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Intersection types discipline allows to define a wide variety of models for the type
free lambda-calculus, but the Curry-Howard isomorphism breaks down for this kind of
type systems. In this paper we show that the correspondence between types and suitable
logical formulas can still be recovered appealing to the fact that there is a strict connection
between the semantics for lambda-calculus induced by the intersection types and a Kripke
style semantics for modal and relevant logics. Indeed, we present a modal logic hinted by
the analysis of the sub-typing relation for intersection types, and we show that the deduction
relation for such a modal system is a conservative extension of the relation of sub-typing.
Then, we define a Kripke-style semantics for the formulas of such a system, present suitable
sequential calculi, prove a completeness theorem and give a syntactical proof of the cut
elimination property. Finally, we define a decision procedure for theorem-hood and we
show that it yields the finite model property and cut-redundancy.

1. INTERSECTION TYPES

Pure lambda-calculusΛ formalizes the notion of computable function with no
reference to the concepts of domain and co-domain, contrary to what happens
in the set theoretic or the categorical approach (see [3]). Indeed, a lambda term
is built inductively, starting from variables, by means of lambda abstraction and
an unrestricted form of application. Thus, we have the following term formation
rules:

Term := Var | (λ Var.Term) | Term(Term)
1
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whereVar is a countable set whose elements are called variables.
Not only the syntax of the objects ofΛ is simple, but also the notion of

computation for this very abstract notion of function becomes the simple notion of
β-reduction(notation β). This is the relation between lambda terms obtained by
closing under the term construction operations the relation ofβ-contraction, that
is, (λx.c)(a) c[x := a]. The computation of the value of a lambda term is then
defined as areduction process, i.e. successive steps ofβ-reduction, until anormal
form of the term is possibly reached, that is, a form where noβ-contraction can
be applied. Given a lambda termc, there are in general many different reduction
processes, according to the choice of theβ-contraction to be expanded withinc;
hence, it is well possible that only some of the reduction processes eventually
terminate into a normal form. Moreover, since it is possible to have a code within
Λ for any recursive function, there is no possibility to know if a reduction process
for c will eventually terminate, because of the halting problem.

On the other hand, in the usual mathematical practice - both in the set theoretic
and in the categorical approach - and in many concrete algorithms, functions are
intended to operate over objects of a certain type in order to produce objects
of some other type. Following this idea, the rule of application should be no
longer completely free; in fact a function should be applicable only to arguments
of the correct type. Thus, it will be no longer possible to build all the terms
of Λ. However, a main advantage of this approach is the possibility to prove
more properties on the terms which can be built because of the greater quantity
of information. For instance, one of the main problems on the terms ofΛ is to
determine whether all the reduction processes for a certain term will eventually
terminate, that is, thestrong normalizationproblem, which reflects in theλ-
formalism one of the key problem in Computer science, that is, the problem of
finding a suitable methods to deal with total correctness of programs. In the case of
lambda-calculi where functions and their arguments have a type there are suitable
tools to deal with this problem. For instance, a possibility is to use thesimply
typedlambda-calculusΛ→; its rules of type formation are the following:

Type := BasTypes | Type → Type

whereBasTypes is a set whose elements are calledbasic types.
The intended meaning is that a typeσ → τ denotes a set of functions from

elements of the set denoted by the typeσ into elements of the set denoted by the
typeτ . Thus, in order to build the elements of these types, we use the following
rules:

(variable) Γ, x : σ ` x : σ

(lambda abstraction)
Γ, x : σ ` c : τ

Γ ` λx.c : σ → τ

(application)
Γ ` c : τ → σ Γ ` a : τ

Γ ` c(a) : σ

(1)
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whereΓ is a commutative list of assumptions of the formx : σ, for some typeσ,
such that no variable appears more than once.

A striking aspect of this typing system is that after a close inspection of the
rules ofΛ→ it is easily shown that when we strip away variables and terms from
the typing system, we obtain a complete sequent calculus for the implicational
fragment of intuitionistic logic; in fact, this is theCurry-Howard Isomorphism
(see [6]).

Λ→ has many other desirable features; for example it is well known (see for
instance [11]) that all the terms ofΛ→ are strongly normalizing. Hence, the terms
of Λ→ form a subset of the set of strongly normalizing terms ofΛ. But, not all of
the strongly normalizing terms ofΛ have a type inΛ→; for instance, consider the
termλx.x(x): it is in normal form, and hence it is trivially strongly normalizing,
but it cannot have a type withinΛ→ because of the instance ofself-application.
From a computational point of view this is a great loss, since it is clear that a
complete solution of the strong normalization problem would be a typing system
which allows to assign a type to all of the strongly normalizing terms ofΛ, and
only to them. Surprisingly, this typing system exists and can be obtained from
Λ→ by adding just one type (see [19] or [25] for a recent new proof). The abstract
syntax of the types of this calculusΛ∧ of intersection typesis the following:

Type := BasTypes | Type → Type | Type ∧ Type

The intended meaning of the new typeσ ∧ τ of Λ∧ is thatσ ∧ τ denotes the
intersection of the two sets denoted by the typeσ andτ respectively. Thus, in
order to build the elements for these new types, we add the following rules to the
previous ones:

(intersection introduction)
Γ ` c : σ Γ ` c : τ

Γ ` c : σ ∧ τ

(intersection elimination)
Γ ` c : σ ∧ τ

Γ ` c : σ
Γ ` c : σ ∧ τ

Γ ` c : τ

(2)

The starting question of our search is: "Can theCurry-Howard Isomorphism
be somehow recovered also for this extended typing system?"

A first inspection shows that all the types which can be assigned to a closed
λ-term are theorems of the fragment of the intuitionistic propositional logic con-
taining only implication and conjunction; but it is possible to find theorems of the
intuitionistic logic of conjunction and implication which are inhabited by no closed
λ-term in pure intersection type system, for example(α→ α)∧ (α→ (β → α))
(see [12]). This example should be sufficient to show that it is not a straight-
forward task to recover theCurry-Howard isomorphismfor this type system: a
deeper analysis of the properties of intersection types is needed.

A key step towards a better comprehension ofΛ∧ can be found in [4]. We
will briefly sum up the content of that paper since it has been the starting point
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of our research. In [4] the authors show that the interesting computational prop-
erties enjoyed by the intersection type system are a consequence of the fact that
intersection types allow to define a natural, expressive and flexible semantic for
the lambda-calculus. The starting point of their work is to define asub-typing
relation≤∧ between types ofΛ∧ whose intended meaning is thatα ≤∧ β holds
if α is more informative about the term to which it is assigned thanβ. A new
type constantω is added to the set of basic types; its intended meaning is coding
the vacuous information. Finally, the following axioms and rules are proposed to
characterize the sub-typing relation.
Axioms

α ≤∧ ω ω ≤∧ ω → ω
α ≤∧ α ∧ α α ∧ β ≤∧ α α ∧ β ≤∧ β
(α→ β) ∧ (α→ γ) ≤∧ (α→ (β ∧ γ))

Rules

α ≤∧ β β ≤∧ γ
α ≤∧ γ

α1 ≤∧ β1 α2 ≤∧ β2

α1 ∧ α2 ≤∧ β1 ∧ β2

α1 ≤∧ α2 β2 ≤∧ β1

α2 → β2 ≤∧ α1 → β1

To support the intuition about the relation≤∧ let us analyze one of the axioms
above:

(α→ β) ∧ (α→ γ) ≤∧ (α→ (β ∧ γ))
It states that all the lambda terms to which it can be assigned both typeα→ β and
α → γ can also be typed byα → (β ∧ γ). And indeed in the pure intersection
type system, if we are able to proveΓ ` λx.M : (α → β) ∧ (α → γ), then also
Γ ` λx.M : α→ (β ∧ γ) can be proved.

