can find ¢t € D with ¢t < s, since D
is dense below p. We obtain that ¢, ¢ are compatible, contradiction. ]

The next Lemma give a sufficient condition so that every generic filter G is not in

M.

Definition A.1.5. A partial order P is separative, if for for every p € P there exist two
incompatible elements ¢, € P such that ¢,r <p

Lemma A.1.6. Assume that M is a transitive countable model of ZFC with P € M.
Let G € V' be an M-generic filter for P. If P is separative, then G € M.

Proof. Assume for a contradiction that G € M, then the set M\ G € M is dense in P.
In fact, if p € P, then there exists ¢, < p such that ¢,r are incompatible. If ¢,r € G,

we obtain a contradiction since G is a filter, hence ¢ & G or r € G. We conclude that
M\ G is dense in P, hence G N (M \ G) # (), contradiction. O
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From now on, we shall study only separative notion of forcing, hence the M-generic
filters do not belong to M.

Definition A.1.7 (Definition 2.5 Chapter VII [4]). In a model M of ZFC such that
P € M, we can define with parameter P the characteristic function H (P, 7) of a P-name
7 in such a way that

H(P,7) =1 <= 7 is a binary relation and V(o,p) € T [H(P,0) =1 Ap € P
and H(P,7) = 0 otherwise. In M, the proper class
ME={reM|ME=HEP, ) =1}
is called the class of P-names.

Remark A.1.8. The class MF is Aj—definable in the parameter P, hence it is absolute in
each transitive models of ZFC, that is in our initial assumptions we have MF = VM.

Definition A.1.9. Let M € V be transitive models of ZFC to which P belongs and
G € V be an M-generic filter on P. In V' we can define an absolute class function

F: MF = M[G]
such that
F(r) ={F(m) | (m,p) € T and p € G}.

Note that F' is definable with parameters M, P and G, hence this function is not
defined in M, if G does not belong to M.

Definition A.1.10. Given a € M[G], there exists a P-names 7 such that F'(7) = a and
we denote by a this P-names. Given a € M, we call @ = {(b, 1p) | b € a} the canonical
name of a. For an M-generic filter G on P, the P-name I' = {(p,p) | p € P} is the
canonical name of G in M|G].

Remark A.1.11. By definition of T, follows that F(T') = G € M[G], if G is a M-generic
filter on P.

The next result guarantees that M[G] is a model of ZFC, that extends M.
Theorem A.1.12 (Theorem 4.2 Chapter VII [4]). Assume that M is a transitive model
of ZFC and (P,<,1p) is a notion forcing in M. If G is an M-generic filter over P,
then

1. M C M[G] and G € M|G].

2. M|G] is a transitive model of ZFC.
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Definition A.1.13. Let (P, <, 1p) be a notion of forcing in M. The condition p € P
forces the sentence ¥ (aq, ..., a,) if and only if

MIG] = ¥(a, ..., an)

for every M-generic filter G over P such that p € G. In this case we write

P ”—]p ”(b(dl, e ,an)

Note that this definition is external to M, since G is not in M, if G is M-generic.
When the notion of forcing P is clear from the context, we write p I+ ¥(aq,...,a,) in
place of p lFp (a1, ..., an).

Now let M be a model of ZFC that contains a notion of forcing (P,<,1). For

p € Pand ai,...,a, € MF we can define in M an internal relation of forcing p IFp
Y(aq,...,a,), see Definition 3.3 of Chapter VII [4]. Also in this case we write p I-*
¥(ay,...,a,), when (P, < 1) is clear from the context. The following theorems are

classical results, that outline the link between the semantics of M[G] and the internal
relation of forcing IF*.

Theorem A.1.14 (Forcing Theorem, Theorem 3.6 Chapter VII [4]). Let (P, <, 1p) be
a notion of forcing in M and G be an M-generic filter over P. If M[G] = (a1, ..., a),
then there exists some p € G, such that M |= p IF* ¢¥(aq,...,ay). Vice versa, if p € G
and M Epl-*¥(ay, ..., a,), then M[G] = (a1, .., a,).

