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Intersection types discipline allows to define a wide variety of models for the type
free lambda-calculus, but the Curry-Howard isomorphism breaks down for this kind of
type systems. In this paper we show that the correspondence between types and suitable
logical formulas can still be recovered appealing to the fact that there is a strict connection
between the semantics for lambda-calculus induced by the intersection types and a Kripke
style semantics for modal and relevant logics. Indeed, we present a modal logic hinted by
the analysis of the sub-typing relation for intersection types, and we show that the deduction
relation for such a modal system is a conservative extension of the relation of sub-typing.
Then, we define a Kripke-style semantics for the formulas of such a system, present suitable
sequential calculi, prove a completeness theorem and give a syntactical proof of the cut
elimination property. Finally, we define a decision procedure for theorem-hood and we
show that it yields the finite model property and cut-redundancy.

1. INTERSECTION TYPES

Pure lambda-calculus formalizes the notion of computable function with no
reference to the concepts of domain and co-domain, contrary to what happens
in the set theoretic or the categorical approach (see [3]). Indeed, a lambda term
is built inductively, starting from variables, by means of lambda abstraction and
an unrestricted form of application. Thus, we have the following term formation
rules:

Term := Var | (A Var.Term) | Term(Term)
1
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whereVar is a countable set whose elements are called variables.

Not only the syntax of the objects of is simple, but also the notion of
computation for this very abstract notion of function becomes the simple notion of
B-reduction(notation~-3). This is the relation between lambda terms obtained by
closing under the term construction operations the relatiosr@dntraction that
is, (Az.c)(a) ~ c[z := a]. The computation of the value of a lambda term is then
defined as @&eduction process.e. successive steps @freduction, until anormal
form of the term is possibly reached, that is, a form wheresrapntraction can
be applied. Given a lambda temmthere are in general many different reduction
processes, according to the choice of fheontraction to be expanded withif
hence, it is well possible that only some of the reduction processes eventually
terminate into a normal form. Moreover, since it is possible to have a code within
A for any recursive function, there is no possibility to know if a reduction process
for ¢ will eventually terminate, because of the halting problem.

On the other hand, in the usual mathematical practice - both in the set theoretic
and in the categorical approach - and in many concrete algorithms, functions are
intended to operate over objects of a certain type in order to produce objects
of some other type. Following this idea, the rule of application should be no
longer completely free; in fact a function should be applicable only to arguments
of the correct type. Thus, it will be no longer possible to build all the terms
of A. However, a main advantage of this approach is the possibility to prove
more properties on the terms which can be built because of the greater quantity
of information. For instance, one of the main problems on the termsisfto
determine whether all the reduction processes for a certain term will eventually
terminate, that is, thetrong normalizationproblem, which reflects in tha-
formalism one of the key problem in Computer science, that is, the problem of
finding a suitable methods to deal with total correctness of programs. In the case of
lambda-calculi where functions and their arguments have a type there are suitable
tools to deal with this problem. For instance, a possibility is to usesiimgly
typedlambda-calculug\ _; its rules of type formation are the following:

Type := BasTypes | Type — Type

whereBasTypes is a set whose elements are calbasic types

The intended meaning is that a type— 7 denotes a set of functions from
elements of the set denoted by the typmto elements of the set denoted by the
typer. Thus, in order to build the elements of these types, we use the following
rules:

(variable) Iz:obuax:o
Ie:okbe:7
lambda abstraction ’
( ion) 'FXzc:o—T1 (1)

ket —o0o I'Fa:7

(application) TT c(a) o




A BINARY MODAL LOGIC OF THE INTERSECTION TYPES 3

wherel is a commutative list of assumptions of the fogm o, for some typer,
such that no variable appears more than once.

A striking aspect of this typing system is that after a close inspection of the
rules of A_, it is easily shown that when we strip away variables and terms from
the typing system, we obtain a complete sequent calculus for the implicational
fragment of intuitionistic logic; in fact, this is th€urry-Howard Isomorphism
(see [6]).

A_. has many other desirable features; for example it is well known (see for
instance [11]) that all the terms &f , are strongly normalizing. Hence, the terms
of A_, form a subset of the set of strongly normalizing termd oBut, not all of
the strongly normalizing terms df have a type in\_,; for instance, consider the
termAz.z(x): itis in normal form, and hence it is trivially strongly normalizing,
but it cannot have a type withih_, because of the instance sélf-application
From a computational point of view this is a great loss, since it is clear that a
complete solution of the strong normalization problem would be a typing system
which allows to assign a type to all of the strongly normalizing terma ,odnd
only to them. Surprisingly, this typing system exists and can be obtained from
A_, by adding just one type (see [19] or [25] for a recent new proof). The abstract
syntax of the types of this calculus, of intersection typess the following:

Type := BasTypes | Type — Type | Type A Type

The intended meaning of the new typeA 7 of A, is thato A 7 denotes the
intersection of the two sets denoted by the typand respectively. Thus, in
order to build the elements for these new types, we add the following rules to the
previous ones:

I'kc:o F'ke:r
I'Fc:oNnT
Fc:oANT T'kFc:oAT
I'kc:o I'kFe:7

(intersection introduction)
)

. . T &
(intersection elimination)

The starting question of our search is: "Can €wry-Howard Isomorphism
be somehow recovered also for this extended typing system?"

A first inspection shows that all the types which can be assigned to a closed
A-term are theorems of the fragment of the intuitionistic propositional logic con-
taining only implication and conjunction; but it is possible to find theorems of the
intuitionistic logic of conjunction and implication which are inhabited by no closed
A-term in pure intersection type system, for exam(ale— o) A (o — (8 — «))

(see [12]). This example should be sufficient to show that it is not a straight-
forward task to recover th€urry-Howard isomorphisnfior this type system: a
deeper analysis of the properties of intersection types is needed.

A key step towards a better comprehensiom\gf can be found in [4]. We
will briefly sum up the content of that paper since it has been the starting point



4 SILVIO VALENTINI — MATTEO VIALE

of our research. In [4] the authors show that the interesting computational prop-
erties enjoyed by the intersection type system are a consequence of the fact that
intersection types allow to define a natural, expressive and flexible semantic for
the lambda-calculus. The starting point of their work is to defirsula-typing
relation<, between types of ., whose intended meaning is that<, 3 holds

if o is more informative about the term to which it is assigned thamA new

type constan is added to the set of basic types; its intended meaning is coding
the vacuous information. Finally, the following axioms and rules are proposed to
characterize the sub-typing relation.