One of the reason for introducing the sub-typing relation is to extend such kind
of property of the type assignment system to any term and not only to terms of a
particular shape. Of course, in order to obtain this result, it is necessary to add
to the type assignment system defined by rules 1 and 2 not only the sub-typing
relation but also the following assignment rule which allows to use it:

Γ `M : α α ≤∧ β
Γ `M : β (3)

The sub-typing relation suggests a natural way to define a semantical counterpart
to the notion of type assignment. To illustrate this fact let us recall the following
definitions and results of [4]. We feel free to present them in a setting more
suitable for our aims.

Definition 1.1. Let A = (A, ·,≤) be anordered weakly extensional
λ-algebra, namely,(A, ·) is a weakly extensionalλ-algebra1 and≤ is an order

1A complete development of the theory of weakly extensionalλ-algebras can be found in [3],
chapter 5.
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relation on elements ofA such that ifx ≤ y andz ≤ w thenx · z ≤ y · w. Then
a mapν(−) is avaluationof the types ofΛ∧ into subsets ofA if:

• ν(ω) = A

• ν(α ∧ β) = ν(α) ∩ ν(β)
• ν(α→ β) = {x ∈ A| (∀y ∈ ν(α)) x · y ∈ ν(β)}

It is worth noting the following lemma whose proof is immediate.

Lemma 1.1. Letν(−) be any valuation of the types ofΛ∧ intoA. Thenν(−)
is upward closed, that is, for any typeα, if w ∈ ν(α) andw ≤ z thenz ∈ ν(α).

After definition 1.1, it is immediatly possible to state a completeness theorem
for the logic defined by the axioms and the rules of the sub-typing relation with
respect to the class of the ordered weakly extensionalλ-algebras:

Theorem 1.1. α ≤∧ β holds if and only if, for all ordered weakly extensional
λ-algebrasA and all type valuationsν into subsets ofA, ν(α) ⊆ ν(β) holds.

This theorem states the main property of the sub-typing relation≤∧ introduced
in [4]. But, while that paper aims to show that the axioms and the rules which
characterize≤∧ are strong enough to prove that the setF of filters of types defines
a weakly extensionalλ-algebra, here we want to point out that this happens also
becauseF is a sort ofcanonical Kripke frameof the sub-typing relation≤∧. So,
let us recall that a filter ofΛ∧ is a non-empty subsetF of the set of types ofΛ∧
which is closed under∧, that is, ifα, β ∈ F thenα∧ β ∈ F , and up-ward closed,
that is, if α ∈ F andα ≤∧ β thenβ ∈ F . We will need the following filter
construction lemma.

Lemma 1.2. Letα be any type. Then

↑α ≡ {β ∈ Λ∧| α ≤∧ β}

is a filter that will be called thefilter generatedbyα.

Consider now the set

F ≡ {F | F is a filter ofΛ∧}

and, providedF andG are two elements ofF , define the following operation on
filters:

F ·G ≡ {γ ∈ Λ∧| (∃δ ∈ Λ∧) (δ → γ ∈ F ) & (δ ∈ G)}
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Note that ifF1 ⊆ F2 andG1 ⊆ G2 thenF1 ·G1 ⊆ F2 ·G2. Then, the following
theorem can be proved (see [4]).

Theorem 1.2. LetF,G ∈ F . ThenF ·G is a filter, i.e.,F is closed under·,
and(F , ·,⊆) is an ordered weakly extensionalλ-algebra.

As we already said, we will ignore the difficult part in the proof of this theorem,
that is, to show that(F , ·) is a weakly extensionalλ-algebra, and we will just show
that it is the canonical Kripke frame of the logic of≤∧. To this aim, consider the
mapφ(−) of types ofΛ∧ into subsets ofF defined by setting

φ(α) = {F ∈ F| α ∈ F}

It is immediate to check the following lemma.

Lemma 1.3. The mapφ(−) defined as above is a valuation.

After one has proved that(F , ·) is a weakly extensionalλ-algebra, this lemma
immediately yields the completeness theorem 1.1. Indeed, it is easy to provide a
direct check of the left to right implication. On the other hand, let us suppose that
for any valuationν(−) of the types ofΛ∧ into subset of an ordered weakly exten-
sionalλ-algebraA, ν(α) ⊆ ν(β) holds; then, if we specialize this assumption to
the ordered weakly extensionalλ-algebra(F , ·,⊆) and to the valuationφ(−) that
we defined above, then we obtain thatφ(α) ⊆ φ(β); hence, for any filterF ∈ F ,
if F ∈ φ(α) thenF ∈ φ(β). But this means that ifα ∈ F thenβ ∈ F . Let us
consider now the filter↑α; it clearly containsα and henceβ ∈↑α, that is,α ≤∧ β,
follows.

We can present all the previous considerations in a slightly different, but deeply
related, setting if we use a "relational" model instead of a ordered weakly exten-
sionalλ-algebra. Indeed a mapν(−) from the set of the types ofΛ∧ into the
set of the subsets of a setA can be presented also like a standard modal forcing
relation
ν between elements ofA and types provided that we adopt the following
position:

x 
ν α if and only if x ∈ ν(α)

Then the requirements on the mapν(−) in definition 1.1 force immediately the
following inductive conditions on
ν :

x 
ν α iff x ∈ ν(α), for any basic typeα
x 
ν ω iff true
x 
ν α ∧ β iff x 
ν α andx 
ν β

More complex is to state the condition on the forcing relation when the typeα→ β
is considered. We can solve this problem if we introduce a three places relationR



A BINARY MODAL LOGIC OF THE INTERSECTION TYPES 7

overA whose intended meaning is to state thatR(x, y, z) holds whenx · y ≤ z.
Then, sincew ≤ z andw 
ν β yieldsz 
ν β as a consequence of upward closure
of any valuation, it is not difficult to check that the correct condition on the forcing
relation becomes

x 
ν α→ β iff (∀z ∈M) ((∃y ∈M) R(x, y, z) & y 
ν α) ⇒ (z 
ν β)

This forcing relation can be used to define an interpretation of the relation≤∧ in
a model(A,R, ν). In fact, we can set

(A,R, ν) |= α ≤∧ β iff (∀x ∈ A) (x 
ν α) ⇒ (x 
ν β)

which, recalling the position above, means that(A,R, ν) |= α ≤∧ β if and only
if ν(α) ⊆ ν(β).

This interpretation can be generalized to any structure(A,R) by setting

(A,R) |= (α ≤∧ β) iff (A,R, ν) |= (α ≤∧ β),
for any mapν : BasTypes −→ P(M)

Thus we arrived at a relational semantics for the subtype relation, that is,

α |= β iff (A,R) |= α ≤∧ β, for any structure(A,R)

It is now possible to state the following theorem of validity and completeness for
relational structures which is the analogous of theorem 1.1.

Theorem 1.3. α |= β if and only ifα ≤∧ β.

Even if the proof of this theorem is just a rewriting of the proof of theorem 1.1,
let us show the relevant steps since they will be useful in the next section. The
proof of validity is straightforward while in order to prove completeness let us
consider again the setF of the filters ofΛ∧ and define a three place relationR on
its elements by setting

R(F,G,H) ≡ (∀β) ((∃α ∈ G) α→ β ∈ F ) ⇒ (β ∈ H)

that is,R(F,G,H) holds if and only ifF ·G ⊆ H.
Then, consider the interpretation mapφ defined by setting, for any basic type

α,

φ(α) = {F | α ∈ F}

and extend it by induction to a forcing relation
φ. Then, it is not difficult to prove
that (F , R, φ) is a model for≤∧. Moreover, it is possible to prove by induction
on type complexity the following lemma.
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Lemma 1.4. Let α be any type andF be any filter ofΛ∧. ThenF 
φ α if
and only ifα ∈ F .