Theorem A.1.15 (Theorem 3.6 Chapter VII [4]). Let M € V' be a countable transitive
model of ZFC and P € M be a notion of forcing.

(i) For every p € P we have
plE(ay, ... an) <= MEpl-Y(a,. .., an).
(ii) For every M-generic filter G over P we have

M[G] }zw(al,...,an) — dpeGpl- ¢(d1,...,dn).

Definition A.1.16. Let A be an infinite cardinal. A notion of forcing (P, <, 1p) is A-
closed, if for every x < A and every decreasing sequence (p-)~ex in P, there exists p € P
such that p < p, for every v € k.

Theorem A.1.17. Assume that (P, <, 1p) is a A-closed notion of forcing in M and G
is an M-generic filter over (P,<). Let a, B be ordinals such that |a| < A. If we have

M|G| E f: a — Bis a function,

then f e M.
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Proof. Assume for a contradiction that
MGl = f & BN M.

Let f and 7 be P-names for f and 8% N M, respectively. By Forcing Theorem |A.1.14
there exists p € G such that

pl- f is a function from & to 3 and f ZrT.

We construct inductively a sequence (py)y<a in M such that for all n < v € a we have
Py < py and
Pry+1 - fﬁ) = B’Ya

for some 3, € 5. Put pp = p. In the successor step, we have p, < p, hence
Dy IF f is a function from ¢ to f.
Now there exists p,4+1 < py such that
Py IF £(7) = By
In the limit step, the sequence (py)ne~ is defined in M. By hypothesis
M =P is A-closed

hence there exists p, such that p, < p, for all n € v. When the construction is complete,
we can define a map g: @ —  in M such that g(y) = 5,. Now let H be an M-generic
filter over IP such that p, € H. Note that p, € H for all v € a. We have

M|[G] E f is a function from « to 8, f &€ S NM.,

g € M and M|[G] [= f = g, contradiction. O

Corollary A.1.18. Assume that (P, <, 1p) is a notion of forcing A-closed in M and G
is an M-generic filter over (P, <).

(i) If B < X is a regular cardinal in M, then

MIG] | B is regular.

(ii) M|G] preserves cardinals o < X, that is

M = a is a cardinal <= M|[G] |= a is a cardinal.

Proof. (i) Assume for a contradiction that

M|G] [ B is not regular,
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hence
M|G] [= for some a0 < 3 there exists a cofinal map f: a — f.
By Theorem we conclude that f € M, hence
M = B is not regular,
contradiction.
Note that the only non-trivial direction is from left to right. In fact, the formula
Y(x) ="z is a cardinal”
is IT; and M C M(G], hence
MIG] E ¥(x) = M | ().
For the other direction, assume that
M = « is a regular cardinal.

By (i), we have
MIG) = a = cf(a),

hence we conclude
M|[G] E « is a regular cardinal.

If
M E «a is a singular cardinal,

then « is limit of regular cardinals in M and these cardinals remain regular in
M|G]. Hence we conclude that

M|G] £ «a is a cardinal.
O

We have given a short introduction to forcing, but in Chapter [2| we use another
approach to the method of forcing. In particular, we work in a transitive model V of
Z FC, that contains a notion of forcing (P, <, 1), and we prove that the generic extension
V[G] satisfies a sentence 1 for each V-generic filter G over P. This approach is more
simple compared to what we used here, in fact it avoids to relativize every sentence in
a transitive countable model M € V', but it is not clear the meaning of V[G], because
we need a larger model A/ than V| in such a way that G € N. Now we explain the idea
behind the proofs of Chapter [2/ and the notation V[G].

Without loss of generality we can assume that V' has an inaccessible cardinal 6, such
that the transitive set

Hy={x eV ||TC(x)| < 6}
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contains P. Since 6 is inaccessible, Hy is a transitive model of ZFC, see Theorem 6.6
Chapter IV [4] for a proof. Working in V' we can use Lowenheim-Skolem’s Theorem
to find a countable set M such that M < Hy and P € M. But this set may not be
transitive, hence we need the following classical result of set theory.

