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Abstract

The purpose of this research is to formalize forcing and iterated forcing
in the Boolean algebras language. We present the argument principally
trough the study of Boolean valued models, regular embeddings and pro-
jections between complete Boolean algebras, and iterated systems of com-
plete Boolean algebras.

Introduction

This work in divided in four parts. For the first two chapters we refer to
[1], [2] and [4], for the last two chapters we refer to [5] and [6].

In the first chapter, we introduce as preliminary notions: posets, lattices
and Boolean algebras.

They constitute the matter of Sections 1.1 and 1.2. In particular, in
Section 1.3 we present in detail the relation between posets and complete
Boolean algebras.

We first prove that every poset P can be refined (Lemma 1.3.11). Conse-
quently, we show in Theorem 1.3.12 that:
for every poset P there is a complete Boolean algebra B, unique up to isomorphism,
and a map j : P→ B such that:

• j[P] is dense in B;

• j is order preserving;

• ∀p, q ∈ P(p ‖ q↔ j(p) ∧ j(q) , 0B).

To obtain this result we use a topological approach, defining on P the
order topology, with base Op = {q ∈ P : q ≤ p}, and we then consider the
regular open algebra RO(P).

In the second chapter, we introduce Boolean valued-models. We make,
by transfinite recursion, the construction of V(2) and thus of VB (Section
2.1). We give then a Boolean truth value ~·�B to each B-sentence (Section
2.2), and we expose basic results on VB (Section 2.3).
In Section 2.4, we prove that if B′ is a submodel of B, then VB′ is a sub-
model of VB (Theorem 2.4.1). This fact will be useful to prove that V is
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canonically identified with a submodel of every VB, (Theorem 2.4.4 ) as-
signing a standard representative x̂ to any element x ∈ V.
Finally, in Section 2.5 we prove the Mixing Lemma (Lemma 2.5.2), in order
to get the Maximum Principle (Lemma 2.5.3) that states that

∨
u∈VB ~φ(u)� is

actually attained at some element u ∈ VB.

In the third chapter, we define regular embeddings and projections be-
tween complete Boolean algebras.

We prove that for any regular embedding i there is an associated pro-
jection πi (Proposition 3.1.5), and vice-versa (Proposition 3.1.7). Analyzing
these maps we prove a variant of the Mixing Lemma (Lemma 3.2.2):
Assume i : B→ Q is a regular embedding. Let J̇ be a canonical name for the dual
ideal of the filter generated by i[ĠB]. For all ȧ ∈ VB such that ~ȧ ∈ (Q/ J̇)+�B =

1B, there is a unique rȧ ∈ Q such that

π(rȧ) = 1B;

~ȧ = [rȧ] J̇�B = 1B.

Finally, in the last chapter, we present first of all iteration systems of com-
plete Boolean algebras F = {iα,β : Bα → Bβ : α < β ∈ δ} (Section 4.1).
In particular, we study the set of all threads T(F ) and the set of constant
threads C(F ). Then we summarize the general iterated forcing (Section 4.2)
and we start a comparison of the two constructions (Section 4.3).



Chapter 1

Posets and Boolean algebras

In the current chapter we introduce posets, lattices and Boolean algebras.
There are two main objectives. The first is to define the notion of complete
Boolean algebra through the definition of lattices, and thus posets, and to
present some basic properties. The second and more interesting purpose is
to show how a partially ordered set can be uniquely embedded in a com-
plete Boolean algebra, up to isomorphism.

1.1 Posets

In this section we summarize basic facts about partially ordered sets.

Definition 1.1.1. A partially ordered set or a poset 〈P,≤P〉 is a set P together
with a binary relation ≤P on P which is transitive and reflexive.

Observe that ≤P may not be a total relation, that is, not every couple of
elements of P are comparable. If no confusion arises we simply write ≤
instead of ≤P .

Definition 1.1.2. Let 〈P,≤〉 be a poset. Two elements p, q ∈ P are said to be
compatible , written p ‖ q, if there is a r ∈ P such that r ≤ p and r ≤ q. Two
elements p, q ∈ P are said incompatible p ⊥ q if they are not compatible.

Definition 1.1.3. We say that a subset A ⊆ P is an antichain if

∀p, q ∈ A(p ⊥ q).

Definition 1.1.4. A maximal antichain is an antichain that is not a proper
subset of any other antichain.

1



1.1 Posets 2

Definition 1.1.5. A subset D ⊆ P is dense in P iff

∀p ∈ P ∃d ∈ D (d ≤ p).

Definition 1.1.6. A subset D′ ⊆ P is predense in P iff

∀p ∈ P ∃d ∈ D′ (d ‖ p).

Proposition 1.1.7. Every dense set D ⊆ P contains an antichain A ⊆ D, which
is maximal in P, with respect to inclusion. Conversely, every maximal antichain
A ⊆ P is predense in P and the downward closure of A is dense.

Proof. We begin with the second assertion. For every p ∈ P we have two
choices: p ∈ A or p < A. For the last case, by A maximality, it can not
happens that for all a ∈ A, p ⊥ a. So there is a ∈ A such that a ‖ p. Thus A
is predense. Remark that the downward closure of a predense set is dense,
thus A′ = {p ∈ P : ∃a ∈ A(p ≤ a)} is dense.

Consider now a dense subset D ⊆ P. By Zorn’s lemma there is a max-
imal antichain A ⊆ D. We show that A is a maximal antichain for P too.
That is, every p ∈ P is compatible with each a ∈ A.
To this aim, fix an arbitrary p ∈ P, by D density, there is a d ∈ D such that
d ≤ p. By A maximality in D, we have that for all a ∈ A, a ‖ d. Thus for
every a ∈ A, there is a r ∈ P such that r ≤ a and r ≤ d. The last condition
implies that r ≤ p. Thus a ‖ p for every a ∈ A, as we wanted. �

We present now the definitions of ideal and filter, that are dual to each
other. Compare these definitions with the ones for Boolean algebras (Defi-
nitions 1.2.16 and 1.2.17).

Definition 1.1.8. A set I ⊆ P is an ideal in P if for all a, b ∈ I and for all
p ∈ P :

(i) ∃c ∈ I (a ≤ c ∧ b ≤ c);

(ii) p ≤ a⇒ p ∈ I.

Definition 1.1.9. A set F ⊆ P is a filter if for all f , g ∈ F and for all h ∈ P :

(i) ∃r ∈ F (r ≤ f ∧ r ≤ g);

(ii) f ≤ h⇒ h ∈ F.
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1.2 Lattices and Boolean Algebras

In the following, we describe lattices and we define Boolean algebras as
complemented distributive lattices.

Definition 1.2.1. A lattice is a nonempty partially ordered set L with partial
ordering ≤L in which each two-element subset {x, y} has a supremum or
join , x ∨ y, and an infimum or meet, x ∧ y.

Definition 1.2.2. A top element of a lattice L is an element denoted by 1L

such that x ≤L 1L for all x ∈ L. A bottom element is denoted by 0L and is
such that 0L ≤L x for all x ∈ L. A lattice with top and bottom elements is
called bounded.

In a bounded lattice it is easy to see that the following hold:

x ∨ 0L = x, x ∧ 1L = x,

x ∨ x = x, x ∧ x = x,

x ∨ y = y ∨ x, x ∧ y = y ∧ x,

x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z,

(x ∨ y) ∧ y = y, (x ∧ y) ∨ y = y.

(1.1)

Conversely, we can create a lattice by the equations in (1.1), in the fol-
lowing way.

Remark 1.2.3. Suppose that (L,∨,∧, 0L, 1L) is an algebraic structure with
∨ and ∧ binary operations that satisfy (1.1). Define the relation ≤L on L by

x ≤L y iff x ∧ y = y. (1.2)

Then (L,≤L) is a bounded lattice in which ∨ and ∧ are respectively the join
and meet operations, and 1L and 0L the top and bottom elements. This is
the equational characterization of lattices.