Now, this lemma immediately yields the completeness theorem 1.3 since sup-
posingα |= β we obtain(F , R, φ) |= (α ≤∧ β) and hence, for any filterF ∈ F ,
if F 
φ α thenF 
φ β. But, after lemma 1.4, this means that ifα ∈ F then
β ∈ F . Let us consider now the filter↑α; it clearly containsα and henceβ ∈↑α,
that is,α ≤∧ β.

The semantics we considered here is clearly recalling a sort of non-standard
Kripke semantics for a modal logic: the idea to define a modal interpretation for
the connective→ started here. The intuitive explanations is that lambda-terms are
thought of as worlds in which their types are true formulas.

Now, the sub-typing axioms and rules are quite similar to a logical axiom system
in which intersection behaves like the classical connective∧, while→ axioms and
rules are sound for intuitionistic implication but are surely not complete; in fact,
it can be shown (see [26]) that this sub-typing system is the restriction to∧ and
→ of the logicB of relevant implication introduced in [16]. So, the sub-typing
relation suggests a different approach to the problem of setting a logic that reflects
the properties of the intersection types assignment system, an approach which
is alternative to theCurry-Howard isomorphismparadigma: one does not try to
define a proof system whose logic reflects the rules of type assignment, but defines
a modal logic whose Kripke style semantics is as close as possible to the natural
semantics of the intersection types system. Thus, we will develop a modal logical
system in which the type constructor→ is interpreted as a suitable modal operator
and whose semantics is a natural extension of the semantics for the sub-typing
relation. To this aim, in section 2 we generalize the semantics for relevant logics
that was introduced in [16] and that was shown in [26] to interpret faithfully the
sub-typing relation. Then we define a complete sequent calculus for the logical
system so obtained and study its main properties. In particular, we establish the
cut elimination property, the decidability property and the finite model property.
In section 3 we show that our logic can be characterized as the logic over partial
applicative structures and that under this interpretation it is well possible that our
logic is a first step towards the the definition of a type system forΛ which extends
the intersection types and introduce a disjunction and a negation type constructor.

2. THE TWO-PLACE MODAL LOGIC BK

In this section we present the modal logicBK for which we state and prove
a completeness theorem. To this aim consider the propositional modal language
whose formulas are inductively defined as follows

• Any propositional variable is a formula;
• ⊥ and> are formulas;
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• If α andβ are formulas then alsoα ∧ β, α ∨ β, ¬α, α ⊃ β are formulas;

• If α andβ are formulas then2(α, β) is a formula.

We can define akripke-like semantics for the formulas of this language as
follows. LetA be a set andR be a ternary relation overA and suppose thatv is a
map of the propositional variables into subsets ofA. Then, supposingx ∈ A and
p is a propositional variable, set

x 
v p iff x ∈ v(p)
x 
v ⊥ iff falsum
x 
v > iff true
x 
v α ∧ β iff x 
v α andx 
v β
x 
v α ∨ β iff x 
v α or x 
v β
x 
v ¬α iff x 6
v α
x 
v α ⊃ β iff x 
v α yieldsx 
v β
x 
v 2(α, β) iff for all y andz such thatR(x, y, z), if y 
v α thenz 
v β

To understand the intended meaning of the modal operator it can be useful to
consider the following explanation. LetA be the set of the non-deterministic
programs; then a formulaα is true for the programx (notationx 
 α) if and only
if the typeα can be assigned tox. Moreover,R(x, y, z) holds if and only ify is
an input accepted by the programx andz is a possible output ofx when applied
to y; so, provided· means the application operation,R(x, y, z) holds if and only
if x · y may givez as an output. Then,2(α, β) holds forx if and only if, for every
input y of typeα which is accepted by the programx, every possible outputz of
x applied toy has typeβ.

Let us recall now the standard conditions for validity of a formula in a Kripke-
style semantics: a formulaα is true in the model(A,R, v) if, for every element
x ∈ A, x 
v α; moreover, a formula is true in the frame(A,R) if, for every
valuationv, it is true in the model(A,R, v); finally, a formula is valid if it is true
in every frame.

It is interesting to note that what we defined is a generalization of the usual
modal situation. In fact, we can define a standard modality by setting2(β) ≡
2(>, β) and then we obtain the usual definition for a forcing relation by setting
R(x, z) ≡ (∃y ∈ A) R(x, y, z). Since no extra condition is required on the
relationR, the models that we defined directly generalize the situation for the
modal logicK. This is the reason why we calledBK thisbinarymodal logic.

Consider now any complete sequent calculus for the classical propositional
logic such that sequents are couples of finite sets of formulas2. To such a calculus

2This last requirement is just a simplification which allows to consider cut and weakening as the
only structural rules.
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add the following modal rule:

2-rule
α ` α1, . . . , αn β1, . . . , βm ` β

{2(αi, βj)| i = 1 . . . n, j = 1 . . .m} ` 2(α, β)
n ≥ 0,m ≥ 0

In the following we will call the sequent calculus obtained in this wayBKS.
We will adopt forBKS the standard terminology for a sequent calculus, that

is, we will say that a sequentis provableif it can be obtained from the axioms
by a finite number of applications of the deduction rules, a sequentα1, . . . , αn `
β1, . . . , βm is valid if and only if the formulaα1∧ . . .∧αn ⊃ β1∨ . . .∨βm of BK
is valid, aformulaα is provableif and only if the sequent̀ α is a provable, and,
if Γ is a set of formulas, thenΓ is consistent if and only if, for any finiteΓ

′ ⊆ Γ,
the sequentΓ

′ ` ∅ is not a provable.

Theorem 2.1. The sequent calculusBKS is correct forBK.

Proof. Only correctness of the2-rule deserves a proof, since all the other
rules ofBKS are shown to be correct by standard arguments. So, let us show that
the2-rule is valid in any frame. To this aim, let us suppose that its conclusion
is not valid in some frame(A,R), that is, let us suppose that there exists a point
x ∈ A and a valuationv such thatx 
v ¬2(α, β) whereas for alli = 1 . . . n
and j = 1 . . .m, x 
v 2(αi, βj). Then there must exist two pointsy, z ∈ A
such thatR(x, y, z) holds andy 
v α andz 
v ¬β. Hence, by the left premise,
we obtain that there must be some indexi such thaty 
v αi and thus, for any
j = 1 . . .m, z 
v βj , sincex 
v 2(αi, βj). But then the right premise forces
z 
v β, contradiction. �

In the sequel we will show thatBKS is also complete forBK. To this aim it is
convenient to consider two instances of the2-rule, which are indeed sufficient to
obtain the result. The first one is obtained forn = 1 andα1 ≡ α and the second
one form = 1 andβ1 ≡ β.

2-monotonicity
β1, . . . , βm ` β

2(α, β1), . . . ,2(α, βm) ` 2(α, β)
m ≥ 0

2-anti-monotonicity
α ` α1, . . . , αn

2(α1, β), . . . ,2(αn, β) ` 2(α, β)
n ≥ 0

Note that settingn = 0 and α ≡ ⊥ in 2-anti-monotonicitywe obtain that
2(⊥, β) is provable and settingm = 0 andβ ≡ > in 2-monotonicitywe obtain
that2(α,>) is provable.

Moreover, the2-rule is sufficient to prove that the binary modal operator is an
operation in the Lindenbaum algebraLBK of BK3. In fact, the following theorem
holds.