Theorem A.1.19 (Mostowski collapse, Theorem 5.13 [4]). Let R C A x A be an exten-
sional well-founded relation on the set A, that is

Ve,y € A(Vz[zRx <> zRy] —» = =y),
Ve CA(x # 0 — Jy € x[~3z € 2(2Ry))]) .
Then there exists a unique function © such that:
(i) dom(mw) C A and w[A] is a transitive set.
(ii) m is a isomorphism between the structures (A, R) and (m(A), €).

Moreover, the function m is defined recursively as follows:

m(x) ={n(y) |y € A, yRa}
and the structure (w[A], €) is called the Mostowski collapse of (A, R).

Since (M, €) is a models of ZFC, the Mostowski’s map 7 is an isomorphism, hence
the Mostowski collapse (w[M], €) is a transitive model of ZFC and n[M] € V. Now,
repeating every proof of Chapter [2in 7[M], we obtain that

TM] | Lp) o ¢(7(a1), . .., m(an).

Since 7 is an isomorphism, we have

M 1plkp Y(ag,. .., an),

whence

H9 ): ]]-IP’ H_ITD Tr[)(dlw . 'adn)'

A.2 DMartin’s axiom

Definition A.2.1. A partial order (P, <) has the countable chain condition, abbreviated
as c.c.c., if every every antichain has cardinality at most countable.

Definition A.2.2. Martin’s axiom is the statement:
for every c.c.c. partial order (P, <), if D is family of dense subsets of P of cardinality
less than 280, then there exists a filter G that meets every D € D.

Remark A.2.3. Clearly Martin’s axiom is a theorem of ZFC + GCH. In fact, if D is
a countable family of dense sets of P, as in the proof of Lemma we obtain the
desired D-generic filter.
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Using iterated forcing we can obtain the consistency of Martin’s axiom + —CH, see
[12] or [7].

Theorem A.2.4 (Solovay and Tennenbaum, Theorem 16.13 [12]). Let k > Ry be a
reqular cardinal in V. There exists a generic extension V|G| that satisfies M A and
Mo = .

Martin’s axiom influences cardinal exponentiation:

Theorem A.2.5 (Martin and Solovay, Theorem 16.20 [12]). If Martin’s axiom holds,
then 2% = 280 for every r < 280,

Proof. Fix v < 2%, Since Ry < x, we have 2% < 2%, Hence it is sufficient to find a
surjective function from P(w) to P(k). First of all, we need the following claim.

Claim A.2.6. There exists a family {Aq C w | @ € K} such that |Ay] = Vo and
|Aog N Ag| €w for all o < B € K.

Proof. We shall prove a stronger thesis, that is the existence of a family of cardinality
2% with the above properties. Let P be the set of all finite functions p: w — 2 with
domain an initial segment of w. Since |P| = Ny, it is sufficient to prove the lemma
for P. For f € 2%, consider Ay = {p € S | p C f}. Note that A is always infinite
and |Af N Ay| € w, for every f # g, hence the family {Af | f € 2%} has the required
properties. O

Choose a family {4, C w | a € K} like above. Put
G: P(w) — P(k)

such that G(A) = {a € K | AN A, is infinite}. In order to prove that f is surjective,
fix X C k. Consider the partial order P of all function p: w — 2, ordered by reverse
inclusion, with the following properties:

(i) dom(p) N A, is finite for all @ € X C &.
(ii) the set {n € dom(p) | p(n) = 1} is finite.

We prove that (P, D) has the c.c.c. Assume for a contradiction that A = {p, | i € I} is
an antichain. For ¢ # j, we have

{n € dom(p;) | pi(n) =1} # {n € dom(p;) | pj(n) = 1},

otherwise p; Upj; is a function that extends p; and p;. Now note that the number of the
above sets is at most countable, by condition (i), hence I is countable. For o € r \ X,
the set

Do ={peP| Ay C dom(p)}
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is dense, in fact if p is such that A, € dom(p), then we can extend p to 0 on dom(p)\ Aq,.
For o € X and n € w , the set