Definition 1.2.4. A lattice is said to be distributive if the following identities
are satisfied:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), (1.3)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). (1.4)
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Remark that (1.3) and (1.4) are equivalent. For example, assuming (1.3), we
have:

(x ∨ y) ∧ (x ∨ z) = [x ∧ (x ∨ z)] ∨ [y ∧ (x ∨ z)]

= x ∨ [(y ∧ x) ∨ (y ∧ z)]

= [x ∨ (y ∧ x)] ∨ (y ∧ z)

= x ∨ (y ∧ z).

Definition 1.2.5. Let L a bounded lattice. A complement for an element a ∈
L is an element b ∈ L satisfying:

a ∨ b = 1L;

a ∧ b = 0L.

Complement elements, if they exist, may not be unique. However, the fol-
lowing proposition proves that, if a lattice is distributive, complements are
unique.

Proposition 1.2.6. In a distributive lattice an element can have at most one com-
plement.

Proof. If b, c are complements of an element a ∈ L, then a ∨ b = a ∨ c = 1L

and a ∧ b = a ∧ c = 1L. We deduce:

b = b ∨ 0L

= b ∨ (a ∧ c)

= (b ∨ a) ∧ (b ∨ c)

= 1L ∨ (b ∨ c)

= b ∨ c.

Similarly c = c ∨ b so that b = c. �

We will often use the sign ¬a to design the complement of a.

Definition 1.2.7. A lattice is called complemented if it is bounded and each
of its elements has a complement.

Definition 1.2.8. A lattice L is complete if every subset X = {xi : i ∈ I} ⊆ L
has an infimum

∧
i∈I xi and a supremum

∨
i∈I xi. If X = ∅ and is L com-

plete, then: ∧
∅ = 1L,

∨
∅ = 0L.
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Notice that for a lattice to be complete, it suffices that every subset have a
supremum, or every subset an infimum. For the supremum (infimum), if it
exists, of the set of lower (upper) bounds of a given subset X is the infimum
(supremum) of X.

We turn finally to the definition of Boolean algebras collecting the argu-
ments so far seen.

Definition 1.2.9. A Boolean algebra B is a complemented distributive lattice.
If in addition B is also complete, we have a complete Boolean algebra.

In a complete Boolean algebra we have the following identities:

¬(
∨
i∈I

xi) =
∧
i∈I

¬xi, ¬(
∧
i∈I

xi) =
∨
i∈I

¬xi,

x ∧
∨
i∈I

yi =
∨
i∈I

(x ∧ yi), x ∨
∧
i∈I

yi =
∧
i∈I

(x ∨ yi).

Remark 1.2.10. Equivalently, it is possible to describe a Boolean algebra
by equational characterization. In this case a Boolean algebra is a six-tuple
(B,∧,∨,¬, 0B, 1B) consisting of a set B, equipped with two binary opera-
tions ∧ and ∨, a unary operation ¬ and two elements 0B and 1B, such that
for all elements a, b, c ∈ B, the following axioms hold:

a ∨ (b ∨ c) = (a ∨ b) ∨ c associativity

a ∧ (b ∧ c) = (a ∧ b) ∧ c

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) distributivity

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ b = b ∨ a commutativity

a ∧ b = b ∧ a

a ∨ 0B = a identity

a ∧ 1B = a

a ∨ ¬a = 1B complements

a ∧ ¬a = 0B

Definition 1.2.11. A complete Boolean algebra B′ is said to be a complete
subalgebra of B if B′ is a subalgebra of B and for any X ⊆ B′,

∨
X and

∧
X

formed in B′ are the same as those formed in B.
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Definition 1.2.12. If B is a Boolean algebra, let B+ = B \ {0} denote the
set of all nonzero elements of B. If a ∈ B+, the set B � a = {u ∈ B : u ≤ a}
with the partial order inherited from B, is a Boolean algebra.

Definition 1.2.13. An element a ∈ B is called an atom if it is a minimal
element of B+; equivalently, if there is no x such that 0 < x < a.

Definition 1.2.14. A Boolean algebra is atomic if for every u ∈ B+ there is
an atom a ≤ u; B is atomless if it has no atoms.

Definition 1.2.15. If W ⊆ B+ is an antichain and if
∨

W = u then we say
that W is a partition of u. A partition of 1B is just a partition or a maximal
antichain.

Let us now define ideals and filters for Boolean algebras. Remark that if
we define a partial order as in (1.2) we turn to definitions (1.1.8) and (1.1.9).

Definition 1.2.16. A set I ⊆ B is an ideal in B iff

(i) 0B ∈ I and 1B < I;

(ii) if a, b ∈ I, then a ∨ b ∈ I;

(iii) if a ∈ I and b ∈ B, then a ∧ b ∈ I.

Definition 1.2.17. A set F ⊆ B is a filter in B iff

(i) 1B ∈ F and 0B < F;

(ii) if a, b ∈ F, then a ∧ b ∈ F;

(iii) if a ∈ F and b ∈ B, then a ∨ b ∈ F.

Definition 1.2.18. A set U ⊆ B is an ultrafilter in B if and only if U is a filter
and

∀p ∈ B : p ∈ U or ¬p ∈ U.

The dual notion is a prime ideal : for every b ∈ B, b ∈ I or ¬b ∈ I. One can
see that an ideal is a prime ideal (and a filter is an ultrafilter) if and only if
it is maximal. By AC, every ideal (filter) on B can be extended to a prime
ideal (ultrafilter). Also, an ideal I is prime if and only if the quotient of B/I
is the trivial algebra {0B, 1B}.

At this point let us say a few words about quotient algebras.
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Definition 1.2.19. If I is an ideal of B, the quotient B/I is the quotient of B

with respect to an equivalence relation defined by:

[a] = [b] iff a∆b ∈ I,

where a∆b = (a ∧ ¬b) ∨ (b ∧ ¬a). The operations in B/I are:

[a] ∧B/I [b] = [a ∧B b], 0B/I = [0B],

[a] ∨B/I [b] = [a ∨B b], 1B/I = [1B],

¬B/I [a] = [¬Ba].

We conclude the section with algebras homomorphisms.

Definition 1.2.20. A homomorphism between two Boolean algebras B and Q

is a function h : B→ Q such that for all a, b ∈ B, h satisfies (by De Morgan’s
laws) either of the two equivalent conditions:

(i) h(a ∧ b) = h(a) ∧ h(b) and h(¬a) = ¬h(a);

(ii) h(a ∨ b) = h(a) ∨ h(b) and h(¬a) = ¬h(a).

It then follows that h(0B) = 0Q and h(1B) = 1Q.
The kernel h−1[0Q] = {x ∈ B : h(x) = 0Q} is an ideal, and the hull
h−1[1Q] = {x ∈ B : h(x) = 1Q} is a filter in B.
Moreover, we have that h is injective iff h−1[0] = {0}, or, equivalently,
h−1[1] = {1}. A bijective homomorphism is called isomorphism.
The map f : B → B/I given by h(a) = [a] is a homomorphism onto B/I
called the canonical homomorphism.

Definition 1.2.21. A homomorphism h of Boolean algebras is complete if for
every A ⊆ B for which

∨
A exists,∨

{h(x) : x ∈ A} exists and h(
∨

A) =
∨

h[A].
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1.3 Boolean completions of posets

The purpose of this section is to show that each poset P has a Boolean com-
pletion B(P) which is unique up to isomorphism. We will construct the
Boolean completion B(P) of P that will be the regular open algebra RO(P).
Of course the approach we deal with is topological. We first work with re-
fined posets and show that they have Boolean completions. Then, we show
how to map a poset to a refined poset and thus prove the existence of the
Boolean completion of any poset.

Definition 1.3.1. A poset P is refined if

∀p, q ∈ P[q � p→ ∃p′ ≤ q : p ⊥ p′]

Thus P is refined if, whenever q is not a refinement of p, q has a refinement
which is incompatible with p.