Axioms
a <A w wW<AWw—w
a<\aho aNB<pa  aANB<SAB
(@ = B)A(a—7) <a(a— (BAY))
Rules
a <\ B B<ay a1 <A B ag <A B ap Sh o B2 <a B
a<sv ay Aag <p B1 A B2 ay = Po <pap — B

To support the intuition about the relatigf), let us analyze one of the axioms
above:

(a—=pB)A(a—=7) < (@—= (BA9))
It states that all the lambda terms to which it can be assigned botlatypes and
«a — vy can also be typed by — (6 A ). And indeed in the pure intersection
type system, if we are able to proVe- \x.M : (o — ) A (a — ), then also
'+ Xxe.M : a— (8 A~) can be proved.

One of the reason for introducing the sub-typing relation is to extend such kind
of property of the type assignment system to any term and not only to terms of a
particular shape. Of course, in order to obtain this result, it is necessary to add
to the type assignment system defined by rules 1 and 2 not only the sub-typing
relation but also the following assignment rule which allows to use it:

I'EM:a a<.p
THM:j €)

The sub-typing relation suggests a natural way to define a semantical counterpart
to the notion of type assignment. To illustrate this fact let us recall the following
definitions and results of [4]. We feel free to present them in a setting more
suitable for our aims.

DEFINITION 1.1. Let A = (A,-,<) be anordered weakly extensional
A-algebra namely, (A4, -) is a weakly extensional-algebra and < is an order

1A complete development of the theory of weakly extensiokalgebras can be found in [3],
chapter 5.
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relation on elements o such that ifr < y andz < wthenz -z < y-w. Then
a mapv(—) is avaluationof the types ofA 5 into subsets ofA if:

e v(w)=A
o v(aAf) =wv(a) Nv(B)
o via—B) ={rec Al (Vyev()z-ycv(l)}

It is worth noting the following lemma whose proof is immediate.

LEmMA 1.1. Lety(—) be any valuation of the types Af, into A. Thenv(—)
is upward closed, that is, for any type if w € v(«) andw < z thenz € v(«a).

After definition 1.1, it is immediatly possible to state a completeness theorem
for the logic defined by the axioms and the rules of the sub-typing relation with
respect to the class of the ordered weakly extensigratebras:

THEOREM 1.1. « <, (holdsif and only if, for all ordered weakly extensional
A-algebrasA and all type valuations into subsets ofi, v(«) C v(3) holds.

This theorem states the main property of the sub-typing relatiopmtroduced
in [4]. But, while that paper aims to show that the axioms and the rules which
characterize< , are strong enough to prove that the &etf filters of types defines
a weakly extensional-algebra, here we want to point out that this happens also
becauseF is a sort ofcanonical Kripke framef the sub-typing relatiorc . So,
let us recall that a filter oA\, is a non-empty subsdt of the set of types of\ ,
which is closed undex, that is, ifa, 5 € F'thena A 8 € F, and up-ward closed,
thatis, ifa € Fanda <, §thens € F. We will need the following filter
construction lemma.

LEMMA 1.2. Leta be any type. Then
Ta={p €A\ a<s b}

is a filter that will be called thdilter generatedby .

Consider now the set
F ={F| Fisafilter of Ax}

and, provided?” andG are two elements aF, define the following operation on
filters:

F-G={yeA\(Fd€eAr) (=1 F)& (€ @)}
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Note that if i, C F5 andG, C Gy thenF - G C Fy - Go. Then, the following
theorem can be proved (see [4]).

THEOREM 1.2. LetF,G € F. ThenF - G is afilter, i.e.,F is closed under,
and(F, -, Q) is an ordered weakly extensionalalgebra.

As we already said, we will ignore the difficult part in the proof of this theorem,
thatis, to show thatF, -) is a weakly extensional-algebra, and we will just show
that it is the canonical Kripke frame of the logic €f,. To this aim, consider the
mape(—) of types ofA , into subsets ofF defined by setting

ola)={F e Fla e F}

It is immediate to check the following lemma.

LeMMA 1.3. The mapp(—) defined as above is a valuation.

After one has proved thdfF, -) is a weakly extensional-algebra, this lemma
immediately yields the completeness theorem 1.1. Indeed, it is easy to provide a
direct check of the left to right implication. On the other hand, let us suppose that
for any valuatiornv(—) of the types ofA » into subset of an ordered weakly exten-
sionalX-algebraA, v(«) C v(8) holds; then, if we specialize this assumption to
the ordered weakly extension®algebra(F, -, C) and to the valuatiog(—) that
we defined above, then we obtain tiggt) C ¢(3); hence, for any filteF” € F,
if ' € ¢(a) thenF € ¢(5). But this means that it € F thens € F. Letus
consider now the filteta; it clearly containsy and hences €1a, thatis,a <, 5,
follows.

We can present all the previous considerations in a slightly different, but deeply
related, setting if we use a "relational" model instead of a ordered weakly exten-
sional A-algebra. Indeed a map(—) from the set of the types ok, into the
set of the subsets of a sdtcan be presented also like a standard modal forcing
relationl- between elements of and types provided that we adopt the following
position:

zIF acifand only if z € v(«)
Then the requirements on the map-) in definition 1.1 force immediately the
following inductive conditions oft-,:

zIF « iff € v(a), for any basic typev
rlF w iff true
zlF ang iff zlF «andx IF 3

More complex is to state the condition on the forcing relation when thedtypeg
is considered. We can solve this problem if we introduce a three places rekation
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over A whose intended meaning is to state tRdt, y, z) holds whenz - y < z.
Then, sincev < zandw IF” Byieldsz I 3 as a consequence of upward closure
of any valuation, it is not difficult to check that the correct condition on the forcing
relation becomes

2l a— g iff (Vze M) ((Jy e M) R(z,y,2) &yl a) = (2 IFY §)

This forcing relation can be used to define an interpretation of the relatiom
amodel(A, R, v). In fact, we can set

(A, R,v) Ea <, piff Yz e A) (zF a)= (x I 5)

which, recalling the position above, means that R, v) | o <, g if and only
if v(a) C ().

This interpretation can be generalized to any structdreR) by setting

(A R) = (a<p B) iff (A R,v) [ (a<sp),
for any mapy : BasTypes — P(M)

Thus we arrived at a relational semantics for the subtype relation, that is,
a = piff (A, R) = a <, B, forany structurd A, R)

It is now possible to state the following theorem of validity and completeness for
relational structures which is the analogous of theorem 1.1.

THEOREM 1.3. « = gifand only ifa <, 3.

