THE JOURNAL OF SYMBOLIC LogIC
Volume 71, Number 2, June 2006

THE PROPER FORCING AXIOM AND THE SINGULAR CARDINAL
HYPOTHESIS

MATTEO VIALE

Abstract. We show that the Proper Forcing Axiom implies the Singular Cardinal Hypothesis. The
proof uses the reflection principle MRP introduced by Moore in [11].

Introduction. In one of the first applications of the forcing techniques, Easton [3]
showed that the exponential function x — 2% on regular cardinals can be arbitrary
modulo some mild restrictions. The situation for singular cardinals is much more
subtle. For instance, Silver [12] showed that the Singular Cardinal Hypothesis SCH
cannot fail first at a singular cardinal of uncountable cofinality. Recall that SCH
states that 2 = k™, for all singular strong limit cardinals x. However, it is known
that SCH can fail first even at N,,.

The role of large cardinals in this context is twofold. On one hand they are
necessary for the construction of models of the negation of SCH since any such
model has an inner model with measurable cardinals (see [6] for a survey of Prikry
type forcings and applications to SCH). On the other hand it is a theorem of
Solovay [13] that SCH holds above a strongly compact cardinal. Forcing axioms
imply reflection principles similar to the one used in Solovay’s proof, thus it was
reasonable to expect that they would also settle SCH. Indeed, in [4], Foreman,
Magidor and Shelah showed that the strongest forcing axiom, Martin’s Maximum
MM, implies SCH. This was later improved by Velickovi¢ [14] who also showed that
SCH follows from PFA™. In fact. what is shown in [14] is that if # > N; is regular
and stationary subsets of [#]” reflect to an internally closed and unbounded set,
then §” = . This, combined with Silver’s theorem, implies SCH. At this point, it
was left open whether SCH is a consequence of PFA.

Very little progress was made on this problem for over fifteen years. Then, in 2003,
Moore [11] introduced a new reflection principle, the Mapping Reflection Principle
MRP and deduced it from PFA. He showed that MRP implies the continuum is equal
to N, and the failure of O(k), for all & > X;. MRP has many features in common
with the reflection principles which follow from MM, so it should be expected that
MRP could affect the behaviour of the exponential function also on higher cardinals.
In fact, Moore showed in [10] that if MRP holds and x > w; is a regular cardinal
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with a nonreflecting stationary set consisting of points of countable cofinality, then
k“ = k. This, combined with the above result of Velickovi¢, strongly suggests that
PFA implies SCH. In this paper we confirm this conjecture.

The paper is organized as follows. In Section § 1 we prove that if MRP holds
then k® = k for all regular cardinals k > w;. This, together with Silver’s theorem,
implies that SCH follows from PFA. In § 2 we show that the result can be refined
and applied to study another interesting problem in the area of forcing axioms, i.e.
to investigate what kind of forcing notions can preserve this type of axioms.

Our notation is standard and follows [7] and [11]. For a regular cardinal 0, we
use H(0) to denote the structure (H (0), €, <) whose domain is the collection of
sets whose transitive closure is of size less than § and where < is a predicate for a
fixed well ordering of H (). If X is an uncountable set, C C [X]? is closed and
unbounded (club) if there is f : [X]<“ — X such that C is the set of all Y € [X ]
such that f[Y]<” C Y. S C [X]“ is stationary if it intersects all club subsets of
[X]®. The f-closure of X is the smallest Y containing X such that f[Y]<® C Y.
If X is a set of ordinals then X denotes the topological closure of X in the order
topology. If 4 < k are regular cardinals, S/ is the set of points of cofinality 4
below «.

§1. The main result. The purpose of this section is to show that MRP implies
that A = A, for every cardinal 1 > w; with cof (1) > w. We start by recalling the
relevant definitions from [11].

DeriNITION 1. Let 8 be a regular cardinal, let X be uncountable, and let M <
H (0) be countable such that [X]* € M. A subset T of [X]” is M -stationary if for
all E € M such that E C [X]? isclub,ZNE N M # 0.

Recall that the Ellentuck topology on [ X]® is obtained by declaring a set open if
it is the union of sets of the form

[x,. N]={Y €[X]” : xC Y CN}
where N € [X]” and x C N is finite.

DEFINITION 2. X is an open stationary set mapping if there is an uncountable set
X and a regular cardinal 0 such that [X]° € H(0), the domain of T is a club in
[H(0)]* of countable elementary submodels M such that X € M and for all M,
X(M) C [X]” is open in the Ellentuck topology on [X]” and M -stationary.