We need a topology on P, the order topology.

Definition 1.3.2. For each p ∈ P, put

Op = {q ∈ P : q ≤ p}.

The Op form a base for a topology on P called the order topology.

1p

p

Op

Figure 1.1: Op in a binary tree

Definition 1.3.3. Consider P with the order topology, then the regular open
algebra RO(P) is the complete Boolean algebra of regular open sets of P,
partially ordered by inclusion. Recall that a set R ⊂ RO(P) is regular open
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if R̊ = R. The algebraic operations in RO(P) are ∀U, V ∈ RO(P), ∀{Ui : i ∈
I} ⊆ RO(P) :

0RO(P) = ∅, 1RO(P) = P,

U ∨V = ˚U ∪V, U ∧V = U ∩V,∨
i∈I

Ui =
˚⋃

i∈I

Ui,
∧
i∈I

Ui = (
⋂
i∈I

Ui)
◦,

¬RO(P)U = (P \U)◦.

We prove that RO(P) is indeed a complete Boolean algebra. We first
verify that the operations defined return regular open sets. For Lemma
1.3.4 and Proposition 1.3.5 we refer to [3].

Lemma 1.3.4. The right sides of the operations presented in Definition 1.3.3 are
regular open sets.

Proof. It is convenient to define, for every set V ⊆ P,

V⊥ = P \V

Thus V̊ = V⊥⊥ since the interior of a set V can be regarded as P \ P \V.
So we must check that for U, V regular open the following are regular

open:

(i) ∅;

(ii) P;

(iii) U ∩V;

(iv) (U ∪V)⊥⊥;

(v) U⊥.

For (i) and (ii) this is obvious.
To prove (iii)-(iv)-(v), let us first express some considerations.
First of all, remark that the closure preserves inclusions but complementa-
tion reverse them. So we have

U ⊆ V → V⊥ ⊆ U⊥ (1.5)
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Subsequently, assuming U open, we observe that, since U ⊆ U then U⊥ ⊆
P \U.
Since P \V is already closed, it follows that U⊥ ⊆ P \U.
By complementation we get:

U ⊆ U⊥⊥ (1.6)

Now, if U is open, applying (1.5) to (1.6) we get U⊥⊥⊥ ⊆ U⊥.
Conversely applying (1.6) to U⊥ we get U⊥ ⊆ U⊥⊥⊥.
Thus, for U open:

U⊥⊥⊥ = U⊥ (1.7)

By (1.7) we conclude that (iv) and (v) are regular.

In order to prove (iii), we show that, for U, V open:

(U ∩V)⊥⊥ = U⊥⊥ ∩V⊥⊥ (1.8)

Since U ∩V ⊆ U and U ∩V ⊆ V, by (1.6), it follows that:

U ∩V ⊆ U⊥⊥ and U ∩V ⊆ V⊥⊥,

hence U ∩V ⊆ U⊥⊥ ∩V⊥⊥.

Conversely, U ∩ V ⊆ (U ∩V). (If W is a neighborhood of a point of
U ∩V then so is W ∩U and this imply that W ∩U meets V, or equivalently
that W meets U ∩V).
Complementing we get (U ∩V)⊥ ⊆ (P \U) ∪V⊥.
Applying closure and complementation it follows

P \ (P \U ∪V⊥) ⊆ (U ∩V)⊥⊥

(P \ P \U) ∩V⊥⊥ ⊆ (U ∩V)⊥⊥

U ∩V⊥⊥ ⊆ (U ∩V)⊥⊥ (1.9)

An application of (1.9) with U⊥⊥ in place of U, followed by an applica-
tion of (1.9) interchanging U and V yields:

U⊥⊥ ∩V⊥⊥ ⊆ (U⊥⊥ ∩V)⊥⊥ ⊆ (U ∩V)⊥⊥⊥⊥

By (1.7):
U⊥⊥ ∩V⊥⊥ ⊆ (U ∩V)⊥⊥,

as was to be proved. �
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Proposition 1.3.5. RO(P) is a complete Boolean algebra.

Proof. RO(P) is a lattice: We verify the laws on the operations.

• Idempotency of ∨ and ∧: Clearly, U = U ∧ U and U ∨ U =

(U ∪U)⊥⊥ = U⊥⊥ = U, since U is regular open.

• Commutativity of the binary operations are obvious.

• Associativity of ∧ is clear. Associativity of ∨ :

U ∨ (V ∨W) = (U ∪ (V ∪W)⊥⊥)⊥⊥

= (U⊥ ∩ (V ∪W)⊥⊥⊥)⊥

= (U⊥ ∩ (V ∪W)⊥)⊥

= (U⊥ ∩ (V⊥ ∩W⊥))⊥

= ((U⊥ ∩V⊥) ∩W⊥)⊥

= ((U ∪V)⊥ ∩W⊥)⊥

= ((U ∪V)⊥⊥⊥ ∩W⊥)⊥

= ((U ∪V)⊥⊥ ∪W)⊥⊥

= (U ∨V) ∨W.

• Finally, we verify the absorption laws. First,

U ∧ (U ∨V) = U ∩ (U ∪V)⊥⊥

= U⊥⊥ ∩ (U ∪V)⊥⊥

= (U⊥ ∪ (U ∪V)⊥)⊥

= (U⊥ ∪ (U⊥ ∩V⊥))⊥

= (U⊥)⊥

= U.

Second, U ∨ (U ∧V) = (U ∪ (U ∧W))⊥⊥ = U⊥⊥ = U.

RO(P) is complemented: First, it is easy to see that ∅ and P are the bottom
and top elements of RO(P). Furthermore, for any U ∈ RO(P), U ∧
U′ = U ∩U⊥ = U ∩ (P \U) ⊆ U ∩ (P \U) = ∅. Finally, U ∨U′ =
(U ∪U⊥)⊥⊥ = (U⊥ ∩U⊥⊥)⊥ = (U⊥ ∩U)⊥ = ∅⊥ = P.
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RO(P) is distributive: We do this by direct computation:

U ∧ (V ∨W) = U ∩ (V ∪W)⊥⊥

= U⊥⊥ ∩ (V ∪W)⊥⊥

= (U ∩ (V ∪W))⊥⊥

=
(
(U ∩V) ∪ (U ∩W)

)⊥⊥
=
(
(U ∧V) ∪ (U ∧W)

)⊥⊥
= (U ∧V) ∨ (U ∧W);

U ∨ (V ∧W) = (U ∪ (V ∩W))⊥⊥

= ((U ∪V) ∩ (U ∪W))⊥⊥

= (U ∪V)⊥⊥ ∩ (U ∪W)⊥⊥

= (U ∨V) ∧ (U ∨W).

Completness: Let K = {Ui : i ∈ I} ⊆ RO(P), and V = (
⋃

i∈I Ui)
⊥⊥. For

any i ∈ I, Ui ⊆
⋃

i∈I Ui so that Ui = U⊥⊥i ⊆ (
⋃

i∈I Ui)
⊥⊥ = V. This

shows that V is an upper bound of elements of K. If W is another
such upper bound, then Ui ⊆ W, so that

⋃
i∈I Ui ⊆ W, whence V =

(
⋃

i∈I Ui)
⊥⊥ ⊆W⊥⊥ = W. The infimum is proved similarly.

Since a complete complemented distributive lattice is a complete Boolean
algebra the proof is done. �

Definition 1.3.6. A subset X of a Boolean algebra B is dense if 0B < X and
for each 0B , b ∈ B there is a x ∈ X such that x ≤ b.

Lemma 1.3.7. (i) P is refined iff Op ∈ RO(P) for all p ∈ P.

(ii) If P is refined, the map p 7→ Op is an order isomorphism of P onto a dense
subset of RO(P).