Even if the proof of this theorem is just a rewriting of the proof of theorem 1.1,
let us show the relevant steps since they will be useful in the next section. The
proof of validity is straightforward while in order to prove completeness let us
consider again the sét of the filters ofA 5 and define a three place relati®on
its elements by setting

R(F,G,H)=(V8) (3aeG)a—pLeF)= (e H)

thatis,R(F, G, H) holds if and only ifF" - G C H.
Then, consider the interpretation maplefined by setting, for any basic type
«,

¢pla) ={Flae F}
and extend it by induction to a forcing relatitt?. Then, itis not difficult to prove

that (F, R, ¢) is a model for<,. Moreover, it is possible to prove by induction
on type complexity the following lemma.
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LEMMA 1.4. Leta be any type and” be any filter ofA,. ThenF IF¢ « if
and only ifa € F.

Now, this lemma immediately yields the completeness theorem 1.3 since sup-
posinga |= § we obtain(F, R, ¢) = (o < () and hence, for any filteF’ € F,
if FIF? othenF IF? 8. But, after lemma 1.4, this means thabife F then
B € F. Let us consider now the filtgw; it clearly containgy and henced €1,
thatis,a <, .

The semantics we considered here is clearly recalling a sort of non-standard
Kripke semantics for a modal logic: the idea to define a modal interpretation for
the connective- started here. The intuitive explanations is that lambda-terms are
thought of as worlds in which their types are true formulas.

Now, the sub-typing axioms and rules are quite similar to a logical axiom system
in which intersection behaves like the classical connectiwehile — axioms and
rules are sound for intuitionistic implication but are surely not complete; in fact,
it can be shown (see [26]) that this sub-typing system is the restrictionatod
— of the logic B of relevant implication introduced in [16]. So, the sub-typing
relation suggests a different approach to the problem of setting a logic that reflects
the properties of the intersection types assignment system, an approach which
is alternative to the&Curry-Howard isomorphisnparadigma: one does not try to
define a proof system whose logic reflects the rules of type assignment, but defines
a modal logic whose Kripke style semantics is as close as possible to the natural
semantics of the intersection types system. Thus, we will develop a modal logical
system in which the type constructer is interpreted as a suitable modal operator
and whose semantics is a natural extension of the semantics for the sub-typing
relation. To this aim, in section 2 we generalize the semantics for relevant logics
that was introduced in [16] and that was shown in [26] to interpret faithfully the
sub-typing relation. Then we define a complete sequent calculus for the logical
system so obtained and study its main properties. In particular, we establish the
cut elimination property, the decidability property and the finite model property.
In section 3 we show that our logic can be characterized as the logic over partial
applicative structures and that under this interpretation it is well possible that our
logic is a first step towards the the definition of a type systerm\fathich extends
the intersection types and introduce a disjunction and a negation type constructor.

2. THE TWO-PLACE MODAL LOGIC BK

In this section we present the modal lo@& for which we state and prove
a completeness theorem. To this aim consider the propositional modal language
whose formulas are inductively defined as follows

e Any propositional variable is a formula;
e | andT are formulas;
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e If & and are formulas then alse A 8, a V 3, —«, o D [ are formulas;

e If @ andp are formulas thenl(«, ) is a formula.

We can define &ripke-like semantics for the formulas of this language as
follows. Let A be a set andt be a ternary relation ovet and suppose thatis a
map of the propositional variables into subsetsiofThen, supposing € A and
p is a propositional variable, set

zIFp iff zev(p)
z Ik L iff falsum
xIFT iff true

I anpg iff zlF aandx Y S

I avpg iff xlFaorzlkY g

x IFY -« iff I«

I aDpf iff I ayieldsz IHY 8

x I O(a, B) iff forall y andz such thatR(zx, y, 2), if y Ik, a thenz Ik, 8

To understand the intended meaning of the modal operator it can be useful to
consider the following explanation. Let be the set of the non-deterministic
programs; then a formulais true for the program: (notationz I+ «) if and only
if the typea can be assigned to. Moreover,R(x, y, z) holds if and only ify is
an input accepted by the progranandz is a possible output of when applied
to y; so, provided means the application operatiaR(z, y, z) holds if and only
if -y may givez as an output. Them(«, ) holds forx if and only if, for every
inputy of type o which is accepted by the programevery possible output of
x applied toy has types.

Let us recall now the standard conditions for validity of a formula in a Kripke-
style semantics: a formula is true in the mode{A, R, v) if, for every element
x € A, z IFY a; moreover, a formula is true in the frantd, R) if, for every
valuationv, it is true in the mode(A, R, v); finally, a formula is valid if it is true
in every frame.

It is interesting to note that what we defined is a generalization of the usual
modal situation. In fact, we can define a standard modality by seftii) =
O(T, 8) and then we obtain the usual definition for a forcing relation by setting
R(z,2) = (3y € A) R(z,y,z). Since no extra condition is required on the
relation R, the models that we defined directly generalize the situation for the
modal logicK. This is the reason why we call&K this binary modal logic.

Consider now any complete sequent calculus for the classical propositional
logic such that sequents are couples of finite sets of forriwlssuch a calculus

2This last requirement is just a simplification which allows to consider cut and weakening as the
only structural rules.
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add the following modal rule:

abFay,... a, B1,..,Bm BB
{O(e, B)|i=1...m,7=1...m} O, B)

In the following we will call the sequent calculus obtained in this Vi2g5.

We will adopt for BKS the standard terminology for a sequent calculus, that
is, we will say that a sequei provableif it can be obtained from the axioms
by a finite number of applications of the deduction rules, a sequgnt ., «,, +
B, - - -, Bm isvalidif and only if the formulao; A ... Acw,, D B1 V...V G, Of BK
is valid, aformula« is provableif and only if the sequent « is a provable, and,
if " is a set of formulas, theh is consistent if and only if, for any finite’ C T,
the sequenk’ I () is not a provable.

O-rule n>0m2>0

THEOREM 2.1. The sequent calculBKS is correct forBK.

Proof. Only correctness of th&l-rule deserves a proof, since all the other
rules ofBKS are shown to be correct by standard arguments. So, let us show that
the O-rule is valid in any frame. To this aim, let us suppose that its conclusion
is not valid in some framéA, R), that is, let us suppose that there exists a point
x € A and a valuatiorv such thatr I —-0O(«, 5) whereas forali = 1...n
andj = 1...m, z IF¥ O(ey, B;). Then there must exist two poinsz € A
such thatR(z, y, z) holds andy I+¥ « andz IF¥ —3. Hence, by the left premise,
we obtain that there must be some indesuch thaty IF¥ «; and thus, for any
j=1...m, zIF §;, sincex I O(c;, 3;). Butthen the right premise forces
z IFY 3, contradiction. |

In the sequel we will show th&KS is also complete foBK. To this aim it is
convenient to consider two instances of th&ule, which are indeed sufficient to
obtain the result. The first one is obtained fo= 1 anda; = « and the second
one form = 1 andg; = 5.