The Mapping Reflection Principle (MRP) asserts that:

If £ is an open stationary set mapping, there is a continuous €-chain
N = (Ne @ &€ < w) of elements in the domain of X such that for all limit
ordinals ¢ < w; thereis v < & such that N, N X € 2(N¢) for all 7 such
thatv <y < ¢&.

If (N: : & < w)) satisfies the conclusion of MRP for X then it is said to be a reflecting
sequence for Z. It is shown in [11] that MRP is a consequence of PFA. We are now
ready to prove the following theorem.

THEOREM 1. Assume MRP. Then AX = A, for every . > wy of uncountable

cofinality.
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Proor. We will prove the theorem by induction. The base case A = N, is handled
by Moore’s result [11] that MRP implies 2% = X,. If 2 = x* with cof (k) > w then
A0 = ] . k%0 so the result holds by the inductive hypothesis. If A is a limit cardinal
and cof (4) > w then A% = sup{u™ : u < A}, so the result also follows by the
inductive hypothesis. Thus, the only interesting case is when 4 = k™, with  singular
of countable cofinality. In this case we will show, using MRP, that k™0 = k¥,

Now. let k be singular of countable cofinality and assume the theorem holds
below &. Fix a sequence (Cs : § € k) such that Cs is a club in 6 of minimal order
type. In fact, we will be interested only in ordinals ¢ of cofinality < w;. For every
ordinal # < k" of countable cofinality, we fix a decomposition g = J, K (n. §)
such that:

(i) |K(n,p)| < k. for all n,

(i) K(n.B) C K(m.p), forn < m,

(iii) if # < B is of cofinality w; then there is n such that C, C K (n. ),

(iv) K(n.p) is a closed subset of f. for all n.
This is easily achieved, for example, as follows. First of all, fix an increasing
sequence (k, : n € w) of regular cardinals converging to x. For all n < x* let
¢y : kK — 1 be a surjection. Now set:

K(n.B) = ¢pleal UGy : 1 € dplrnl & cof () = 1}

Fix also a partition {4, : s € k<”} of S into disjoint stationary sets. Let
D(n, B) be the set of all g € k“ such that there are infinitely many j such that
K(n.B) N Ag; # 0. Using the fact that K (n, ) is of size < & and the inductive
hypothesis we immediately have the following.

Fact 1. D(n, B) is of size smaller than k., for all n and f. =
We will be done once we show the following.
LemMA 1. Assume MRP. Then J{D(n.B) :n < w and p < K™} = k°.

ProOF. Fix g € k”. We have to find some (n, ) such that g € D(n, ). We are
going to define an open stationary set mapping X, and apply MRP. We first fix some
notation. Given a countable set X, weletdy = sup(X Nk™) and oy = sup(X Nwy).
If @ < y < i, let the height of o in y be defined by &z,(a) = |C, Na|. Fix a
sufficiently large regular cardinal #. Suppose M is a countable elementary submodel
of H(0) containing all the relevant information. Fix By € [0y, k") large enough
such that for every y < k™ of cofinality w; there is # < By of cofinality w; such
that C,N M = C,N M. If y € M N k™" let n, be the smallest integer / such that
7 € K(I, Bar). Now, let £, (M) be the set of all X € [M Nk T]? such that ey < a.
dx <Oy and letting m = ht,,, (ax ). we have that Ag, N K (ns,. far) # 0. We will
show that X, (M) is open and M -stationary, for all M.

Cram 1. %, (M) is open.

PROOF. Suppose X € X (M). First find @ € X N w; such that ht,, (o) =
hty, (ay) = m. Let n = ns,. By the definition of n;, we have that 6y & K(n —
1. Bar). Since K(n — 1, Byr) is a closed set, there is a y below dy such that (y.dx] N
K(n—1,By)=0. Pick§ € X larger than y. Then we have the following.

SucLam 1. [{a.d}. X] C 2, (M).
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Proor. If Y € [{a.d}. X]. clearly, we have that ht,, (ay) = m. Since d € Y
and Y C X we have that § < Jy < Jdy. By the above remarks we can conclude
that n = ns, < ns,. Now, since X € Zo(M), K (ns,. far) N Agim # 0. Now by the
above considerations, K (n5, ., fxr) C K (ns,. far) s0 K (ns,. far) N Agym # 0. Since
/’llaM(OLy):m, YGEg(M). .

Cram 2. X, (M) is M -stationary.