Proof. (i) First of all, it is useful to study how the interior of the closure
of a subset X ⊂ P is made. In the order topology, the least open
containing p ∈ P is Op. The closure of X is constituted by all p ∈ P
such that, for all open O ∈ RO(P) containing p, O ∩ X , ∅. Remark
that Op ⊂ O for all open O such that p ∈ O. We must then have

X = {p ∈ P : Op ∩ X , ∅}.
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Now, the interior of X is the set X̊ of points q ∈ P that have a neigh-
borhood completely contained in X. That is:

X̊ = {q ∈ P : Oq ⊆ X} (1.10)

Remark that:

Oq ⊆ X iff ∀p′ ∈ Oq (Op′ ∩ X , ∅)

iff ∀p′ ≤ q ∃r ∈ X(r ≤ p′).

Thus,
X̊ = {q ∈ P : ∀p′ ≤ q∃r ∈ X(r ≤ p′)} (1.11)

If we choose X = Op in (1.11) we get that:

O̊p = {q ∈ P : ∀p′ ≤ q∃r ≤ p(r ≤ p′)}
= {q ∈ P : ∀p′ ≤ q(p ‖ p′)}.

(1.12)

Since Op is open we have certainly Op ⊆ O̊p. Suppose now that P is
refined, if q < Op, then q � p, so there is p′ ≤ q such that p ⊥ p′ and

by (1.12) q < O̊p. Therefore Op = O̊p, that is, Op ∈ RO(P).

Conversely, if Op ∈ RO(P), then Op = O̊p, so by (1.12):

q � p→ q < Op → q < O̊p → ∃p ≤ q(p ⊥ p′). �

P is then refined.

(ii) Let p, q ∈ P such that p ≤ q, then Op ⊆ Oq and the map p 7→ Op is
order preserving. To show that the map is an isomorphism, let Op =

Oq. If, by contradiction, p , q then suppose q � p. As P is refined,
there is some q′ ≤ q such that q′ ⊥ p. Thus there is some q′ ∈ Oq such
that q′ < Op, and hence Oq , Op.

The density of P is easy to prove. We show that for every ∅ , R ∈
RO(P), there is a p ∈ P such that Op ⊆ R. That is immediate by (1.10):
if R , ∅, then ∃p ∈ R and Op ⊆ R.

Corollary 1.3.8. P is refined if and only if is order isomorphic to a dense subset of
a complete Boolean algebra.
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Proof. If P is refined, then by Lemma 1.3.7 (ii), P is order isomorphic to a
dense subset of the complete Boolean algebra RO(P).

Conversely, suppose that P is order isomorphic to a dense subset D of a
complete Boolean algebra B. We may identify P with D. If p, q ∈ P are such
that q � p, then q ∧B ¬p , 0B. Since P is dense, there is p′ ∈ P such that
p′ ≤B q ∧B ¬p. We have then p′ ≤ q and p ⊥ p′. Therefore P is refined. �

We now prove that a Boolean completion of a partially ordered set is
unique up to isomorphism.

Definition 1.3.9. We say that a pair 〈B, e〉 is a Boolean completion of P if the
following conditions are met:

(i) B is a complete Boolean algebra;

(ii) e is an order isomorphism of P onto a dense subset of B.

We will occasionally use the notation B(P) to denote the Boolean comple-
tion of P.

Lemma 1.3.10. If 〈B, e〉 and 〈B′, e′〉 are Boolean completions of P, then there is
an isomorphism f between B and B′ which interchanges e[P] and e′[P], that is,
f : B→ B′ makes the following diagram commute:

P

B

B′
e′

e f

Proof. For each x ∈ B put

Px = {p ∈ P : e(p) ≤ x}.

Then the density of e[P] in B implies that
∨

e[Px] = x, for each x ∈ B. In
fact, if 0B <

∨
e[Px] < x, then x \ ∨ e[Px] > 0B and, by the e[P] density,

there is some p ∈ P such that e(p) ≤ x \∨ e[Px]. Hence

e(p) ≤ x; (1.13)

e(p) ∧
∨

e[Px] = 0B. (1.14)
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By (1.13), p ∈ Px; by (1.14) e(p) ∧ e(q) = 0B for all q ∈ Px. In particular, for
q = p it follows that e(p) = 0B, which is not true.

Define now the following map:

f : B→ B′

x 7→
∨

e′[Px]

We prove that f is an isomorphism of complete Boolean algebras.
First of all, remark that for any q ∈ P and x , 0B,

e′(q) ≤ f (x)→ e(q) ∧ x > 0B. (1.15)

In fact, if that is not the case, assume e(q)∧ x = 0B, then e(q)∧ e(p) = 0B for
all e(p) ≤ x, and thus q ⊥ p, for all p ∈ Px. It follows that e′(q)∧ e′(p) = 0B

for all p ∈ Px, and hence the absurd: 0B = e′(q) ∧∨ e′[Px] = e′(q) ∧ f (x) =
e′(q).

Commutativity:

f ◦ e(p) =
∨
{e′(q) : e(q) ≤ e(p)}

=
∨
{e′(q) : e(q) = e(p)}

= e′(p)

The last equality comes from the fact that e and e′ are order isomor-
phisms, thus e(q) = e(p), implies q = p and then e′(q) = e′(p).

Completeness: Let A ⊆ B, then:∨
f [A] =

∨
{ f (a) : a ∈ A}

=
∨

a∈A

∨
{e′(p) : e(p) ≤ a}

≤
∨
{e′(p) : e(p) ≤

∨
A}

= f (
∨

A).

Assume, by contradiction, that f (
∨

A) \ ∨ f [A] , 0B′ . By e′[P] den-
sity, there is a e′(r) ≤ f (

∨
A) \ f [A]. Then e(r) ∧∨ A > 0B by (1.15).

We affirm furthermore that there is an a ∈ A such that e(r) ∧ a > 0B.
If not, then e(r) ∧ a = 0B for all a ∈ A would give e(r) ∧∨ A = 0B.
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Now, by e[P] density, there is a q ∈ P such that e(q) ≤ e(r) ∧ a. Thus
e(q) ≤ a and e(q) ≤ e(r) entail respectively that e′(q) = f (e(q)) ≤
f (a) ≤ ∨ f [A] and e′(q) = f (e(q)) ≤ f (e(r)) = e′(r). Finally,

e′(q) ≤ e′(r) ∧
∨

f [A]

= 0B′ .

which is absurd.

Join preservation: It follows from completnes.

1B is mapped to 1B′ :

f (1B) =
∨

e′[P1]

=
∨
{e′(p) : e(p) ≤ 1B}

=
∨
{e′(p) : p ∈ P}

= 1B′.

The last equality is the result of e′[P] density in B′.

Complement preservation: We prove f (¬x) = ¬ f (x), showing that:

f (¬x) ∨ f (x) = 1B′ and f (¬x) ∧ f (x) = 0B′

The first equality is easily proved:

f (¬x) ∨ f (x) = f (¬x ∨ x)

= f (1B)

= 1B′ .

As well as the second one:

f (¬x) ∧ f (x) =
∨
{e′(p) : e(p) ≤ ¬x} ∧

∨
{e′(q) : e(q) ≤ x}

=
∨
{e′(p) ∧ e′(q) : e(p) ≤ ¬x, e(q) ≤ x}

≤
∨
{e′(p) ∧ e′(q) : p ⊥ q}

=
∨
{e′(p) ∧ e′(q) : e′(p) ∧ e′(q) = 0B′}

= 0B′

Meet preservation: it comes out from join and complement preservations.
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Injectivity:

ker f = {x : f (x) = 0B′}
= {x :

∨
e′[Px] = 0B′}

= {0B}

The last equality comes from the fact that ∀P′ ⊆ P,
∨

e[P′] = 0B′ if
and only if P′ = ∅. In our case, P′ = Px. Then Px = ∅ iff x = 0B.

Surjectivity: Let y ∈ B′, then, by the density of e′[P] in B′, there is a p ∈ P
such that e′(p) ≤ y. The preimage of y is thus

f−1(y) =
∨
{e(p) : e′(p) ≤ y}.