.. ﬁ17"'7ﬂ771}7ﬁ
O- , >
monotonicity B, 3., O(e, B) - O, B) m >0
atay,...,an

O-anti-monotonicity >0

O(ay, B),- .., 0(cm, B) F O(a, 5) ' =

Note that settingn = 0 and o = L in O-anti-monotonicitywe obtain that
O(L, B) is provable and settingp = 0 and3 = T in O-monotonicitywe obtain
thatO(«, T) is provable.

Moreover, thed-rule is sufficient to prove that the binary modal operator is an
operation in the Lindenbaum algebfa x of BK2. In fact, the following theorem
holds.

3By Lpx we mean the set of equivalence classes over the formul&anduced by the equiv-
alence relation defined by settimg= g if and only if - (o D ) A (8 D «), endowed with the
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THEOREM 2.2. Letk a; < ag andhr b1 < ﬂQ. Thenk D(Ozl,ﬂl) —

D(a27ﬂ2)-

Proof: It is sufficient to show that itv; - a7 and3; F (> hold then also
O(au, f1) F O(ag, B2) holds, which is immediate byi-rule. |

It is worth noting that the proof of this theorem shows that the modality that we
are considering enjoys some of the features of an implication, even if one should
be aware that the usual rule of implication introduction is not valid for such a
modality, that isqe - 5 does not yield- O(«, 3).

We can now prove the completeness theorem.

THEOREM 2.3. The sequent,...,a, F B1,..., By is provable inBKS if
and only if it is valid in any frame.

We already proved that all the rulesBKS are valid. To prove that they are also
sufficient we will adapt taKS the standard approach to prove completeness for
modal logical systems, that is, we start from the frame induced by the Lindenbaum
Algebra ofBKS and define a canonical model which is shown to yield the desired
completeness resfiltTo this aim, let us consider the $¢of ultrafilters of £ g x>
and define a ternary relatid® overl/ by setting

R(F,.G,H)=F-GCH

whereF - G = {§ | there isy € G such thatd(v, d) € F'}.

Itis interesting to note that - G is a filter, as we noted in the previous section,
but, in general, it is not an ultrafilter ofiz . This is the reason why we cannot
simply adapt the completeness proof of the previous section to the c&i€Sof
where also a negation connective is considered, and a new proof must be provided.

The last step in our completeness proof is to define a canonical vallatbn
the propositional variables into the set of the subset#:of

Vip)={FeU|peF}

boolean structure given by the operations induced by the classical connedtijés= [-a] and
[a] N [B] = [a A B]. On any boolean algebra the operations induce a natural order relation which in
the case of a Lindenbaum Algebras can also be defineldvas: 3] if and only if o - 3 is provable.
In the sequel of the paper, following standard use, we will often identify the equivalencé«dagth
any of its representative (for examplg, in order to simplify the notation.
4A detailed account on the techniques used to construct such canonical models can be found in any
introductory text on modal logic (see for instance [13]).
5An ultrafilter F on a boolean algebia is just a filter such that forany € B,z € Forz® € F
but not both.
6Consider, for instance, the case for sofhe G, O(3, L) € F; in this caseF - G is the trivial
filter, that is, it coincides with the whole algebfas . Then, for noH we haveR(F, G, H), that is,
G is not an acceptable input faf.
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The completeness theorem will then be achieved if the following key lemma
holds.

Lemma 2.1. For any formulaa, F IFY « if and only ifa € F.

Infact, ifay,...,a, F 51, ..., Bm IS NoOt provable, then, by obvious properties
of the calculus the formuléo; A ... Aay,) D (61 V...V By,) IS not provable.
Now, leta be any formula; then, if is not provable thefn] # 1., and hence
[a]¢ # Oz, - Butafundamental property of boolean algebra is that any non-zero
element is contained in some utrafiter (see [2]); hence, there exists an ultrafilter
F such that-((ay A ... Aay) D (A1 V...V By)) € F. By consistency of
ultrafilters, this yields thatoy A ... Aay) D (81 V...V B,) € F and hence,
by lemma 2.1F XY (ay A ... Aay) D (B V...V B,) and this means that the
sequentyy,...,an F By,. .., By is not valid in the mode(ld, R, V).

The rest of this section will be dedicated to the proof of lemma 2.1. Let us
argue according to the complexity of the formulaThe cases of the propositional
connectives are immediate:

e if o is the propositional variablg then by definitionF” IV p if and only if
F e V(p)ifandonlyifp € F;

e if « = | then the result is immediate sinéeis a proper filter;

e if « = T ora = a3 A as the result follows by induction from the fact that
is a filter of a boolean algebra;

eif «a = a1 Vas a=-a; ora = a; D ay then the result follows by
induction from the fact thak’ is an ultrafilter.

The proof for the modal case = O(«y, ) is more elaborate, and will go
through the rest of this section. We can immediately provei{at, as) € F
yieldsF IFY O(aq, o). Infact, letus suppose th@t H <€ U andR(F, G, H) and
G IFY a4 hold. Thena; € G by inductive hypothesis and hencéay, as) € F
and R(F,G, H) yieldsay € H. ThenH IFV a, by inductive hypothesis and
henceF IFV O(a1, as) by definition.

The hard part is the proof that IFV O(a;y, az) yieldsO(ay, az) € F. In fact,
we will prove the converse, that is, we will assume thatv,, 2) ¢ F and we
will show that it is possible to build two ultrafilters andH such thai?(F, G, H)
holds,G IFY oy andH ¥V aw, thatis,F IV O(ay, as). The ideais to build the
ultrafilter G with a continuous attention for the possibility to buftl To this aim
let us consider the following inductive definition of a sequeficg;c., of filters.
Let (¢;):c. be any surjective numbering of the elementLgfi and set

Yo 7 {01}
Vi — { T(Y;U{g:}) if T (Y;U{¢:})is (F,—az)-consistent
i+1 —

1 (Y; U{—¢;}) otherwise
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where we write] A to mean the minimal filter of g which contains the subset
A thatis,1] A={y € Lpk| Fa1,...,an € A)ax A... A, F~}, and we say
that a set of formulad is ( F, ~as)-consistent to mean that the $ét- A) U{—ax }

is consistent.

LeEmMA 2.2. For anyi > 0, the filterY; is generated by one formula, that is,
there exists a formula; such thaty; =7 {«,}.