PrOOF. Given [ : [kT]<” — k™ belonging to M, wemust find X € M NZ,(M)
which is closed under f. First, find N € M. a countable elementary submodel of
H (k™) containing all the relevant objects for the argument below. Let /z,,, (ay) =
m and find a € N with the same height in a;y;. Now let C be the set of § < k™ such
that f/[0]<” C 0. Then C isaclubsubset of k¥ and C € N. Since A}, is stationary
in k* and. by our assumption it belongs to N, we can findo € C N Ay, N N. Then
6 € K(ns, Bar) N Agim. Finally, let Z € N be a countable set cofinal in ¢ and let X
be the f-closure of {a} U Z. Thendy = J and

m = hty,, (o) < hty,, (ay) < hty, (ay) = m.
Since K (nsy . far) N Agm is nonempty, X € Z,(M)NM and X isclosed under /.

Let (M, : n < w) be a reflecting sequence for X, provided by MRP. Let
N =, M, andd = sup(N Nx*). Letd, = sup(M, N "), for every < wi.
We find a club £ C w; such that {6, : n € E} C Cs and M, N w; = #. for all
n € E. Let « be a limit point of E. For the rest of this proof let M = M,. Now
CsNM = C,N M forsome y < f§;. by the choice of f85,. By (iii) of the definition
of K (i, fa) there is an n such that C, is a subset of K (n, f5s). We can conclude
that Cs N M is a subset of K (1, far).

Let v < a be such that M, € 3, (M), for all # such that v < # < a. For any such
neE M,eM s0d, € CsNM C K(n pu). Ifn € E and hto,, (n) = j. then
Agrj N K(ns,. far) # 0 and. since ns, < n. we have that K (ns,. far) € K(n. far).
Now, for any i we can find an # € E such that v < < « and ht,,, () > i, so
there are infinitely many j such that Ag;; N K(n. fyr) # 0. 1ie. g € D(n, fu). as
desired. =

Now we have the following immediate corollary.

COROLLARY 1. MRP implies SCH.

Proor. This follows by induction. By Silver’s theorem [12] the first cardinal
violating SCH cannot be singular strong limit of uncountable cofinality. On the
other hand, if  is a singular strong limit cardinal of countable cofinality then, by
Theorem 1, 2% = g™ = g+, -

REMARK. The proof of Theorem 1 shows that MRP implies the following weak
reflection of stationary sets. Suppose  is a singular cardinal of countable cofinality
and {4, : n < w} is a collection of stationary subsets of x consisting of ordinals
of countable cofinality. Then there n and f such that 4; N K (n. §) # 0, for infinitely
many j. This should be compared with the proof of Solovay [13] that SCH holds
above a strongly compact and the result of Foreman, Magidor and Shelah [4] that
MM implies SCH. In fact, had we been interested only in proving that MRP implies
SCH we could have avoided the use of the stationary sets {4, : s € k<?} as follows.
Fix a sequence (Cs : 6 < k™) such that Cs is a club in § of minimal order type, for
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every limit 6 < x*. and a decomposition f = |J, K (n. ). for each f < k™ as in
the proof of Theorem 1. If § < f < k7, let n(d. B) be the least integer # such that
J € K(n. p). Now, fix a sufficiently large regular cardinal § and define a set mapping
¥ as follows. Let M be a countable elementary submodel of H () containing all
the relevant information. Using the same notation as in Lemma 1, let (M) be the
setofall X € [M NkT]° such that ay < ay. Sy < Sy and ht,,, (ax) < n(x. fur).
As in Lemma 1 one shows that X(M) is open, for every M. Assuming k® > k7,
but 1” < k, for every 4 < k, one can show by an argument similar to the proof
of Claim 2, that £(M) is M-stationary, for every M. Let (M, : 7 < ;) be a
reflecting sequence for X provided by MRP. Using the same notation as in the proof
of Theorem 1 note that At (e, ) is unbounded in w as # converges to «, while
n(é,,, Bar) is bounded by n, a contradiction.

§2. PFA and inner models of set theory. The techniques presented in the previous
sections can be applied to investigate another interesting problem in the area of
forcing axioms. Since forcing axioms have been able to settle many of the classical
problems of set theory, we can expect that the models of a forcing axiom are in some
sense canonical. There are many ways in which one can give a precise formulation
to this concept. For example, one can study what kind of forcings can preserve PFA,
orelse if a model V' of a forcing axiom can have an interesting inner model M of the
same forcing axiom. There are many results in this area, some of them very recent.
For instance, Konig and Yoshinobu [8, Theorem 6.1] showed that PFA is preserved
by ws-closed forcing. The same holds for BPFA. In fact, BPFA is preserved by
any proper forcing that does not add subsets of w;. In the other direction, in [14]
Velickovi¢ showed that if MM holds and M is an inner model such that wé” = wy,
then 2 (w;) C M. In a very recent paper Caicedo and Velikovi¢ [1] showed that
if M C V are models of BPFA and w)! = w, then #(w;) C M. Their argument
also shows that if M C V are models of MRP and wé” = w», then (w) C M.
We can use the result of the previous section combined with this last result to show
that PFA is destroyed by many of the cardinal preserving notions of forcing which
add new w-sequences. A result of this sort has been obtained by Moore in [10].