In fact:

f (
∨
{e(p) : e′(p) ≤ y}) =

∨
{ f (e(p)) : e′(p) ≤ y}

=
∨
{e′(p) : e′(p) ≤ y}

= y. �

We consider now nonrefined posets and show the connection with re-
fined posets.

Lemma 1.3.11. Let 〈P,≤P〉 a partially ordered set, then there is a unique, up to
isomorphism, refined poset 〈Q,≤Q〉 and an order preserving map j of P onto Q
such that:

∀p, q ∈ P (p ‖ q↔ j(p) ‖ j(q)). (1.16)

Proof. Existence: Define the equivalence relation ∼ on P by

p ∼ q iff ∀x ∈ P(p ‖ x ↔ q ‖ x)

and let Q = P/ ∼ . Elements of Q are denoted by [p]. The partial
order on Q is defined in the following way:

[p] ≤Q [q] iff ∀x ∈ P(x ‖ p→ x ‖ q)

Let j be the map of P onto Q :

j : P→ Q

p 7→ [p].
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We have that j is order preserving; let p ≤P q, then by definition of
the equivalence relation, we get [p] ≤Q [q], that is j(p) ≤Q j(q).

Let us verify condition (1.16). If p ‖ q, then ∃r ∈ P(r ≤P p ∧ r ≤P q),
thus j(r) ≤Q j(p) and j(r) ≤Q j(q). That is j(p) ‖ j(q).
Conversely, if j(p) ‖ j(q), then

∃j(r) ∈ Q (j(r) ≤Q j(p) ∧ j(r) ≤Q j(q)).

Now,

j(r) ≤Q j(p)↔ [r] ≤Q [p]

↔ ∀x ∈ P(x ‖ r → x ‖ p)

Choosing x = r, we get that r ‖ p, thus ∃r′ ∈ P(r′ ≤P r ∧ r′ ≤P p). We
also have j(r) ≤Q j(q); thus r′ ‖ r implies r′ ‖ q. Hence ∃r′′ ∈ P(r′′ ≤P

r′ ∧ r′′ ≤P q). We have obtained that r′′ ≤P p ∧ r′′ ≤P q, namely p ‖ q.

We check now that 〈Q,≤Q〉 is refined. To this aim, assume that [q] is
not a refinement of [p], that is [q] �Q [p]. Then certainly ∃x ∈ P such
that x ‖ q, but x ⊥ p. As a consequence, ∃r ∈ P(r ≤P x) such that
r ≤P q and r ⊥ p, therefore [r] ≤Q [q] and [r] ⊥ [p].

Uniqueness: We prove now that Q = P/ ∼ is unique up to isomorphism.
Let {S,≤S} be another refined poset with a surjective order preserv-
ing map k : P→ S satisfying (1.16). Consider the map:

f : Q→ S

[q] 7→ k(q).

The map f is well defined: let [q] = [p], if k(q) , k(p) then we may as-
sume k(q) �S k(p). By S refinement ∃k(r) ∈ S(k(r) ≤S k(q) ∧ k(r) ⊥
k(p)). By (1.16) applied to the map k, we get r ‖ q and r ⊥ p, in
contradiction with [q] = [p].

As k is surjective, f is clearly surjective.

The map f is order preserving: let [q] ≤Q [p], if k(q) �S k(p), by S
refinement ∃k(r) ∈ S(k(r) ≤ k(q) ∧ k(r) ⊥ k(p)). Thus r ‖ q ∧ r ⊥ p,
in contradiction with [q] ≤Q [p].

Finally, we check f injectivity: let k(q) = k(p). If, by contradiction,
[q] , [p], then pick [q] �Q [p]. Then, by Q refinement, ∃[r] ∈ Q([r] ≤Q
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[q] ∧ [r] ⊥ [p]). By f order preserving and by (1.16), we have k(r) ≤S

k(q) ∧ k(r) ⊥ k(p), which is absurd. �

Putting all the Lemmas together we conclude that a poset P can always
be carried in a complete Boolean algebra in the following way:

Theorem 1.3.12. Let P a poset, then there is a complete Boolean algebra B, unique
up to isomorphism, and a map j : P→ B such that:

• j[P] is dense in B;

• j is order preserving, that is, ∀p, q ∈ P(p ≤ q→ j(p) ≤ j(q));

• ∀p, q ∈ P(p ‖ q↔ j(p) ∧ j(q) , 0B)

Proof. If P is refined, we already see the proof in Lemma 1.3.7. If P is non-
refined, then use Lemma 1.3.11 and Lemma 1.3.7. The uniqueness comes
from Lemma 1.3.10 �



Chapter 2

Boolean-valued models

In this chapter, we briefly expose the construction of Boolean-valued mod-
els, a generalization of first order models. By transfinite recursion we define
V(2) and VB. We then give a Boolean truth value ~· �B to each B-sentence
and prove that all the axioms of the predicate calculus, equality and its
rules of inference are true in VB. Furthermore, we study the relationship
between complete Boolean subalgebras and submodels. At the end of the
chapter, we state a useful method to construct elements of VB and prove
the Mixing Lemma and the Maximum Principle.

Boolean-valued models were introduced in the 1960’s by Scott, Solovay
and Vopěnka in order to help understand Cohen method of forcing, dis-
covered in 1963. Our reference text for constructions and statements in the
next few section is [2].

2.1 Construction of the model VB

We begin with the Boolean algebra 2 = {0, 1} and define the class V(2),
called the universe of two valued sets.

Definition 2.1.1. By transfinite recursion on α we define

V(2)
α = {x : Fun(x) ∧ ran(x) ⊆ 2∧ ∃ξ < α[dom(x) ⊆ V(2)

ξ ]}

and then put
V(2) = {x : ∃α[x ∈ V(2)

α ]}

It is easy to see that we have

x ∈ V(2) ↔ Fun(x) ∧ ran(x) ⊆ 2∧ dom(x) ⊆ V(2). (2.1)

20
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As we shall see in Theorem 2.4.4 we can identify V(2) with the standard
universe V of sets.

We replace now the algebra 2 = {0, 1}, with an arbitrary complete
Boolean algebra B, obtaining the universe VB of B-valued sets.

Definition 2.1.2. We define the universe VB of B-valued sets by analogy with
Definition 2.1.1. Namely, we define, by recursion on α,

VB
α = {x : Fun(x) ∧ ran(x) ⊆ B∧ ∃ξ < α[dom(x) ⊆ VB

ξ ]}

and
VB = {x : ∃α[x ∈ VB

α ]}

We see immediately that, as in (2.1), we have

x ∈ VB ↔ Fun(x) ∧ ran(x) ⊆ B∧ dom(x) ⊆ VB.

That is a B-valued set is a B-valued function whose domain is a set of
B-valued sets. VB is called a Boolean extension of V or more precisely the
B-extension of V.

We prove, by induction on rank argument, the following:

Definition 2.1.3. (Induction Principle for VB) For any formula φ(x),

∀x ∈ VB[∀y ∈ dom(x)φ(y)→ φ(x)]→ ∀x ∈ VBφ(x).

2.2 Boolean truth values ~· �B

We now define the map ~· �B from the class of all B -sentences to B, which
assigns to each B-sentence σ the Boolean truth value of σ in VB.

For the sake of argument, suppose that Boolean truth values have been
assigned to all atomic sentences (those of the form u = v and u ∈ v, for
u, v ∈ VB). Then, in analogy with the classical two valued case, we extend
the definition to all B-sentences inductively as follows.