3By LBK we mean the set of equivalence classes over the formulas ofBK induced by the equiv-
alence relation defined by settingα ≡ β if and only if ` (α ⊃ β) ∧ (β ⊃ α), endowed with the
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Theorem 2.2. Let ` α1 ↔ α2 and ` β1 ↔ β2. Then` 2(α1, β1) ↔
2(α2, β2).

Proof: It is sufficient to show that ifα2 ` α1 andβ1 ` β2 hold then also
2(α1, β1) ` 2(α2, β2) holds, which is immediate by2-rule. �

It is worth noting that the proof of this theorem shows that the modality that we
are considering enjoys some of the features of an implication, even if one should
be aware that the usual rule of implication introduction is not valid for such a
modality, that is,α ` β does not yield̀ 2(α, β).

We can now prove the completeness theorem.

Theorem 2.3. The sequentα1, . . . , αn ` β1, . . . , βm is provable inBKS if
and only if it is valid in any frame.

We already proved that all the rules ofBKS are valid. To prove that they are also
sufficient we will adapt toBKS the standard approach to prove completeness for
modal logical systems, that is, we start from the frame induced by the Lindenbaum
Algebra ofBKS and define a canonical model which is shown to yield the desired
completeness result4. To this aim, let us consider the setU of ultrafilters ofLBK

5

and define a ternary relationR overU by setting

R(F,G,H) ≡ F ·G ⊆ H

whereF ·G ≡ {δ | there isγ ∈ G such that2(γ, δ) ∈ F}.
It is interesting to note thatF ·G is a filter, as we noted in the previous section,

but, in general, it is not an ultrafilter onLBK
6. This is the reason why we cannot

simply adapt the completeness proof of the previous section to the case ofBKS,
where also a negation connective is considered, and a new proof must be provided.

The last step in our completeness proof is to define a canonical valuationV of
the propositional variables into the set of the subsets ofU :

V(p) = {F ∈ U | p ∈ F}

boolean structure given by the operations induced by the classical connectives:[α]c = [¬α] and
[α] ∩ [β] = [α ∧ β]. On any boolean algebra the operations induce a natural order relation which in
the case of a Lindenbaum Algebras can also be defined as:[α] ≤ [β] if and only if α ` β is provable.
In the sequel of the paper, following standard use, we will often identify the equivalence class[α] with
any of its representative (for exampleα), in order to simplify the notation.

4A detailed account on the techniques used to construct such canonical models can be found in any
introductory text on modal logic (see for instance [13]).

5An ultrafilterF on a boolean algebraB is just a filter such that for anyx ∈ B, x ∈ F or xc ∈ F
but not both.

6Consider, for instance, the case for someβ ∈ G, 2(β,⊥) ∈ F ; in this caseF · G is the trivial
filter, that is, it coincides with the whole algebraLBK . Then, for noH we haveR(F, G, H), that is,
G is not an acceptable input forF .
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The completeness theorem will then be achieved if the following key lemma
holds.

Lemma 2.1. For any formulaα, F 
V α if and only ifα ∈ F .

In fact, ifα1, . . . , αn ` β1, . . . , βm is not provable, then, by obvious properties
of the calculus the formula(α1 ∧ . . . ∧ αn) ⊃ (β1 ∨ . . . ∨ βm) is not provable.
Now, letα be any formula; then, ifα is not provable then[α] 6= 1LBK

and hence
[α]c 6= 0LBK

. But a fundamental property of boolean algebra is that any non-zero
element is contained in some utrafiter (see [2]); hence, there exists an ultrafilter
F such that¬((α1 ∧ . . . ∧ αn) ⊃ (β1 ∨ . . . ∨ βm)) ∈ F . By consistency of
ultrafilters, this yields that(α1 ∧ . . . ∧ αn) ⊃ (β1 ∨ . . . ∨ βm) 6∈ F and hence,
by lemma 2.1,F 6
V (α1 ∧ . . . ∧ αn) ⊃ (β1 ∨ . . . ∨ βm) and this means that the
sequentα1, . . . , αn ` β1, . . . , βm is not valid in the model(U , R,V).

The rest of this section will be dedicated to the proof of lemma 2.1. Let us
argue according to the complexity of the formulaα. The cases of the propositional
connectives are immediate:

• if α is the propositional variablep then by definitionF 
V p if and only if
F ∈ V(p) if and only if p ∈ F ;

• if α ≡ ⊥ then the result is immediate sinceF is a proper filter;

• if α ≡ > orα ≡ α1 ∧α2 the result follows by induction from the fact thatF
is a filter of a boolean algebra;

• if α ≡ α1 ∨ α2, α ≡ ¬α1 or α ≡ α1 ⊃ α2 then the result follows by
induction from the fact thatF is an ultrafilter.

The proof for the modal caseα ≡ 2(α1, α2) is more elaborate, and will go
through the rest of this section. We can immediately prove that2(α1, α2) ∈ F
yieldsF 
V 2(α1, α2). In fact, let us suppose thatG,H ∈ U andR(F,G,H) and
G 
V α1 hold. Thenα1 ∈ G by inductive hypothesis and hence2(α1, α2) ∈ F
andR(F,G,H) yieldsα2 ∈ H. ThenH 
V α2 by inductive hypothesis and
henceF 
V 2(α1, α2) by definition.

The hard part is the proof thatF 
V 2(α1, α2) yields2(α1, α2) ∈ F . In fact,
we will prove the converse, that is, we will assume that2(α1, α2) 6∈ F and we
will show that it is possible to build two ultrafiltersG andH such thatR(F,G,H)
holds,G 
V α1 andH 6
V α2, that is,F 6
V 2(α1, α2). The idea is to build the
ultrafilterG with a continuous attention for the possibility to buildH. To this aim
let us consider the following inductive definition of a sequence(Yi)i∈ω of filters.
Let (φi)i∈ω be any surjective numbering of the elements ofLBK and set

Y0 = ↑ {α1}

Yi+1 =
{
↑ (Yi ∪ {φi}) if ↑ (Yi ∪ {φi}) is 〈F,¬α2〉-consistent
↑ (Yi ∪ {¬φi}) otherwise
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where we write↑ A to mean the minimal filter ofLBK which contains the subset
A, that is,↑ A ≡ {γ ∈ LBK | (∃α1, . . . , αn ∈ A) α1 ∧ . . .∧αn ` γ}, and we say
that a set of formulasA is 〈F,¬α2〉-consistent to mean that the set(F ·A)∪{¬α2}
is consistent.

Lemma 2.2. For anyi ≥ 0, the filterYi is generated by one formula, that is,
there exists a formulaψi such thatYi =↑ {ψi}.

Proof: By induction. By definition,Y0 is generated byα1 and, supposing that
Yi is generated byψi, thenYi+1 =↑ {ψi∧φi} orYi+1 =↑ {ψi∧¬φi} according to
the clause which applies in the definition ofYi+1. In fact, it is immediate to verify
that↑ (Yi ∪ {γ}) =↑ {ψi ∧ γ} becauseδ ∈↑ (Yi ∪ {γ}) means that there exist
γ1, . . . , γn ∈ Yi such thatγ1 ∧ . . . ∧ γn ∧ γ ` δ and hence, by using the cut-rule,
ψi ∧ γ ` δ because, for each1 ≤ k ≤ n, ψi ` γk; in the other direction the result
is an immediate consequence of the fact thatψi is an element ofYi =↑ {ψi}. �

Lemma 2.3. For anyi ≥ 0, the filterYi is 〈F,¬α2〉-consistent.

Proof. By induction oni.