THEOREM 2. Let V and W be two models of set theory with the same cardinals with
V C W. Assume V and W are both models of MRP and that, moreover, for every
cardinal k., stationary subsets in V of (S®.)" are also stationary in W. Then V and
W have the same w-sequences of ordinals.

PrOOF. Assume otherwise. We proceed by induction on the least cardinal x such
that there in an w-sequence of elements of x which is in W, but not in V. The
base case w is handled by the above result of Caicedo and Velickovic. We now run
into two cases: either the least such x has countable cofinality in V' or it doesn’t.
The more involved case appears when cof” k > . We present in some detail
how to prove the induction step in this situation. With minor modifications the
reader can supply the proof for the case that  is of countable cofinality. First of
all notice that & is regular in V', else a new cofinal w-sequence has appeared in
cofV (k) < k. contradicting the minimality of x. Now the idea is to redo the proof
of the previous section using a g € k” \ V. However some extra care has to be
paid in the definition of the sets K (n, ). Let {4y : s € k<?} € V be a partition
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of the points of countable V -cofinality of £ into disjoint stationary sets. By the
assumptions each A is still stationaryin W. Fix (Es : 6 < k* &cof " 6 > wy) € V
such that for all J in its domain, Ej is a club in 6 of minimal }'-order-type. So for
each 8. E; has order type at most k. Definein V', for all @ < x and f# < k™, sets
K (e B) such that § =, K (a. f8) and:

(i) |K(a.p)| < k.

(ii) K(a.f) CK(y.p) fora <y,

(iii) if# < B and cof” () € [wi. k). then there is a such that E, C K (a. f).

(iv) K (o B) is a closed subset of f.

This is easily achieved. for example, as follows. For ally € [k.k") let ¢, : K — 7
be a bijection. Now set:

K(o.p) = B gplal U| HE, : 1 € ¢plal & |E,| < |al}.

Define D(a, f) to be the set of all g € k“ such that there are infinitely many j such
that A,;; N K (c. ) # 0 and use the inductive hypothesis to get that D(c. ) =
D(a. /)’)W. Since & is the least cardinal with a new w-sequence, it follows that
cof " (k) = w. Let g = (o, : n € @) € W be cofinal in k. From now on work in
W. Let K(n.B) := K(a,. ). Now as in the previous section use the parameters

{Kn.B) n<ow&p <k} {4, :5s € k<°}, g

to define X, and show that it is an open stationary set mapping. We also refer to
the previous section for the notation.

Now, apply MRP to X, and let (M, : 7 < w;) be a reflecting sequence provided
by MRP. Let N = U,7 M, and 6 = sup(N N ™). Notice that § may have a larger

cofinality in V', however, on one side cof V(8) < k since d < kT, on the other side,
since cof "o = wy, cof 'S # k. else cofVé = w. This means that E5 has order
type less than k. Let d, = sup(M, N ™). for all . Find a club C C w, such that
{0, :n € C} CEsand M, Nw; =7, forally € C. Let o be a limit point of C.
For the rest of this prooflet M = M,. Now E; " M = E, N M for some y < fu.
by the choice of fy,. By (iii) of the definition of K (i, Bar) := K (0oy. Byr) there is an
n such that E, is a subset of K (n, far). We can conclude that E; N M is a subset of
K(n. fm).

Let v < a be such that M, € 3,(M), for all # such that v < # < a. For any such
neC.MyeM,s0d,€ CsNM C K(n pu). If n € C and ht,,, () = j. then
Agt; N K(ns,. Pur) # 0: and since ny, < n. K(ns,. far) € K (n. far). Now, for any i
we can find an # € C such that v < # < o and ht,,, () > i, so there are infinitely
many j such that Ag;; N K (n, fur) # 0. i.e. g € D(ay. Pur). as desired. =

In fact the theorem can be proved under the milder assumptions that " and W
have the same cardinals, the same reals and, for every cardinal x, there isin V" a
partition {4, : s € k<“} of the points of ™ of countable W -cofinality into disjoint
stationary sets. By a recent result of Larson developing on ideas of Todorcevi¢ it
is known that such partitions can be found in ZFC for k = w just assuming that
! = o!”. Ttis open whether for higher cardinals such partitions exists in ZFC. A
positive answer to this question would entail that if ¥ C W are models with the

same reals and cardinals and W |= MRP then ORD“ NV = ORD“ N W.
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