Definition 2.2.1. For B-sentences σ, τ we put

~σ ∧ τ�B := ~σ�B ∧B ~τ�B; (2.2)

~¬σ�B := ¬B~σ�B (2.3)
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If φ(x) is a B-formula with one free variable x, such that ~φ(u)�B has
been defined for all u ∈ VB, we observe that the definable class {~φ(u)�B :
u ∈ VB} is a subset of B and define

~∃xφ(x)�B :=
∨

u∈VB

~φ(u)�B. (2.4)

From (2.2)-(2.4) it follow immediately that

~σ ∨ τ�B = ~σ�B ∨B ~τ�B; (2.5)

~σ→ τ�B = ~σ�B ⇒B ~τ�B; (2.6)

~σ↔ τ�B = ~σ�B ⇔B ~τ�B; (2.7)

~∀xφ(x)�B =
∧

u∈VB

~φ(u)�B. (2.8)

It remains to assign Boolean truth values to the atomic B-sentences. We
certainly want the axiom of extensionality to hold in VB, so we would have

~u = v�B = ~∀x ∈ u[x ∈ v] ∧ ∀y ∈ v[y ∈ u]�B. (2.9)

Also, in accordance with the logical truth u ∈ v↔ ∃y ∈ v[u = y], which
we certainly want to be true in VB, it should be the case that

~u ∈ v�B = ~∃y ∈ v[u = y]�B. (2.10)

For restricted formulas like ∃x ∈ u φ(x) and ∀x ∈ u φ(x), we require
that their Boolean truth values depend only on Boolean truth values of φ(x)
for those x which are actually in dom(u). Moreover, we agree to be guided
by the idea of “characteristic function,” where, for x ∈ dom(u), the truth
value of the formula x ∈ u is u(x).

It seems thus reasonable to require that

~∃x ∈ uφ(x)�B =
∨

x∈dom(u)

[u(x) ∧ ~φ(x)�B] (2.11)

and
~∀x ∈ uφ(x)�B =

∧
x∈dom(u)

[u(x)⇒ ~φ(x)�B] (2.12)
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Definition 2.2.2. Putting (2.9)-(2.12) together, we see that we must have,
for u, v ∈ VB,

~u ∈ v�B =
∨

y∈dom(v)

[v(y) ∧ ~u = y�B]; (2.13)

~u = v�B =
∧

x∈dom(u)

[u(x)⇒ ~x ∈ v�B]

∧
∧

y∈dom(v)

[v(y)⇒ ~y ∈ u�B].
(2.14)

Now (2.13) and (2.14) may and shall be regarded as a definition of ~u ∈
v�B end ~u = v�B by recursion on the following well-founded relation.

Definition 2.2.3. Define for x, y, u, v ∈ VB,

〈x, y〉 < 〈u, v〉 iff

either (x ∈ dom(u) and y = v) or (x = u and y ∈ dom(v)).

Then < is easily seen to be a well-founded relation on the class VB ×
VB = {〈x, y〉 : x ∈ VB ∧ y ∈ VB}. If we now put, for u, v ∈ VB,

G(〈u, v〉) = 〈~u ∈ v�B, ~v ∈ u�B, ~u = v�B, ~v = u�B〉,

then (2.13) and (2.14) may be written for some class function F

G(〈u, v〉) = F(〈u, v, G|{〈x, y〉 : 〈x, y〉 < 〈u, v〉}〉).

This constitute a definition of G by recursion on < and from G we obtain
~u ∈ v�B, ~u = v�B. Accordingly we take (2.13) and (2.14) as a definition of
~σ�B for atomic B-sentences σ, and then define ~σ�B for all B-sentences by
induction on the complexity of σ in accordance with (2.2)-(2.4).

Definition 2.2.4. A B-sentence σ is true or holds with probability 1 in VB, and
write

VB � σ

if ~σ�B = 1B. A B-formula is true in VB if its universal closure is true in VB.
A rule of inference is valid in VB if it preserves the truth of formulas in VB.
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2.3 Basic results of VB

From now on we shall take the liberty of dropping the sub- or super-script
from ~σ�B, 0B, 1B. Complete proofs of the following results can be found in
[2].

Theorem 2.3.1. All the axioms of the first-order predicate calculus with equality
are true in VB, and all its rules of inference are valid in VB. In particular, we have:

(i) ~u = u� = 1B;

(ii) u(x) ≤ ~x ∈ u� for x ∈ dom(u);

(iii) ~u = v� = ~v = u�;

(iv) ~u = v�∧ ~v = w� ≤ ~u = w�;

(v) ~u = v�∧ ~u ∈ w� ≤ ~v ∈ w�;

(vi) ~v = w�∧ ~u ∈ v� ≤ ~u ∈ w�;

(vii) ~u = v�∧ ~φ(u)� ≤ ~φ(v)� for any B-formula φ(x).

Proof. The points are proves using the induction principle for VB. A sketch
of the proof can be founded in [2] �

It then follows that all the theorems of first order predicate calculus
are true in VB. We can now prove the laws governing the assignment of
Boolean truth values to formulas with restricted quantifiers.

Corollary 2.3.2. For any B-formula φ(x) with one free variable x, and all u ∈
VB,

(i) ~∃x ∈ uφ(x)� =
∨

x∈dom(u)[u(x) ∧ ~φ(x)�];

(ii) ~∀x ∈ uφ(x)� =
∧

x∈dom(u)[u(x)⇒ ~φ(x)�].
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Proof. We prove the first equality, the second follows by duality.

~∃x ∈ uφ(x)� = ~∃x[x ∈ u ∧ φ(x)]�

=
∨

y∈VB

~y ∈ u ∧ φ(y)�

=
∨

y∈VB

∨
x∈dom(u)

[~x = y�∧ u(x) ∧ ~φ(y)�]

=
∨

x∈dom(u)

[u(x) ∧
∨

y∈VB

~x = y ∧ φ(y)�]

=
∨

x∈dom(u)

[u(x) ∧ ~∃y[x = y ∧ φ(y)]�]

=
∨

x∈dom(u)

[u(x) ∧ ~φ(x)�]. �

The properties of VB can be used to produce relative consistency proofs
in set theory.

Theorem 2.3.3. Let T, T′ be extensions of ZF such that Con(ZF) → Con(T′),
and suppose that in L we can define a constant term B such that:

T′ ` B is a complete Boolean algebra and, for each axiom τ of T, we have
T′ ` ~τ�B = 1B.

Then Con(ZF)→ Con(T).

Proof. If T is inconsistent, then for some axioms τ1, τ2, . . . , τn of T we would
have, for any sentence σ,

T ` τ1 ∧ . . . ∧ τn → σ ∧ ¬σ. (2.15)

Now let B a complete Boolean algebra satisfying the hypothesis of our the-
orem. Then

T′ ` ~τ1 ∧ . . . ∧ τn�B = 1B. (2.16)

But by (2.15) we have:

T′ ` ~τ1 ∧ . . . ∧ τn�B ≤ ~σ ∧ ¬σ�B = 0B,

so, by (2.16)
T′ ` 1B ≤ 0B,

so T′ and hence ZF would be inconsistent. �
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2.4 Subalgebras and their models

We are going to show that, if B′ is a complete subalgebra of B, then VB′ is
a submodel of VB. Furthermore, we will see that every element x of V has
a natural representative x̂ in VB. We will terminate the section with some
properties abouts standard elements x̂ ∈ VB.

Theorem 2.4.1. Let B′ a complete subalgebra of B. Then, for u, v ∈ VB′ ,

(i) VB′ ⊆ VB;

(ii) ~u ∈ v�B′ = ~u ∈ v�B;

(iii) ~u = v�B′ = ~u = v�B.

Proof. The first point comes out from definitions of VB and VB′ . The points
(ii) and (iii) are proved simultaneously by induction on the well founded
relation y ∈ dom(x), where the inductive hypothesis is, for all y ∈ dom(v)
and all u ∈ VB :

~u ∈ y�B′ = ~u ∈ y�B;

~u = y�B′ = ~u = y�B;

~y ∈ u�B′ = ~y ∈ u�B.