Proof: By induction. By definitionY} is generated by, and, supposing that
Y; isgenerated by;, thenY; 11 =1 {¥; A¢;} orY; 11 =1 {¢; A—¢; } according to
the clause which applies in the definition)af. ;. In fact, it isimmediate to verify
that? (Y; U {~}) =1 {«: A~} becaus& €1 (Y; U {y}) means that there exist
Y1, .-, € Yy suchthatyy A ... Ay, Ay 6 and hence, by using the cut-rule,
; Ay F § because, for each< k < n, 9; I ;; in the other direction the result
is an immediate consequence of the fact thais an element o¥; =1 {¢;}. B

LEMMA 2.3. Foranyi > 0, the filterY; is (F, ~as)-consistent.

Proof. By induction on.

e Casei = 0. Let us suppose thafy, which is equivalent td {a4}, is not
(F, ~aq)-consistent; then there exigt, 1, . . ., v, 0, SUch that

O1yny0p,n0a F 0 4)
and, foranyl < k < n,
ar By (5)
andO(~, dx) € F. By cut and negation rules, from equation 4, we obtain
815y Op o (6)
and hence
{O0(a1,8;)|j=1...n}F O(ar,a) (7
follows by O-monotonicityapplied to the sequents, - «; and 6. But, for each

k < n, by hypothesis 5¢; F v and hence we can usganti-monotonicityto
obtain:

O(vk, 0x) F O(a, 0x)

Hence, for eaclk < n, O(ay, dx) € F sinceF is upward closed. But then, by 7
above, we would obtain that(«y, as) € F which is contrary to our assumption.
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e Induction Step. Suppose now, by inductive hypothesis, th# (F, ~«as)-
consistent and let us assume that bptliy; U ¢,) and T (Y; U —¢;) are not
(F, —ap)-consistent. Then there exist, 41, ..., v, 0n and~4, 987, .. ., Y0, 00,
such that, for any: < n and anyh < m the following conditions are satisfied:

(1) v el (Yiugy) O(vk,0k) € F
() v, €1 (YiUu—¢i)  O(y,,0,) € F
(B) 1A NG Fag 4 A NG as

By lemma 2.2, we know that; =1 {v;} for some formula);. Hence, for each
k <n, ¥; A ¢; F 7 and, for eacth < m, ¥; A =¢; b ~;. Then, byO-anti-
monotonicity for eachk < n, O(yg,dx) F O(¥; A ¢4, k) and hence, by the
condition (1.) above,

D(wl A ¢i,5k) el
For the same reason for eaeh< m, O(v;,, 87,) - O(¢; A —=¢;, ;) and hence, by
the condition (2.) above,

O(i A =3, 0p,) € F
Now, we use the latter sequents together with the conditions (3.) to apply
monotonicityin the following ways:

i N i F by A\ @y 010y 0n g
Ot A ¢, 01), .., O A ¢y, 0) F O(0; A s, ra)

and
i N =g by A~y Loy 0l Fag
O A =i, 1) Ao AD(Wi A =4, 65,) F O(Ys A =i, az)
Hence both(y; A ¢;, ) € F andO(y; A —¢;, az) € F. We can now conclude

immediately if we observe that; = (v; A ¢;) V (1 A =¢;) is a tautology and
then, by using agaif-anti-monotonicitywe can infer that

O A diy a2) A D(h; A =y, ) F O(1hy, ag)

and hencél(v;, as) € F which means that; is not(F, —as)-consistent against
the inductive hypothesis. |

We are now almost arrived to the end of the proof of lemma 2.1. In fact, lemma
2.3 suggests how to build the desired ultrafitterLet us set:

G= UYi

PEW

Then, we can prove the following lemma.
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LEMMA 2.4. Gis a(F, —as)-consistent ultrafilter.

Proof. G is a filter becaus@ € G sinceT € Yy =1 {«;} and, supposing
V1,72 € G, there is an index such thaty;,y» € Y;, i.e. ¢; - v andy; - 72,
because forany Y; C Y;., obviously holds; hence; - v1 Avys, i.e. y1Av2 € Y5,
and hencey; A v2 € G finally, if 41 € G and~; F 2 then there is an indek
such thaty; € Y;, i.e. ¥; F 1, and hence); - ~ by cut-rule, i.e.v, € Y;, so
thatye € G. Moreover, ifG was not(F, —as)-consistent then there would be,
81,2V, Op SUCh thatyy, ..., vy, € G, O(y1,61) € F,...,0(7n,d,) € F and
01 A...Nd, F ag; butthen there would exist an indéguch thatyy, . ...y, € Y;,
that isY; would not be(F, —as)-consistent, contrary to lemma 2.3.

To prove that5 is an ultrafilter we have only to prove it is a complete consistent
filter. Since any formula appears in the sequengg;);c., i.e. v = ¢, for some
i € w, we obtain thaty € Y;; or -y € Y;4;, and thusy € G or -y € G,
that is, G is complete. Finally consistency is a consequence of the factZhat
is (F, ~ag)-consistent. In fact, if7 was not consistent theh € G and hence
1 € F -G becausel(_L, 1) is provable and hence it belongs to every filtell

In order to build the ultrafilteF, let us consider the sét = (F'- G) U {—aw }.
The setZ is consistent by definition sinc€ is (F, —as)-consistent; ther?Z
can be extended to a proper ultrafiltérin the usual way (see [2]). Moreover,
R(F,G,H), that is, F - G C H, holds by construction. Finallyy; € G by
definition and—ay € H becauseas € Z. We have thus completed the proof of
lemma 2.1 and hence also that one of theorem 2.3.

Some comments on the previous proof are in order. What we did is just a
refinement of the proof used in [16] to show completeness of various positive
relevant logics. In factBK can be considered as the boolean completion of
the minimal relevant logid3; and our completeness proof shows that adding
classical negation t® yields to a conservative extension. The same result was
also obtained in [17] by using a different proof. We will show later that there are
other connections between the lo@k and the systeni.

2.1. Cut-elimination

In the previous section we proved thiatrule is valid with respect to the Kripke
models that we proposed and sufficient to obtain a completeness proof. However
to obtain such a completeness proof it is essential to use also the cut-rule which
should be explicitly consider among the structural rule8BS. Indeed, it is
possible to show that the rules we introduced are not sufficient to obtain a cut
elimination theorem; for example, the following sequent is valid, but it cannot be
proved without using instances of the cut-rule

O(a, ), 0(8,8) - D(aV B,V §)

"This example was suggested to us by R.K.Meyer.
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However, it is possible to prove the cut-elimination theorem for a version of the
sequent calculus fdBK obtained by a slight modification of the modal rule. To
this aim, let us consider the following rule:

AV \/j:1...m7., Vij Nici.n Vj:l...m,; iy = 0
O0(711,011)5 - - +» O(Ynm, » Onm, ) = B(e, B)

with the obvious meaning of the generalized connectives. We wilBi&8* the
sequent calculus obtained frdaiKS by substituting3-rule with the rule above.