Dopn={peP|[{n € Aa|p(n) =1}[=n }

is dense. In fact, if [{n € A, | p(n) = 1}| < n, we can find an extension ¢ € Dy, of p,
since A, is infinite and dom(p) N A, is finite, by clause (). The family

D={Dy|aecr\X}U{Dapn|aeX, neuw}

has size less than 280, hence there exists a filter G' that meets every dense of D. Since
G is a filter, f = |JG is a function from w to 2. Put

A ={nedom(f)| f(n)=1}.
We conclude the proof showing that G(A) = X, that is
a€ X < A, NA| =Ry

If o« € X, then, for every n € w, there exists p € GN Dy, hence |[A,NA| >n. fa & X,
then there exists p € G N D,. We conclude that A, C dom(p) and

{n € dom(p) | p(n) =1}
is finite, hence A, N A is finite. O
Corollary A.2.7. If Martin’s axiom holds, then 280 is reqular.

Proof. Assume for a contradiction that cof(2¥) = & for some x € 280, Since for every
cardinal A we have X/ > X, we obtain

QNO < (2No)ﬁ — 2N0~KZ — 25 — 2&0

)

contradiction. OJ

To use Martin’s axiom, we need that certain partial orders of finite functions from
an infinite cardinal to a finite one has the c.c.c. To prove this, we use the following
combinatorial lemma, see [4] for a proof.

Lemma A.2.8 (A-system lemma, Theorem 1.6 Chapter II [4]). Let A be a regular
uncountable cardinal and

F=A{aq | €A}

be a subset of [\|<N0 of cardinality . There exist a family F' C F and r € [A\]<N0 such
that F' has cardinality X and aq Nag =1 for all aq,ap € F'.

Notation. Let I,J two sets. We denote by Fn(I,J) the set of all finite partial functions
p with domain in I and range in J. On Fn(1,J), we consider the following partial order
<:

p<Lqg<—p2q.
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Lemma A.2.9. Fiz an infinite cardinal X. The partial order (Fn(w x \,2),<) has the
countable chain condition.

Proof. Assume for a contradiction that {p, | @ € i} is an uncountable antichain in
P. Since A = U, {p | Ip| = n} and Ny is regular, we can assume that every element
of A has cardinality n. Put F = {as | aa = dom(ps)}. Assume that F is countable.
We conclude that there are two compatible functions in A, since the set Fn(w,2) is
countable. Now assume that F is uncountable. By A-system Lemma [A.2.8] there exist
F' C F of cardinality X; and a finite r C w x A, such that aoNag = r for all ay,ag € F'.
Note that the function from r to 2 are exactly oIl hence for some an,ag € F', the
function p,,pg are compatible, contradiction. ]



Appendix B

Model theory

In this Appendix, we give a brief introduction to model theory, recalling what we use in
this thesis.

In Section we recall, without proofs, some basic results of model theory, such as
the Compactness Theorem and Lo$’s Theorem.

In Section we prove that the theory of discrete linear orders with minimum
element and without maximum has quantifier elimination in the language £ = {0, s, <}.

B.1 Some basic results

In this Appendix, we assume that the reader has familiarity with some basic concepts of
model theory, such as the notion of first order language, £-theory and L-structure. We
refer the reader to Marker’s book [6] for a complete treatment of these arguments.

We begin with a classical result of model theory.

Theorem B.1.1 (Compactness Theorem, Theorem 2.1.4 [6]). A theory T is satisfiable
if and only if every finite T' C T is satisfiable.

Definition B.1.2. Let M, N be two L-structures with universes M, N, respectively.
We say that N is an elementary substructure of M and we write N' < M, if N C M
and for every formula ¢(z1,...,x,) and aq,...,a, € N we have

N E éd(ar,...,an) <= M E ¢(ai,...,a).

Corollary B.1.3. Let M be an L-structure and p(x) be a finitely satisfiable type in M.
Then there exists an L-structure N such that M < N and N realizes p(z).

Theorem B.1.4 (Léwenheim-Skolem, Theorem 2.3.7 [6]). Let M be an L-structure and
A be a subset of M. There exists an L-structure N such that N < M, A C N and
IN| < [L]+ |A] + No.