�

Corollary 2.4.2. If B′ is a complete subalgebra of B, then, for any restricted for-
mula φ(v1, . . . , vn) and any u1, . . . , un ∈ VB′ ,

~φ(u1, . . . , un)�B′ = ~φ(u1, . . . , un)�B.

Proof. We prove the corollary by induction on the complexity of φ. If φ is
atomic, the result follows by Theorem 2.4.1. The only non trivial induction
step arises when φ is in the form ∃x ∈ uψ. In this case, if u, u1, . . . , un ∈ VB′ ,
then writing

∨B and
∨B′ for joins in B and B′, we have:

~φ(u, u1, . . . , un)�B′ =
B′∨

x∈dom(u)

[u(x) ∧ ~ψ(x, u1, . . . , un)�B′ ]

=
B∨

x∈dom(u)

[u(x) ∧ ~ψ(x, u1, . . . , un)�B]

= ~φ(u, u1, . . . , un)�B. �
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Remark that, as the two-element algebra 2 = {0, 1} is a complete subal-
gebra of every complete Boolean algebra B, we have that V(2) is a submodel
of every VB. We now want to prove that there is a bijection from V to V(2).
To this end we need the following definition, constructed by recursion on
the well-founded relation y ∈ x.

Definition 2.4.3. For each x ∈ V, define:

x̂ = {〈ŷ, 1〉 : y ∈ x}.

Observe that for each x ∈ V, then x̂ ∈ V(2) ⊆ VB. By Theorem 2.4.1, for
x, y ∈ V :

~x̂ ∈ ŷ�B = ~x̂ ∈ ŷ�2 ∈ 2;

~x̂ = ŷ�B = ~x̂ = ŷ�2 ∈ 2.

We can think of x̂ being a natural representative in VB for x ∈ V. Elements
of the form x̂ are called standard. The next and last theorem establishes
some results about standard members of VB. It will follow from (v) that V
and V(2) have the same true sentences.

Theorem 2.4.4. (i) For x ∈ V, u ∈ VB,

~u ∈ x̂� =
∨
y∈x

~u = ŷ�.

(ii) For x, y ∈ V,

x ∈ y↔ VB |= x̂ ∈ ŷ;

x = y↔ VB |= x̂ = ŷ.

(iii) The map x 7→ x̂ is one-one from V to V(2).

(iv) For each u ∈ V(2) there is a unique x ∈ V such that VB |= u = x̂.

(v) For any formula φ(v1, . . . , vn) and any x1, . . . , xn ∈ V,

φ(x1, . . . , xn)↔ V(2) |= φ(x̂1, . . . , x̂n)

and if φ is restricted then

φ(x1, . . . , xn)↔ VB |= φ(x̂1, . . . , x̂n.)
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Proof. (i)

~u ∈ x̂� =
∨

v∈dom(x̂)

[x̂(v) ∧ ~u = v�]

=
∨
y∈x

[x̂(ŷ) ∧ ~u = ŷ�]

=
∨
y∈x

~u = ŷ�.

(ii) By induction on rank(y). The induction hypothesis is for all z with
(rank(z) < rank(y)) :

∀x[x ∈ z↔ ~x̂ ∈ ẑ� = 1];

∀x[x = z↔ ~x̂ = ẑ� = 1];

∀x[z ∈ x ↔ ~ẑ ∈ x̂� = 1].

(iii) It follows from (ii).

(iv) The uniqueness follows from (ii). For the existence, use induction on
the well founded relation x ∈ dom(u). Suppose then that u ∈ V(2)

and
∀x ∈ dom(u)∃y ∈ V(~x = ŷ� = 1).

We want to show that for some v ∈ V, ~u = v̂� = 1. By definition,

~u = v̂� =
∧

x∈dom(u)

[u(x)⇒ ~x ∈ v̂�] ∧
∧
y∈v

~ŷ ∈ u�.

We want that ~u = v̂� = 1, so it must happens that:

x ∈ dom(u)→ u(x) ≤ ~x ∈ v̂� =
∨
y∈v

~x = ŷ�; (2.17)

y ∈ v→ 1 = ~ŷ ∈ u� =
∨

x∈dom(u)

[u(x) ∧ ~x = ŷ�]. (2.18)

In order to satisfy (2.18), we create

v = {y ∈ V : ∃x ∈ dom(u)[u(x) = 1∧ ~x = ŷ� = 1]}.

By (ii) and Replacement, v ∈ V. By inductive hypothesis v satisfies
(2.17).
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(v) For the first part, use induction on complexity of φ, (ii) and (iv). If φ is
atomic the result holds by (ii).

If φ is in the form ∃xψ, then suppose that x1, . . . , xn ∈ V. If

~φ(x̂1, . . . , x̂n)�2 = 1,

then ∨
x∈V(2)

~ψ(x, x̂1, . . . , x̂n)�2 = 1.

Thus
~ψ(x, x̂1, . . . , x̂n)�2 = 1

for some x ∈ V(2). By (iv), for some y ∈ V, we have ~x = ŷ�2 = 1 so
that

1 = ~ψ(x, x̂1, . . . , x̂n)�2 ∧ ~x = ŷ�2

≤ ~φ(ŷ, x̂1, . . . , x̂n)�2.

The inductive hypothesis gives ψ(y, x1, . . . , xn), which implies φ(x1, . . . , xn).
The converse is similar. The second part of (v) follows from the first
part and Corollary 2.4.2. �

2.5 Mixtures and the Maximum Principle

We are going to formulate a useful general method for constructing ele-
ments of VB.

Definition 2.5.1. Given a subset {ai : i ∈ I} ⊆ B, and a subset {ui : i ∈
I} ⊆ VB, we define the mixture ∑i∈I ai · ui of {ui : i ∈ I} with respect to
{ai : i ∈ I} to be that element u ∈ VB such that

dom(u) =
⋃
i∈I

dom(ui)

and, for z ∈ dom(u),

u(z) =
∨
i∈I

[ai ∧ ~z ∈ ui�].
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The following lemma, the Mixing Lemma, justifies the use of the term
mixture by showing that under certain conditions (in particular, when {ai :
i ∈ I} is an antichain) ∑i∈I ai · ui behaves as if it were obtained by mixing
the B-valued sets {ui : i ∈ I} together in the proportions {ai : i ∈ I}.

Lemma 2.5.2. (Mixing Lemma) Let {ai : i ∈ I} ⊆ B, let {ui : i ∈ I} ⊆ VB

and put ∑i∈I ai· ui = u. Suppose that, for all i, j ∈ I,

ai ∧ aj ≤ ~ui = uj�. (2.19)

Then, for all i ∈ I,
ai ≤ ~u = ui�.

In particular, the result holds if {ai : i ∈ I} is an antichain.

Proof. We have ~u = ui� = a ∧ b, where

a =
∧

z∈dom(u)

[u(z)⇒ ~z ∈ ui�]

b =
∧

z∈dom(ui)

[ui(z)⇒ ~z ∈ u�].

If z ∈ dom(u), then

ai ∧ u(z) =
∨
j∈I

ai ∧ aj ∧ ~z ∈ uj� (2.20)

≤
∨
j∈I

~ui = uj�∧ ~z ∈ uj� (by 2.19) (2.21)

≤ ~z ∈ ui�, (2.22)

so that ai ≤ [u(z) ⇒ ~z ∈ ui�] for any z ∈ dom(u), whence ai ≤ a. On
the other hand, if z ∈ dom(ui), then

ai ∧ ui(z) ≤ ai ∧ ~z ∈ ui�

≤ u(z)

≤ ~z ∈ u�,

so that ai ≤ [ui(z) ⇒ ~z ∈ u�], whence ai ≤ b. Hence ai ≤ a ∧ b, and the
result follows. �
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Recall that we assigned a Boolean truth value to the formula ∃xφ(x) by
putting

~∃xφ(x)� =
∨

u∈VB

~φ(u)�.