• Casei = 0. Let us suppose thatY0, which is equivalent to↑ {α1}, is not
〈F,¬α2〉-consistent; then there existγ1, δ1, . . . , γn, δn such that

δ1, . . . , δn,¬α2 ` ∅ (4)

and, for any1 ≤ k ≤ n,

α1 ` γk (5)

and2(γk, δk) ∈ F . By cut and negation rules, from equation 4, we obtain

δ1, . . . , δn ` α2 (6)

and hence

{2(α1, δj)| j = 1 . . . n} ` 2(α1, α2) (7)

follows by 2-monotonicityapplied to the sequentsα1 ` α1 and 6. But, for each
k ≤ n, by hypothesis 5,α1 ` γk and hence we can use2-anti-monotonicityto
obtain:

2(γk, δk) ` 2(α1, δk)

Hence, for eachk ≤ n, 2(α1, δk) ∈ F sinceF is upward closed. But then, by 7
above, we would obtain that2(α1, α2) ∈ F which is contrary to our assumption.
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• Induction Step. Suppose now, by inductive hypothesis, thatYi is 〈F,¬α2〉-
consistent and let us assume that both↑ (Yi ∪ φi) and ↑ (Yi ∪ ¬φi) are not
〈F,¬α2〉-consistent. Then there existγ1, δ1, . . . , γn, δn andγ′1, δ

′
1, . . . , γ

′
m, δ

′
m

such that, for anyk ≤ n and anyh ≤ m the following conditions are satisfied:

(1.) γk ∈↑ (Yi ∪ φi) 2(γk, δk) ∈ F
(2.) γ′h ∈↑ (Yi ∪ ¬φi) 2(γ′h, δ

′
h) ∈ F

(3.) δ1 ∧ . . . ∧ δn ` α2 δ′1 ∧ . . . ∧ δ′m ` α2

By lemma 2.2, we know thatYi ≡↑ {ψi} for some formulaψi. Hence, for each
k ≤ n, ψi ∧ φi ` γk and, for eachh ≤ m, ψi ∧ ¬φi ` γ′k. Then, by2-anti-
monotonicity, for eachk ≤ n, 2(γk, δk) ` 2(ψi ∧ φi, δk) and hence, by the
condition (1.) above,

2(ψi ∧ φi, δk) ∈ F
For the same reason for eachh ≤ m, 2(γ′h, δ

′
h) ` 2(ψi ∧¬φi, δ

′
h) and hence, by

the condition (2.) above,

2(ψi ∧ ¬φi, δ
′
h) ∈ F

Now, we use the latter sequents together with the conditions (3.) to apply2-
monotonicityin the following ways:

ψi ∧ φi ` ψi ∧ φi δ1, . . . , δn ` α2

2(ψi ∧ φi, δ1), . . . ,2(ψi ∧ φi, δn) ` 2(ψi ∧ φi, α2)

and

ψi ∧ ¬φi ` ψi ∧ ¬φi δ′1, . . . , δ
′
m ` α2

2(ψi ∧ ¬φi, δ′1) ∧ . . . ∧2(ψi ∧ ¬φi, δ′m) ` 2(ψi ∧ ¬φi, α2)

Hence both2(ψi∧φi, α2) ∈ F and2(ψi∧¬φi, α2) ∈ F . We can now conclude
immediately if we observe thatψi ` (ψi ∧ φi) ∨ (ψi ∧ ¬φi) is a tautology and
then, by using again2-anti-monotonicity, we can infer that

2(ψi ∧ φi, α2) ∧2(ψi ∧ ¬φi, α2) ` 2(ψi, α2)

and hence2(ψi, α2) ∈ F which means thatYi is not〈F,¬α2〉-consistent against
the inductive hypothesis. �

We are now almost arrived to the end of the proof of lemma 2.1. In fact, lemma
2.3 suggests how to build the desired ultrafilterG. Let us set:

G ≡
⋃
i∈ω

Yi

Then, we can prove the following lemma.
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Lemma 2.4. G is a 〈F,¬α2〉-consistent ultrafilter.

Proof. G is a filter because> ∈ G since> ∈ Y0 ≡↑ {α1} and, supposing
γ1, γ2 ∈ G, there is an indexi such thatγ1, γ2 ∈ Yi, i.e. ψi ` γ1 andψi ` γ2,
because for anyi,Yi ⊆ Yi+1 obviously holds; henceψi ` γ1∧γ2, i.e. γ1∧γ2 ∈ Yi,
and henceγ1 ∧ γ2 ∈ G; finally, if γ1 ∈ G andγ1 ` γ2 then there is an indexi
such thatγ1 ∈ Yi, i.e. ψi ` γ1, and henceψi ` γ2 by cut-rule, i.e.γ2 ∈ Yi, so
thatγ2 ∈ G. Moreover, ifG was not〈F,¬α2〉-consistent then there would beγ1,
δ1, . . . ,γn, δn such thatγ1, . . . , γn ∈ G, 2(γ1, δ1) ∈ F , . . . ,2(γn, δn) ∈ F and
δ1∧ . . .∧δn ` α2; but then there would exist an indexi such thatγ1, . . . , γn ∈ Yi,
that isYi would not be〈F,¬α2〉-consistent, contrary to lemma 2.3.

To prove thatG is an ultrafilter we have only to prove it is a complete consistent
filter. Since any formulaγ appears in the sequence(φi)i∈ω, i.e. γ ≡ φi for some
i ∈ ω, we obtain thatγ ∈ Yi+1 or ¬γ ∈ Yi+1, and thusγ ∈ G or ¬γ ∈ G,
that is,G is complete. Finally consistency is a consequence of the fact thatG
is 〈F,¬α2〉-consistent. In fact, ifG was not consistent then⊥ ∈ G and hence
⊥ ∈ F ·G because2(⊥,⊥) is provable and hence it belongs to every filter.�

In order to build the ultrafilterH, let us consider the setZ ≡ (F ·G)∪ {¬α2}.
The setZ is consistent by definition sinceG is 〈F,¬α2〉-consistent; thenZ
can be extended to a proper ultrafilterH in the usual way (see [2]). Moreover,
R(F,G,H), that is,F · G ⊆ H, holds by construction. Finallyα1 ∈ G by
definition and¬α2 ∈ H because¬α2 ∈ Z. We have thus completed the proof of
lemma 2.1 and hence also that one of theorem 2.3.

Some comments on the previous proof are in order. What we did is just a
refinement of the proof used in [16] to show completeness of various positive
relevant logics. In fact,BK can be considered as the boolean completion of
the minimal relevant logicB; and our completeness proof shows that adding
classical negation toB yields to a conservative extension. The same result was
also obtained in [17] by using a different proof. We will show later that there are
other connections between the logicBK and the systemB.

2.1. Cut-elimination
In the previous section we proved that2-rule is valid with respect to the Kripke

models that we proposed and sufficient to obtain a completeness proof. However
to obtain such a completeness proof it is essential to use also the cut-rule which
should be explicitly consider among the structural rules ofBKS. Indeed, it is
possible to show that the rules we introduced are not sufficient to obtain a cut
elimination theorem; for example, the following sequent is valid, but it cannot be
proved without using instances of the cut-rule7:

2(α, α),2(β, β) ` 2(α ∨ β, α ∨ β)

7This example was suggested to us by R.K.Meyer.
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However, it is possible to prove the cut-elimination theorem for a version of the
sequent calculus forBK obtained by a slight modification of the modal rule. To
this aim, let us consider the following rule:

(2-gen-rule)
α `

∧
i=1...n

∨
j=1...mi

γij

∧
i=1...n

∨
j=1...mi

δij ` β
2(γ11, δ11), . . . ,2(γnmn

, δnmn
) ` 2(α, β)

with the obvious meaning of the generalized connectives. We will callBKS∗ the
sequent calculus obtained fromBKS by substituting2-rule with the rule above.