In Chapter [4], we study a preorder on a class of special theories, called complete.

7
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Definition B.1.5. Let 7" be a L-theory and ¢ be a sentence of £. We write T |= ¢ to
indicate that every model of T satisfies ¢.

Definition B.1.6. A theory T is complete, if for every sentence ¢ either T = ¢ or
T E —¢.

Remark B.1.7. For every L-structure M, the theory Th(M) = {¢ | M |= ¢} is complete.

Definition B.1.8. Two L-structures M and N are elementarily equivalent and we write
M = N, if for every sentence ¢ we have

ME¢ = NE o
Lemma B.1.9. For an L-theory T the following are equivalent:
(i) T is complete.
(i) Every two models of T are elementarily equivalent.
Proof.

(i) = (it) Let ¢ be a sentence in the language £ and M, N be two models of T. Assume
that M satisfies ¢. We obtain that N |= ¢, since T is complete. In a similar way
we conclude that N = ¢, if M satisfies —¢.

(#1) = (i) Assume that T is not complete, hence there exist two models M, N of T and a
sentence ¢ such that M | ¢ and N = —~¢. We conclude that M # N.

O]

Definition B.1.10. Let M, N be two L-structures with universes M, N, respectively.
A morphism F: M — N is amap F: M — N with the following properties:

(i) F(cM) =V, for every constant symbol ¢ of L.

(i) F(gM(ay,...,an)) = ¢V (F(a1),...,F(ay)), for every n-ary function symbol g of
L and aq,...,a, € M.

(iii) If R is a n-ary relation symbol and a1, ...,a, € M, then
M E R(ay,...,an) = N E R(F(a1),...,F(ay)).
If in addition F' is injective and
ME R(a,...,a,) <= N = R(F(a1),...,F(ay))

for every m-ary relation symbol R and ai,...,a, € M, then the morphism F' is called
embedding. A bijective embedding is an isomorphism.
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Lemma B.1.11 (Theorem 1.1.10 [6]). Let M, N be two L-structures with universes
M, N, respectively. If F: M — N is an isomorphism, then for every formula ¢(x1, ..., xy)
and ay,...,a, € M we have

M E ¢(ai,...,an) <= N E ¢(F(ar),. .., Flan)).
In particular M =N,

Now we recall the construction of the ultraproduct of the structures M; modulo an
ultrafilter U.

Definition B.1.12. Let I be a set of cardinality A and U/ be a filter on I. Assume that
{M; | i € I} is family of L-structures such that every M; has domain M;. Consider the
set
M =] Mif ~,
el

where ~ is an equivalence relation on []._; M; defined as follows:

il
frge=H{iel| f(i)=9()} el

Given an element f € [[,.; M;, we indicate with [f] its equivalence class in M. Inter-
preting the symbols of the language £, we construct an L-structure M with universe the

set M: if ¢ is a symbol of constant, then cM = [(cMi);cq]. If g(a1,...,2,) is a symbol
of function, then for all [f1],...,[fn], [f] € M we have

MEg(Al,-- ) =l i e T Mi = g(f1(i), ..., fa())) = f(D)} € U.
If R(x1,...,xy,) is a symbol of relation, then for all [fi],...,[f,] € M we have

Since U is a filter, the interpretations of the L£-symbols are well defined. We call the
new L-structure M reduced product of the L-structures {M; | i € I}. When the filter &/
is an ultrafilter, the L-structure M is the ultraproduct of the L-structures {M; | i € I}
modulo /. In the special case that U is an ultrafilter and every L-structure M; is the
same L-structure N, we say that M is the ultrapower of the L-structure N’ modulo .

The ultraproduct of the L-structures {M; | i € I} modulo an ultrafilter ¢/ is denoted
by
[T Mi/u.
i€l
Now we remark a classical result on the ultraproducts.