Note that distributivity ofA overV allows to presenti-gen-rulelike a more
standard rule, provided we use rules with a non-fixed number of premises instead
of generalized quantifiers, that is,

«
(O-gen-rule)

511a5217' "3577,1 F /6
612a6217' "75711 F ﬁ
06"’711,...,’}/1.,”] .

: O1mys 021, -+, 0n1 = 3
al_’}/nla---a’}/nmn .
51m1762m27~-‘75nmn '_ﬂ
D(V117511)7 LR D(’Ynmna(snmn) = D(avﬁ)

It is easy to check thatl-gen-ruleis valid in any of the considered Kripke
model.

(8-gen-rule)

THEOREM 2.4. O-gen-ruleis valid with respect to the models fBK.

Proof. Let us suppose that there is a pairih a model such that IF —=O(«, 5)
andz I O(v;4, d;;) foranyl < i < nandl < j < m;. Hence there must exist
in the model two pointg andz, in relation withz, such thaty I+ « andz I+ .
Theny It A;_y . V=1 m, 7Vij» and hence for all = 1...n, there is at least
onel < j < m,; suchthay IF v;; holds. Hence IF §,;, because IF O(v;;, ),
andsozlFA,_; ,V d;; which yieldsz I 3. Contradiction. u

It is worth noting thatO-monotonicityand O-anti-monotonicityare special
instances ofd-gen-rule In fact, let us putn; = 1 for eachl < ¢ < n and
vi; = o in theO-gen-rulerule, then we obtain

aFaAN...Na O AN...N6,F(
O(a,d1), ..., 0(, 6,) F O(c, B)

which is equivalent tad-monotonicity And if we putn = 1, m; = m and
01; = 0, then we obtain

aFmnV...Vy, BV...VBEQS
D(’Ylvﬁ)»"wm(vmaﬁ) '_D(a»ﬂ)
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which is equivalent taJ-anti-monotonicity Thus, after theorem 2.3 of validity

and completeness, a calculus in which the unique modal ruiegen-ruleis
sufficient to prove all the valid sequents. The main reason we did not intragiuce
gen-ruledirectly in the previous section is that, in our opinion, it is much harder to
grasp what this inference figure does. On the other hand, under a proof theoretical
standpoint this rule is much stronger; in fact, in this section we will show that
O-gen-rulemakes possible to devise a syntactical proof of the cut elimination
property and in the next one a decision procedure for theorem-hod@if@nd,

as a by product of such a decision procedure, we will get the finite model property.

THEOREM 2.5 (Syntactic cut-elimination theorem). Any sequent provable
in BKS* admits a derivation in which no cut appear.

The proof of cut-eliminability is almost standard, that is, suppogiriga proof
of the sequen$ and

'EAy IyHA
r'-A

is one of the top-most occurrence of the cut-rule witHinwe will prove that it

can be eliminated by principal induction on the structural compleiity of the
cut-formula~, which is extended here to the modal case in the obvious way by
puttingd(O(«, 8)) = §(a) + 6(B) + 1, and secondary induction on the length of
the thread ofy (see [21]). The reductions to lower the length of the threads and
those for lowering the complexity of the cut-formula in the non-modal cases are
standard. Thus, we consider here only the case the cut-formulgndss) and a
modal rule is applied both on the right and the left thread, namely, the following
case:

ab AV v NV, 05 BB o Ny Vi, @nk An Vi, Ynkn F 20
{D(’yiji7 61]1)}17% F D(aa /6) {D(¢hkh ) 1/’hkh)}h,kh + D(¢a 1/’)
{D(71Ji7 5iji)}i7ji U ({D((bhkhad}hkh)}h,kh \ D(OL, ﬂ)) F D(d)a 1;[})

where one of the formulas in the SE0(¢nk,, , Uik, ) hk, 1S O, 5).
In this case,

abFAIAN...NA,
and
¢FBiA...A(ByVa)A...ABn
where Ay =\, vy, -0 A =V, Vg, @A By =V, G1pys -0y B =

\/km Gmrk,,. Hence

¢+-B1 ... éFBpna ... ¢F B
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follows since the property of permutability of the propositional rules holdB Kfs
(see [14]). Then, by using a cut on the formulawhose structural complexity is
lower than that ofd(a, ), we obtain that

oF B, A1 N...NA,
and hence we can construct, by using no cut, a proof of
pEBI AN AN(BrVA)N...N(BRVAR)A...ANBp

In a similar way, from
AN NALEB
and
BiA...ANBLVB)A...AB F1
where Ay = \/; 615, ..., A, =V, Onj, @and By =V Yy, ..., By, =
V&, ¥mk,,, We obtain both that
BYA...ABj A...ANBl F

and that
BiAN...ABAN...AB, 1

Hence, by using a cut ofi, whose structural complexity is lower than that of
O(ev, 8), we obtain

BiAN L ANAYANLONALN L ABLEY
Thus, by using no cut, we can construct also a proof of
BiAN...ANBRLVA)NAN...N(B,VA)N...AB],

Then we can conclude; in fact, by using an instance-gfen-rulewe obtain the
sequent in the conclusion of the application of the cut-rule, except for the non
essential repetition of some of the boxed assumptions.

2.2. Decidability and the finite models property
Nice consequences of the theorem of cut-elimination that we proved in the
previous section 2.1 are decidability BK and the finite model property.
In order to obtain these results, in this section, instead of using a generic sequent
calculus for classical propositional logic, as we did till now, we will consider a
sequent calculus in which the rules for the classical connectives are double sound,
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that is, a sequent calculus such that a sequent in the conclusion of a non-structural
rule is valid if and only if all sequents in the premises of that rule are %alid

Decidability and finite model property f@BK are an immediate consequence
of the fact that we can provide an always terminating procedure for looking for the
derivability of any sequent which does not use the cut-rule; and such a procedure
is correct, that is, when it fails we can use the proof tentative to build a finite
counter-model for the non provable sequent.