Note that distributivity of∧ over∨ allows to present2-gen-rulelike a more
standard rule, provided we use rules with a non-fixed number of premises instead
of generalized quantifiers, that is,

(2-gen-rule)

α ` γ11, . . . , γ1m1

...
α ` γn1, . . . , γnmn

δ11, δ21, . . . , δn1 ` β
δ12, δ21, . . . , δn1 ` β

...
δ1m1 , δ21, . . . , δn1 ` β

...
δ1m1 , δ2m2 , . . . , δnmn

` β
2(γ11, δ11), . . . ,2(γnmn , δnmn) ` 2(α, β)

It is easy to check that2-gen-rule is valid in any of the considered Kripke
model.

Theorem 2.4. 2-gen-ruleis valid with respect to the models forBK.

Proof. Let us suppose that there is a pointx in a model such thatx 
 ¬2(α, β)
andx 
 2(γij , δij) for any1 ≤ i ≤ n and1 ≤ j ≤ mi. Hence there must exist
in the model two pointsy andz, in relation withx, such thaty 
 α andz 
 ¬β.
Theny 


∧
i=1...n

∨
j=1...mi

γij , and hence for alli = 1 . . . n, there is at least
one1 ≤ j ≤ mi such thaty 
 γij holds. Hencez 
 δij , becausex 
 2(γij , δij),
and soz 


∧
i=1...n

∨
j=1...mi

δij which yieldsz 
 β. Contradiction. �

It is worth noting that2-monotonicityand 2-anti-monotonicityare special
instances of2-gen-rule. In fact, let us putmi = 1 for each1 ≤ i ≤ n and
γij ≡ α in the2-gen-rulerule, then we obtain

α ` α ∧ . . . ∧ α δ1 ∧ . . . ∧ δn ` β
2(α, δ1), . . . ,2(α, δn) ` 2(α, β)

which is equivalent to2-monotonicity. And if we put n = 1, m1 = m and
δ1j ≡ β, then we obtain

α ` γ1 ∨ . . . ∨ γm β ∨ . . . ∨ β ` β
2(γ1, β), . . . ,2(γm, β) ` 2(α, β)
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which is equivalent to2-anti-monotonicity. Thus, after theorem 2.3 of validity
and completeness, a calculus in which the unique modal rule is2-gen-rule is
sufficient to prove all the valid sequents. The main reason we did not introduce2-
gen-ruledirectly in the previous section is that, in our opinion, it is much harder to
grasp what this inference figure does. On the other hand, under a proof theoretical
standpoint this rule is much stronger; in fact, in this section we will show that
2-gen-rulemakes possible to devise a syntactical proof of the cut elimination
property and in the next one a decision procedure for theorem-hood forBK and,
as a by product of such a decision procedure, we will get the finite model property.

Theorem 2.5 (Syntactic cut-elimination theorem). Any sequent provable
in BKS∗ admits a derivation in which no cut appear.

The proof of cut-eliminability is almost standard, that is, supposingΠ is a proof
of the sequentS and

Γ ` ∆, γ Γ, γ ` ∆
Γ ` ∆

is one of the top-most occurrence of the cut-rule withinΠ, we will prove that it
can be eliminated by principal induction on the structural complexityδ(γ) of the
cut-formulaγ, which is extended here to the modal case in the obvious way by
puttingδ(2(α, β)) = δ(α) + δ(β) + 1, and secondary induction on the length of
the thread ofγ (see [21]). The reductions to lower the length of the threads and
those for lowering the complexity of the cut-formula in the non-modal cases are
standard. Thus, we consider here only the case the cut-formula is2(α, β) and a
modal rule is applied both on the right and the left thread, namely, the following
case:

α `
∧

i

∨
ji
γiji

∧
i

∨
ji
δiji

` β
{2(γiji

, δiji
)}i,ji

` 2(α, β)

φ `
∧

h

∨
kh
φhkh

∧
h

∨
kh
ψhkh

` ψ
{2(φhkh

, ψhkh
)}h,kh

` 2(φ, ψ)
{2(γiji

, δiji
)}i,ji

∪ ({2(φhkh
, ψhkh

)}h,kh
\2(α, β)) ` 2(φ, ψ)

where one of the formulas in the set{2(φhkh
, ψhkh

)}h,kh
is 2(α, β).

In this case,

α ` A1 ∧ . . . ∧An

and

φ ` B1 ∧ . . . ∧ (Bh ∨ α) ∧ . . . ∧Bm

whereA1 ≡
∨

j1
γ1j1 , . . . , An ≡

∨
jn
γnjn

andB1 ≡
∨

k1
φ1k1 , . . . , Bm ≡∨

km
φmkm

. Hence

φ ` B1 . . . φ ` Bh, α . . . φ ` Bm
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follows since the property of permutability of the propositional rules holds forBKS
(see [14]). Then, by using a cut on the formulaα, whose structural complexity is
lower than that of2(α, β), we obtain that

φ ` Bh, A1 ∧ . . . ∧An

and hence we can construct, by using no cut, a proof of

φ ` B1 ∧ . . . ∧ (Bh ∨A1) ∧ . . . ∧ (Bh ∨An) ∧ . . . ∧Bm

In a similar way, from

A′1 ∧ . . . ∧A′n ` β

and

B′1 ∧ . . . ∧ (B′h ∨ β) ∧ . . . ∧B′m ` ψ

whereA′1 ≡
∨

j1
δ1j1 , . . . , A′n ≡

∨
jn
δnjn andB′1 ≡

∨
k1
ψ1k1 , . . . , B′m ≡∨

km
ψmkm , we obtain both that

B′1 ∧ . . . ∧B′h ∧ . . . ∧B′m ` ψ

and that

B′1 ∧ . . . ∧ β ∧ . . . ∧B′m ` ψ

Hence, by using a cut onβ, whose structural complexity is lower than that of
2(α, β), we obtain

B′1 ∧ . . . ∧A′1 ∧ . . . ∧A′n ∧ . . . ∧B′m ` ψ

Thus, by using no cut, we can construct also a proof of

B′1 ∧ . . . ∧ (B′h ∨A′1) ∧ . . . ∧ (B′h ∨A′n) ∧ . . . ∧B′m ` ψ

Then we can conclude; in fact, by using an instance of2-gen-rulewe obtain the
sequent in the conclusion of the application of the cut-rule, except for the non
essential repetition of some of the boxed assumptions.

2.2. Decidability and the finite models property
Nice consequences of the theorem of cut-elimination that we proved in the

previous section 2.1 are decidability ofBK and the finite model property.
In order to obtain these results, in this section, instead of using a generic sequent

calculus for classical propositional logic, as we did till now, we will consider a
sequent calculus in which the rules for the classical connectives are double sound,
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that is, a sequent calculus such that a sequent in the conclusion of a non-structural
rule is valid if and only if all sequents in the premises of that rule are valid8.

Decidability and finite model property forBK are an immediate consequence
of the fact that we can provide an always terminating procedure for looking for the
derivability of any sequent which does not use the cut-rule; and such a procedure
is correct, that is, when it fails we can use the proof tentative to build a finite
counter-model for the non provable sequent.