Theorem B.1.13 (Lo$, Theorem 4.1.9 [2]). Let I be a set, U be an ultrafilter on I and
{M; | i€ I} be a family of L-structures. If M = [];c; Mi/U is the ultrapower modulo
U of the L-structures M;, then
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(i) for all L-formula Y (x1,...,xy) and [fi],...,[fn] € M we have

ME YA fa]) =i e TIMi = 9[- (i)} €U

(ii) For all L-sentence ¢ we have

MEp<= {icl|M;Eo}el.

Corollary B.1.14. Let M be an L-structure and U be an ultrafilter on I. The map
f: M — MU such that f(a) = [(a)icr] is elementary, that is for every sentence
Y(ay,...,ay) with parameters ay, .. .,a, € M we have

MEY(ay, ... an) <= MU E=v(adl,. .., an])

Corollary B.1.15. When {M; | i € I} is a family of models of a theory T, every
ultraproduct [ [;c; Mi/U is a model of T

From now on, in order to simplify the notation, we shall confuse the structure M
and its universe M, hence we write a € M to indicate a € M.

B.2 Quantifier elimination and discrete linear orders

Definition B.2.1. A theory T has quantifier elimination, if every formula ¢(z1, ..., x,)
is equivalent to a quantifier-free formula ¥ (x1,...,z,) modulo T, that is

T Ve, ... xp[d(x1, ..., 2n) < Y(x1, ..., 20)].
The next is a classical result.

Theorem B.2.2 (Theorem 3.1.3 [6]). The theory of dense linear orders without end-
points has quantifier elimination.

The following is an equivalent condition for quantifier elimination.

Theorem B.2.3 (Proposition 4.3.28 [6]). Assume that L is a language containing a
constant symbol and T is an L-theory. The theory T has quantifier elimination if and
only if whenever M =T, AC M, N =T is |M|"-saturated and f: A — N is a partial
embedding, f can be extended to an embedding of M.

Definition B.2.4. Fix £ = {0, s,<} be a language where 0 is a constant symbol, s is
a unary function symbol and < is a binary relation symbol. The L-theory of discrete
linear orders with minimum element and without maximum has the following axioms:

(i) Vo =(z < z);

(ii) Vo,y,z (z<yANy < z—x<2);
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(iii) Vz,y (x <yVy<zVaz=y),
(iv) Vo [z < s(z) ATy (z <y Ay < s(x))];
(V) Ve [z £0— (0<zxzAJyz<y);

Theorem B.2.5. Let L = {0,s,<} be the language of Definition |B.2.4. The L-theory
T of discrete linear orders with minimum element and without maximum has quantifier
elimination.

Proof. 1t is sufficient to check the condition of Theorem[B.2.3] For n € w, we write s"(z)
and s~"(x) to indicate the terms

s(s(...(s(x))...)) and s~ (s .. (s (x))...)),

n times n times

respectively. Assume that M =T, A C M, N = T is |M|"-saturated and f: A — N
is a partial embedding. Let M = {a, | @ € k} be an enumeration of M. We construct
a set of partial embeddings {f, | @ < k} such that the following properties hold:

(i) the map fo: M — N extends f.

(ii) aq € dom(fot1).
(iii) fz C foforall <o <k.

Put fo = f. If « is limit ordinal, define f, = sea fp- Now assume that fq is defined
and a, & dom(f,). Set

Ay ={a edom(fa) | a < aq}, A2 ={a € dom(fs)|an <a}
By ={a € A; | aq = s"(a) for some n € w},

By ={a € Az | s"(aq) = a for some n € w}.
There are two cases:

1. The sets By and By are empty. Since A is |[M|T-saturated and f, is a partial
embedding, there exists b € N such that for every a1 € Ay, as € Az, n € w we
have fqo(a1) < b < fa(az), s™(b) # fal(ar) and s"(fa(a1)) # b. Then the map
fa+1 = fa U{(aq,b)} is a partial embedding.

2. At least one of them is not empty. Since the argument is similar, we can assume
that Bj is not empty, hence there exists a maximal element a € By such that for
some n € w we have s"(a) = aq. Put fot1 = fo U{(aa,s"(fa(a)))} and note that
fa+1 is a partial embedding.

O
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