The proof of this statement follows the general ideas of a cut-redundancy proof
(see for instance [21], or [23] for an application in a modal case); we have only
to add a special treatment for the modal case. To deal with this case we need to
introduce a new notion of complexity of a sequent. It will be used in the sequel
to prove that our decision procedure is always terminating. In fact, in the case of
the O-gen-rulewe cannot state that the premises of the rule are simpler that the
conclusion by simply counting the number of the connectives in the formulas in
the sequents that appear in the premises. Nevertheless, we can recognize that the
premises are simpler if we introduce a suitable notion of complexity which allows
to compute the number of nested boxes within a sequent. Here is the definition
of complexity of a sequent that we will use: we first define the n@{s-) and
Cy(—) from formulas to natural numbers and then we use them to define a map
C(-) from sequents to couple of natural numbers.

e (1(a) = 0if ais a propositional variable

e Ci(anp)=max{Ci(a),C1(B)}

e Ci(aV B)=max{Ci(a),C1(0)}

o Ci(ma) = Ci(a)

e Ci(a D B) =max{Ci(a),C1(B)}

e C1(0(a,B)) = Ci(a) + C1(B) + 1

e Cy(a) = 0if v is @ propositional variable ar = O(ay, as)
(
(

o C(a) = (Ci(a),C2(a))
o C(I'F @) =C(A,erv 2 Vpea B)

Next, we order the pairs according to the lexicographical order. Itis easy to check
that with this definition of complexity the formula(p, ¢) is more complex than

any formula of classical propositional logic. Note that, according to this notion of
complexity of a sequent, the complexity of the sequent in the conclusion of any
O-gen-ruleis higher than the complexity of any sequent in its premises.

8A calculus of this kind can be easily defined; for example, see [27] or just consider Gentzen’s
original sequent calculus for classical propositional logic (see [10]) and consider sequents as couples
of finite sets instead of couples of finite lists.
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The decision strategy for the non-modal case is simply to apply any applicable
propositional rule. Since the premise(s) of each propositional rule is (are) strictly
simpler than the conclusion, this search procedure is going to arrive in a finite
number of steps at an axiom or at a sequent of the following shape:

P1y---5Pry D(ahﬂl)a ey D(anvﬂn) F D(Qsla,lzbl)a LR D(Qsmawm)aqlv e
8

wherepy, ..., p, andqy, .. ., qs are propositional variables.

If all of the leaves of the search tree we arrived at in this way are axioms then
our search procedure stops with a success. On the other hand, let us suppose that
we did not arrive at an axiom. To begin with a simple case let us first consider the
case that the sequent 8 that we are examining is

pla-~-apr7‘:‘(a17ﬁl)a-~-aD(aTuﬂn) F q1,---54s

that is, the casen = 0 and{py,...,p-} N {q1,...,qs} = 0. In this case the
sequent can easily be falsified in the finite model}, R, v) defined on the one
element sefx} by settingR = 0 andv(p) = {*}ifand onlyifp € {p1,...,p,}.

On the other hand, that is, when we consider the gase1, the cut-elimination
theorem suggests that the sequent 8, provided it is not already an axiom, can only
be obtained by weakening from:

O(a, B1), -+, O(an, Bn) = O(dn, ¥n) 9)

for somel < h < m. Indeed, if we will be able to find a suitable indéxand

prove the corresponding sequent 9, then we will eventually obtain a proof of the
sequent 8 by using some instances of weakening. Of course, the problem will be
in proving that if, for no index:, a proof tentative is successful then the sequent

8 is not valid and it can be falsified by using some finite counter-model.

In general, a cut free proof of the sequent 9 should be obtained by an application
of thed-gen-rulepossibly followed by an instance of weakening. Thus, our proof
search algorithm is supposed to find a suitable subsef the set{1, ..., n} such
that the sequent

{D(O‘ivﬁi)}iéw F D(Qshaq;bh) (10)

is provable by an application of the-gen-rule And the left premise of such a
rule should have the following shape:

d)h F /\ \/ ay (11)

Aeg jeA
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for some collectiorg of subsets of the sdtl, ..., n}°.

We remark that the sequent 11 is provable if and only if, for anye G,
on b \/jeA a;. So, in the search for the left premise of the requireden-rule
we can consider only the following collection of set of indexes:

H={Ac{L,....n}lont \/ a;}

jeA

By the definition of complexity given above, it is easily shown that all of the
sequentsgy, - \/jeA «; are simpler than the sequent 9 and thus we can assume to
be able to decide on membershigho

Let us note that supposirlf is empty, that is, supposing there is no subset
A C{1,...,n}suchthaty, - V]EA o, yields in particular thapy, t/ o, . . ., o
and hence, by inductive hypothesis, a finite mddé], i, , v, ) can be built which
contains a poinyy, such thaty, I- ¢, and, foralll < j < n, ys IF —¢;.

Let us now observe that ), otherwise the sequent 9 is obviously prov-
able by an instance dfi-gen-rulewith premisespy, = A,_; ;1 ,,, @i and
Niz1. 0j=1..m; Bij I ¥n. So a finite mode(M}/, R}, vy) can be built which
contains a point;, such thaty, IF —y,.

Then, a finite mode(M},, Ry, vy,) which falsifies the sequent 9 can be built by
adding a new point;, to M; andM;’, in order to obtain/;, = {x} U M; U M/,
and setting?, = {(z,y,2)} UR), U R} andv;, = v, Uy,

So, let us continue under the assumption ftia¢ . We will use in the sequel
the fact that in this casfl, ..., n} € H.

If H # (), then if we would be able to find a subsgbf H such that:

AV B+ n (12)

Aeg jeA

we would have found the required instancecogen-rule.
To this aim, we need some preliminary lemmas. Let us consider thE sét
all the functionsp : H — {1,...,n} such thatp(A) € A%

LEMMA 2.5. Suppose no subsgtof H can be found such that the sequent 12
holds. Then itis constructively given a (choice) functidne F such that

/\ Bg=(ay I (13)

AceH

9For a better comprehension of the sequel, it can be useful to note that this condition doesn’'t mean
that the elements of the s@tare a partition of the sel, ..., n}.

10Notice again that all of the sequents 12 can be assumed to be decidable since, according to the
definition of complexity that we gave in the beginning of this section, they also are simpler than the
sequent 9.

1 This is the set of choice functions ({1, ...,n}) \ 0.
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Proof. If no subsetg of H can be found which satisfies the condition in the
hypothesis, then in particular, namely, for= H, we have that

NV B 7 n

AEH jEA

Then, by distributivity, we obtain:

VA Boy ¥ on

peF AcH

Hence the result is immediate. [ |

The functiong* that we pointed out in the previous lemma is useful for finding
a suitable subset of indexd® = {¢*(A)|A € H} of the set{1,...,n} such
that, by induction on the complexity of the considered sequent, a finite model
(M}, Ry, v;,) can be built which contains a poinf, such that, for anys; with
i € B, 2z, IF 8; whereasy, IF —)y,.