The proof of this statement follows the general ideas of a cut-redundancy proof
(see for instance [21], or [23] for an application in a modal case); we have only
to add a special treatment for the modal case. To deal with this case we need to
introduce a new notion of complexity of a sequent. It will be used in the sequel
to prove that our decision procedure is always terminating. In fact, in the case of
the2-gen-rulewe cannot state that the premises of the rule are simpler that the
conclusion by simply counting the number of the connectives in the formulas in
the sequents that appear in the premises. Nevertheless, we can recognize that the
premises are simpler if we introduce a suitable notion of complexity which allows
to compute the number of nested boxes within a sequent. Here is the definition
of complexity of a sequent that we will use: we first define the mapsC1(−) and
C2(−) from formulas to natural numbers and then we use them to define a map
C(−) from sequents to couple of natural numbers.

• C1(α) = 0 if α is a propositional variable
• C1(α ∧ β) = max{C1(α), C1(β)}
• C1(α ∨ β) = max{C1(α), C1(β)}
• C1(¬α) = C1(α)
• C1(α ⊃ β) = max{C1(α), C1(β)}
• C1(2(α, β)) = C1(α) + C1(β) + 1

• C2(α) = 0 if α is a propositional variable orα ≡ 2(α1, α2)
• C2(α ∧ β) = C2(α) + C2(β) + 1
• C2(¬α) = C2(α) + 1

• C(α) = 〈C1(α), C2(α)〉
• C(Γ ` Φ) = C(

∧
γ∈Γ γ ⊃

∨
β∈Φ β)

Next, we order the pairs according to the lexicographical order. It is easy to check
that with this definition of complexity the formula2(p, q) is more complex than
any formula of classical propositional logic. Note that, according to this notion of
complexity of a sequent, the complexity of the sequent in the conclusion of any
2-gen-ruleis higher than the complexity of any sequent in its premises.

8A calculus of this kind can be easily defined; for example, see [27] or just consider Gentzen’s
original sequent calculus for classical propositional logic (see [10]) and consider sequents as couples
of finite sets instead of couples of finite lists.
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The decision strategy for the non-modal case is simply to apply any applicable
propositional rule. Since the premise(s) of each propositional rule is (are) strictly
simpler than the conclusion, this search procedure is going to arrive in a finite
number of steps at an axiom or at a sequent of the following shape:

p1, . . . , pr,2(α1, β1), . . . ,2(αn, βn) ` 2(φ1, ψ1), . . . ,2(φm, ψm), q1, . . . , qs
(8)

wherep1, . . . , pr andq1, . . . , qs are propositional variables.
If all of the leaves of the search tree we arrived at in this way are axioms then

our search procedure stops with a success. On the other hand, let us suppose that
we did not arrive at an axiom. To begin with a simple case let us first consider the
case that the sequent 8 that we are examining is

p1, . . . , pr,2(α1, β1), . . . ,2(αn, βn) ` q1, . . . , qs

that is, the casem = 0 and{p1, . . . , pr} ∩ {q1, . . . , qs} = ∅. In this case the
sequent can easily be falsified in the finite model({∗}, R, ν) defined on the one
element set{∗} by settingR = ∅ andν(p) = {∗} if and only if p ∈ {p1, . . . , pr}.

On the other hand, that is, when we consider the casem ≥ 1, the cut-elimination
theorem suggests that the sequent 8, provided it is not already an axiom, can only
be obtained by weakening from:

2(α1, β1), · · · ,2(αn, βn) ` 2(φh, ψh) (9)

for some1 ≤ h ≤ m. Indeed, if we will be able to find a suitable indexh and
prove the corresponding sequent 9, then we will eventually obtain a proof of the
sequent 8 by using some instances of weakening. Of course, the problem will be
in proving that if, for no indexh, a proof tentative is successful then the sequent
8 is not valid and it can be falsified by using some finite counter-model.

In general, a cut free proof of the sequent 9 should be obtained by an application
of the2-gen-rulepossibly followed by an instance of weakening. Thus, our proof
search algorithm is supposed to find a suitable subsetW of the set{1, . . . , n} such
that the sequent

{2(αi, βi)}i∈W ` 2(φh, ψh) (10)

is provable by an application of the2-gen-rule. And the left premise of such a
rule should have the following shape:

φh `
∧

A∈G

∨
j∈A

αj (11)
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for some collectionG of subsets of the set{1, . . . , n}9.
We remark that the sequent 11 is provable if and only if, for anyA ∈ G,

φh `
∨

j∈A αj . So, in the search for the left premise of the required2-gen-rule
we can consider only the following collection of set of indexes:

H = {A ⊆ {1, . . . , n}| φh `
∨
j∈A

αj}

By the definition of complexity given above, it is easily shown that all of the
sequentsφh `

∨
j∈A αj are simpler than the sequent 9 and thus we can assume to

be able to decide on membership toH.
Let us note that supposingH is empty, that is, supposing there is no subset

A ⊆ {1, . . . , n} such thatφh `
∨

j∈A αj , yields in particular thatφh 6` α1, . . . , αn

and hence, by inductive hypothesis, a finite model(M ′
h, R

′
h, ν

′
h) can be built which

contains a pointyh such thatyh 
 φh and, for all1 ≤ j ≤ n, yh 
 ¬αj .
Let us now observe that6` ψh, otherwise the sequent 9 is obviously prov-

able by an instance of2-gen-rulewith premisesφh `
∧

i=1...0,j=1...mi
αij and∧

i=1...0,j=1...mi
βij ` ψh. So a finite model(M ′′

h , R
′′
h, ν

′′
h) can be built which

contains a pointzh such thatzh 
 ¬ψh.
Then, a finite model(Mh, Rh, νh) which falsifies the sequent 9 can be built by

adding a new pointxh toM ′
h andM ′′

h , in order to obtainMh = {x}∪M ′
h ∪M ′′

h ,
and settingRh = {〈x, y, z〉} ∪R′h ∪R′′h andνh = ν′h ∪ ν′′h .

So, let us continue under the assumption thatH 6= ∅. We will use in the sequel
the fact that in this case{1, . . . , n} ∈ H.

If H 6= ∅, then if we would be able to find a subsetG of H such that:∧
A∈G

∨
j∈A

βj ` ψh (12)

we would have found the required instance of2-gen-rule10.
To this aim, we need some preliminary lemmas. Let us consider the setF of

all the functionsφ : H −→ {1, . . . , n} such thatφ(A) ∈ A11.

Lemma 2.5. Suppose no subsetG ofH can be found such that the sequent 12
holds. Then it is constructively given a (choice) functionφ∗ ∈ F such that∧

A∈H
βφ∗(A) 6` ψh (13)

9For a better comprehension of the sequel, it can be useful to note that this condition doesn’t mean
that the elements of the setG are a partition of the set{1, . . . , n}.

10Notice again that all of the sequents 12 can be assumed to be decidable since, according to the
definition of complexity that we gave in the beginning of this section, they also are simpler than the
sequent 9.

11This is the set of choice functions onP ({1, . . . , n}) \ ∅.
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Proof. If no subsetG of H can be found which satisfies the condition in the
hypothesis, then in particular, namely, forG = H, we have that∧

A∈H

∨
j∈A

βj 6` ψh

Then, by distributivity, we obtain:∨
φ∈F

∧
A∈H

βφ(A) 6` ψh

Hence the result is immediate. �

The functionφ∗ that we pointed out in the previous lemma is useful for finding
a suitable subset of indexesB = {φ∗(A)|A ∈ H} of the set{1, . . . , n} such
that, by induction on the complexity of the considered sequent, a finite model
(M ′

h, R
′
h, ν

′
h) can be built which contains a pointzh such that, for anyβi with

i ∈ B, zh 
 βi whereaszh 
 ¬ψh.
Note that to build a finite counter-model for the sequent 9 whenB = {1, . . . , n}

we need only to build a finite model(M ′′
h , R

′′
h, ν

′′
h) which contains a pointyh such

that yh 
 φh. Since the sequent 9 is clearly provable if` ¬φh, and hence our
proof search would have stopped with a proof in this case, we can suppose, by
inductive hypothesis, to know how to build such a model.

The next lemma will show how to proceed in building the finite counter-model
for the sequent 9 when the set of indexesB is not{1, . . . , n}.

Lemma 2.6. SupposeB 6= {1, . . . , n} and setC = {1, · · · , n}\φ∗(H). Then

φh 6`
∨
j∈C

αj (14)

Proof. Suppose the sequentφh `
∨

j∈C αj is provable. ThenC ∈ H.
Consider now the functionφ∗ that we pointed out in the previous lemma 2.5.
Then, we get thatφ∗(C) ∈ C sinceφ∗ ∈ F whereas the very definition ofC
yields thatφ∗(C) 6∈ C. Contradiction. �

Thus, by inductive hypothesis, we can build a finite model(M ′′
h , R

′′
h, ν

′′
h) such

that there is a pointyh such that for anyαj , with j ∈ {1, . . . , n}\φ∗(H), yh 
 ¬αj

andyh 
 φh.
In order to build a finite counter-model(Mh, Rh, νh) for the sequent 9 we can

now put together the two models we built and add them a new pointxh, that is,

Mh = {xh} ∪M ′
h ∪M ′′

h

and define the relationRh by setting

Rh ≡ {< xh, yh, zh >} ∪R′h ∪R′′h
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and the interpretationνh by setting, for anyw ∈Mh and any propositional variable
p,

w ∈ νh(p) if and only ifw ∈ ν′h(p) orw ∈ ν′′h(p)

Let us go back now to the problem of the proof of the sequent 8 and let us suppose
that for no1 ≤ h ≤ m, the corresponding sequent 9 is provable, otherwise we
would have the required proof of the sequent 8. Then, for each1 ≤ h ≤ m,
we can construct as above the finite models(M ′

h, R
′
h, ν

′
h) and(M ′′

h , R
′′
h, ν

′′
h) with

suitable pointsyh andzh. Then in order to build a finite counter-model(M,R, ν)
for the sequent 8, it is sufficient to put all of these models together, that is, we
have to add a new pointx and connect it with all the couple(yh, zh). So,

M ≡ {x} ∪M ′
1 ∪M ′′

1 ∪ . . . ∪M ′
m ∪M ′′

m

R ≡ {〈x, y1, z1〉, . . . , 〈x, ym, zm〉} ∪R′1 ∪R′′1 ∪ . . . ∪R′m ∪R′′m

ν(p) =
{
ν′1(p) ∪ ν′′1 (p) ∪ . . . ν′m(p) ∪ ν′′m(p) ∪ {x} if p ∈ {p1, . . . , pr}
ν′1(p) ∪ ν′′1 (p) ∪ . . . ν′m(p) ∪ ν′′m(p) otherwise

It is now obvious that the pointx falsifies the sequent 8. In fact, for each
p ∈ {p1, . . . , pr}, x 
 p holds by definition of the valuationν and, for1 ≤ i ≤ n,
x 
 2(αi, βi) since, for each1 ≤ h ≤ m and for eachyh andzh, if yh 
 αi

thenzh 
 βi. Finally, for noq ∈ {q1, . . . , qs}, x 
 q, again by definition of
the valuationν, and, for each1 ≤ h ≤ m, there are suitable pointsyh and
zh in M such thatR(x, yh, zh) holds andyh 
 φh andzh 
 ¬ψh and hence
x 
 ¬2(φh, ψh).

3. RELATIONS BETWEEN THE LOGIC BK, THE INTERSECTION
TYPES SYSTEM AND RELEVANTS LOGICS

In this section we point out the possible relations betweenBK, the intersection
types systems and the relevant logics introduced in [16].

First we refine the notion of model forBK. Let us define the following semantics
which clearly recalls and extends the semantics proposed in [4] for the sub-typing
relation≤∧ (see section 1).

Definition 3.1. Let A = (A, ·) be any applicative structure. Thenν is a
valuationof the formulas ofBK into subsets ofA if the following conditions are
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satisfied:

ν(>) = A
ν(⊥) = ∅
ν(α ∧ β) = ν(α) ∩ ν(β)
ν(α ∨ β) = ν(α) ∪ ν(β)
ν(¬α) = ν(α)c

ν(2(α, β)) = {x ∈ A | (∀y ∈ ν(α)) if x · y is defined thenx · y ∈ ν(β)}

Let α be any formula ofBK. Then it will be saidvalid if and only if, for every
applicative structureA and every valuationν intoA, ν(α) = A.

By using the results in the previous section we can obtain the following com-
pleteness result.

Theorem 3.1. LetΓ ` Φ be any sequent. ThenΓ ` Φ is derivable if and only
if for every applicative structureA and every valuationν,

⋂
α∈Γ

ν(α) ⊆
⋃

β∈Φ

ν(β).

Proof. For the proof of validity only the correctness of the2-gen-ruledeserves
some comments; but it is not difficult to show that this rule is correct by mimicking
the correctness proof we exhibited in the past sections.

For what concerns completeness, let us observe that the finite models(M,R, ν)
of the previous section 2.2 can be constructed in such a way that for everyx, y ∈M
there exists at most one elementz ∈M such thatR(x, y, z) holds. Thus, provided
Γ 6` Φ, let(M,R, ν) be such a finite counter-model forΓ ` Φ. Then we can define
the applicative structureA = (M, ·) such thatx · y = z if and only ifR(x, y, z)
and the valuationν such that, for everyα, ν(α) = {x | x 
 α}. It is easy to check
that these definitions are correct and that they yield

⋂
α∈Γ

ν(α) 6⊆
⋃

β∈Φ

ν(β). �

It is now possible to establish a conservativity result for the sub-typing relation:

Theorem 3.2. LetI be the interpretation of the types ofΛ∧ into formulas of
BK defined by setting:

I(α) = α for every type variableα
I(ω) = >
I(α ∧ β) = I(α) ∧ I(β)
I(α→ β) = 2(I(α), I(β))

Thenα ≤∧ β if and only ifI(α) ` I(β).

Proof. If α ≤∧ β thenI(α) ` I(β) follows by the fact that all the axioms
on the sub-typing relation are translated into valid sequents andBKS∗ is closed
under the translation of all the rules for the sub-typing relation.
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To establish the converse, observe that ifα 6≤∧ β then there exists a weakly
extensionalλ-algebraA and a valuation of the typesν such thatν(α) 6⊆ ν(β); it
is easy to check that the sameA and the sameν are such thatν(I(α)) 6⊆ ν(I(β)),
so the completeness theorem 3.1 yieldsI(α) 6` I(β), since anyλ-model is clearly
a partial applicative structure. �

Thus, it seems that the new semantics we proposed forBK naturally extends the
sub-typing relation≤∧. Unfortunately, our completeness result holds if we letA
vary over all kind of applicative structures; and the ones that we used to show the
completeness theorem are far from being weakly extensionalλ-algebras or even
combinatorially complete applicative structures.

Nevertheless,BK shows that an alternative approach can be followed in the
search of interesting models for computation, that is, one can select a suitable
sub-logicL of BK such that the completeness theorem for this logic holds with
respect to the class ofλ-models. If such a task will be achieved then the sub-logic
L immediately suggests how to define a complete typing system for the lambda-
calculus which extends the intersection type system introduced in section 1. In
fact a similar approach has been pursued in [9] in order to obtain an intersection
types style semantic for the languageXML.

Another example of the same idea has been noticed by R.K. Meyer; in fact
he observed that if we drop negation fromBK the completeness result for this
fragment ofBK holds with respect to the class of structures with a total binary
operation.
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