Note that to build a finite counter-model for the sequent 9 wBen {1,...,n}
we need only to build a finite modéM;’, R}/, v;') which contains a poiny;, such
thatyy, I ¢,. Since the sequent 9 is clearly provable-if-¢;, and hence our
proof search would have stopped with a proof in this case, we can suppose, by
inductive hypothesis, to know how to build such a model.

The next lemma will show how to proceed in building the finite counter-model

for the sequent 9 when the set of indexess not{1,...,n}.
LEMMA 2.6. Suppose& # {1,...,n}andseC = {1,---,n}\¢*(H). Then
ontt \ o (14)
jec

Proof. Suppose the sequen, + \/jeC «; is provable. TherC' e H.
Consider now the functiop* that we pointed out in the previous lemma 2.5.
Then, we get thap*(C) € C since¢* € F whereas the very definition @'
yields thatp* (C) ¢ C. Contradiction. |

Thus, by inductive hypothesis, we can build a finite mddé}’, R}, v;') such
thatthere is a poinf;, such thatfor any;, withj € {1,...,n}\¢*(H), yn IF —¢y;
andyy, IF ¢y,.

In order to build a finite counter-modéM,,, Ry, v,,) for the sequent 9 we can
now put together the two models we built and add them a new pgirthat is,

M;, = {xh} U ,Z\/[;Il U Mflzl
and define the relatioR;, by setting

Ry ={<zn,yn,2n >} UR, UR)
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and the interpretation, by setting, foranyw € M}, and any propositional variable
p:

w € vp(p) ifand only if w € v}, (p) orw € v} (p)

Let us go back now to the problem of the proof of the sequent 8 and let us suppose
that for nol < h < m, the corresponding sequent 9 is provable, otherwise we
would have the required proof of the sequent 8. Then, for daghh < m,

we can construct as above the finite modél , R; , v;,) and(M;/, R}, v;/) with
suitable pointg;, andz;. Then in order to build a finite counter-mod@l/, R, v)

for the sequent 8, it is sufficient to put all of these models together, that is, we
have to add a new pointand connect it with all the coupley,, z). So,

{z}UM{UM{U...UM UM

R = {{z,y1,21), (T, Ym, 2m) ) UR, URY U...UR!, UR/
v(p) = vi(p) Ui (p)U...v,(p) Uy, (p) Uz} ifpe{pr,....p}
P Vip) Uy (p)U...v. (p) U (p) otherwise

It is now obvious that the point falsifies the sequent 8. In fact, for each
p € {p1,...,pr}, x IF pholds by definition of the valuationand, forl < i < n,

z Ik O(wy, B;) since, for each < h < m and for eachy, andz, if y, IF «;
thenz, I+ ;. Finally, for nog € {¢,...,q4s}, z I+ ¢, again by definition of
the valuationv, and, for eachl < h < m, there are suitable pointg, and
zp In M such thatR(z, yp, z1) holds andyy, IF ¢, andz;, I+ =4, and hence

z - —\D((ﬁh,l/)h).

3. RELATIONS BETWEEN THE LOGIC BK, THE INTERSECTION
TYPES SYSTEM AND RELEVANTS LOGICS

In this section we point out the possible relations betwgknthe intersection
types systems and the relevant logics introduced in [16].

First we refine the notion of model f&K. Let us define the following semantics
which clearly recalls and extends the semantics proposed in [4] for the sub-typing
relation<, (see section 1).

DEFINITION 3.1.  Let. A = (A,-) be any applicative structure. Theris a
valuationof the formulas oBK into subsets ofd if the following conditions are
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satisfied:
v(T) = A
v(l) =0
vianp) = v(a)nv(f)
Z/EOZ\/) ) = Vgag v(0)
v(O(w, B)) ; {r e A| (Vy € v(a)) if z - yis defined therr - y € v(5)}

Let o be any formula oBK. Then it will be saidvalid if and only if, for every
applicative structured and every valuatiow into A, v(«) = A.

By using the results in the previous section we can obtain the following com-
pleteness result.

THEOREM 3.1. LetI' - ® be any sequent. Thén- @ is derivable if and only
if for every applicative structurel and every valuatiow, () v(a) C U v(B).

ael ped

Proof. For the proof of validity only the correctness of thegen-ruledeserves
some comments; but it is not difficult to show that this rule is correct by mimicking
the correctness proof we exhibited in the past sections.

For what concerns completeness, let us observe that the finite niddefs /)
of the previous section 2.2 can be constructed in such a way that forevweey M
there exists at most one element A such thatR(x, y, z) holds. Thus, provided
't ®,let(M, R, v) be such afinite counter-model fBr- ®. Then we can define
the applicative structurgl = (M, -) such that: - y = z if and only if R(x,y, 2)
and the valuatiow such that, for every, v(«) = {z | = I+ a}. Itis easy to check
that these definitions are correct and that they yieldv(«) € U v(5). B

ael’ Bed

It is now possible to establish a conservativity result for the sub-typing relation:

THEOREM 3.2. Let[I be the interpretation of the types &f, into formulas of
BK defined by setting:

I(a)) = « for every type variablex
IHw)=T

IaNB)=1(a) NI(5)

I(a — B) =0I(a), I(83))

Thena <, gifand only ifI(a) F I(8).

Proof. If o <, gthenI(a) - I(3) follows by the fact that all the axioms
on the sub-typing relation are translated into valid sequentB#& is closed
under the translation of all the rules for the sub-typing relation.
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To establish the converse, observe that if{, 5 then there exists a weakly
extensional-algebraA and a valuation of the typessuch that () Z v(3); it
is easy to check that the sameand the same are such that(I(«)) € v(1(3)),
so the completeness theorem 3.1 yidi@¥s) I/ I(3), since any\-model is clearly
a partial applicative structure. |

Thus, it seems that the new semantics we proposeifaraturally extends the
sub-typing relation< ». Unfortunately, our completeness result holds if wedet
vary over all kind of applicative structures; and the ones that we used to show the
completeness theorem are far from being weakly extensiomadgebras or even
combinatorially complete applicative structures.

NeverthelessBK shows that an alternative approach can be followed in the
search of interesting models for computation, that is, one can select a suitable
sub-logicL of BK such that the completeness theorem for this logic holds with
respect to the class afmodels. If such a task will be achieved then the sub-logic
L immediately suggests how to define a complete typing system for the lambda-
calculus which extends the intersection type system introduced in section 1. In
fact a similar approach has been pursued in [9] in order to obtain an intersection
types style semantic for the languagiiL.

Another example of the same idea has been noticed by R.K. Meyer; in fact
he observed that if we drop negation frdBiK the completeness result for this
fragment ofBK holds with respect to the class of structures with a total binary
operation.
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