We now show, using the Mixing Lemma, that VB contains so many
members that the supremum on the right side of the above equality is ac-
tually attained at some element u ∈ VB. Thus VB is full . In fact, the next
Lemma is also called fullness Lemma.

Lemma 2.5.3. (The Maximum Principle or Fullness Lemma) If φ(x) is any
B-formula, then there is u ∈ VB such that

~∃xφ(x)� = ~φ(u)�.

In particular, if VB |= ∃xφ(x), then VB |= φ(u) for some u ∈ VB.

Proof. By definition, we have

~∃xφ(x)� =
∨

u∈VB

~φ(u)�.

Since B is a set, so is {~φ(u)� : u ∈ VB} ∈ P(B) and, by AC, there is an
ordinal α and a set {uξ : ξ < α} ⊆ VB such that {~φ(u)� : u ∈ VB} =

{~φ(uξ)� : ξ < α}. Accordingly,

~∃xφ(x)� =
∨

ξ<α

~φ(uξ)�.

For each ξ < α, put

aξ = ~φ(uξ)�∧ ¬[
∨

η<ξ

~φ(uη)�].

Then {aξ : ξ < α} is an antichain in B and aξ ≤ ~φ(uξ)� for all ξ < α.
Put u = ∑ξ<α aξ · uξ ; then by the Mixing Lemma we have aξ ≤ ~u = uξ� for
all ξ < α. Also, clearly,

~φ(u)� ≤ ~∃xφ(x)�.

On the other hand,

~φ(u)� ≥ ~u = uξ�∧ ~φ(uξ)� ≥ aξ

so that
~φ(u)� ≥

∨
ξ<α

aξ =
∨

ξ<α

~φ(uξ)� = ~∃xφ(x)�.
�
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Corollary 2.5.4. Let φ(x) be a B-formula such that VB |= ∃xφ(x).

(i) For any v ∈ VB there is a u ∈ VB such that ~φ(u)� = 1 and ~φ(v)� =

~u = v�.

(ii) If ψ(x) is a B-formula such that for any u ∈ VB, VB |= φ(u) implies
VB |= ψ(u), then VB |= ∀x[φ(x)→ ψ(x)].

Proof. (i) Apply the Maximum Principle to obtain w ∈ VB such that
~φ(w)� = 1B, put b = ~φ(v)� and u = b · v + (¬b) · w. Then

~φ(u)� ≥ ~u = v ∧ φ(v)�∨ ~u = w ∧ φ(w)�

≥ b ∨ ¬b

= 1B,

and ~u = v� = ~u = v� ∧ ~φ(u)� ≤ ~φ(v)�. Since ~u = v� ≥ b =

~φ(v)�, the result follows.

(ii) Assume the hypothesis, and let v ∈ VB. Using (i), choose u ∈ VB such
that ~φ(u)� = 1B and ~φ(v)� = ~u = v�. Then ~ψ(u)� = 1B and

~φ(v)� = ~u = v� = ~u = v�∧ ~ψ(u)� ≤ ~ψ(v)�.

The result follows. �



Chapter 3

Regular embeddings and
retractions

In this chapter, we present the construction and some properties about
regular embeddings and retractions between complete Boolean algebras.
Given a regular embedding i we show that the associated map πi is in fact
a retraction ( Proposition 3.1.5). In Proposition 3.1.7 we prove the converse:
to a retraction π, we can associate a regular embedding iπ.
In Section 3.2, we show how to embed a quotient algebra and we prove a
variant of the Mixing Lemma (Lemma 3.2.2).

3.1 Regular embeddings and retractions of complete
Boolean algebras

We are now interested in defining two kinds of maps between Boolean al-
gebras: regular embeddings and retractions. In the following, we show
how one can associate a retraction to a regular embedding, and vice-versa.

Definition 3.1.1. Let B, Q be non-atomic Boolean algebras. i : B → Q

is a regular embedding if it is a complete and injective homomorphism of
Boolean algebras.

Definition 3.1.2. A map π : Q→ B between complete Boolean algebras is
a retraction if the following conditions are satisfied:

(i) π preserves joins and is surjective;

(ii) π−1(0B) = {0Q};

33
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(iii) For all q ∈ Q, b ∈ B :

π(q) ∧ b =
∨
{π(s) : s ≤ q, π(s) ≤ b}. (3.1)

Remark 3.1.3. Analyzing the definition of retaction we can add some prop-
erties. Join preservation implies that π is also order preserving. Moreover,
it follows from (ii), that π(q) > 0B for all q > 0Q and π(0Q) = 0B.

Equation (3.1) describes π behavior when restricted to a parameter b :
π preserves

∨
-operation in a homogeneous way. This is equivalent to a

property to which we will often refer:

π(q) ∧ b = π(q ∧
∨
{s : π(s) ≤ b}). (3.2)

In fact, ∨
{π(s) : s ≤ q, π(s) ≤ b} = π(

∨
{s : s ≤ q, π(s) ≤ b})

= π(
∨
{s ∧ q : π(s) ≤ b})

= π(q ∧
∨
{s : π(s) ≤ b}).

We finally highlight that we do NOT assume that π is a homomor-
phism, thus π may not preserve meets and complements and may map
different positive elements of Q to the same object of B+.

We want now to construct an associated map πi to any regular embed-
ding i : B→ Q. As we shall see, πi will be a retraction.

Definition 3.1.4. The retraction associated to i is the map

πi : Q→ B

q 7→
∧
B

{b ∈ B : i(b) ≥ q}

Let us verify some properties of the embedding i and its associated map
πi. The next proposition states, in particular, that πi is in fact a retraction.

Proposition 3.1.5. Assume that i : B→ Q is a regular embedding.
Then:

(i) i ◦ πi(q) ≥ q, for all q ∈ Q and πi maps Q+ to B+;

(ii) πi ◦ i(a) = a, for all a ∈ B and thus πi is surjective;
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(iii) πi preserves joins of subsets of Q, that is, for every X ⊆ Q,

πi(
∨
Q

X) =
∨
B

πi[X];

(iv) If i is not surjective, πi : Q → B does not preserve neither meets nor com-
plements;

(v) If πi(a) ∧ πi(b) = 0B, then a ∧ b = 0Q;

(vi) For any q ∈ Q and b ∈ B, then πi(q) ∧ b = πi(q ∧ i(b)).

In particular, for all b ≤ πi(q),

πi(q ∧ i(b)) = b; (3.3)

(vii) i(b) =
∨{s : πi(s) ≤ b}, for all b ∈ B;

(viii) πi is a retraction.

Proof. (i) Recall that

πi(q) =
∧
B

{b ∈ B : i(b) ≥ q}.

Thus

i ◦ πi(q) = i(
∧
{b ∈ B : i(b) ≥ q})

=
∧
{i(b) : b ∈ B, i(b) ≥ q}

≥
∧
{p ∈ Q : p ≥ q}

= q.

This proves the first part of (i). Now if, by contradiction, for q > 0Q,
πi(q) = 0B, we would have 0Q = i ◦ π(q) ≥ q > 0Q. Hence πi must
preserve positivity.

(ii) We prove that πi is surjective:

πi ◦ i(a) =
∧
{b ∈ B : i(b) ≥ i(a)}) = a,

since i is injective.
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(iii) Let X = {qj : j ∈ J} ⊆ Q. Thus, for all j ∈ J,

πi(
∨
{qj : j ∈ J}) =

∧
{b ∈ B : i(b) ≥

∨
{qj : j ∈ J}}

≥
∧
{b ∈ B : i(b) ≥ qj}

= πi(qj).

In that way, we obtain the first inequality:

πi(
∨
{qj : j ∈ J}) ≥

∨
{πi(qj) : j ∈ J},

that is πi(
∨

X) ≥ ∨πi[X].

Now if r =
∨

πi[X], we have that r ≥ πi(qj) for all j ∈ J. Thus, by (i)
for all j ∈ J :

i(r) ≥ i ◦ πi(qj) ≥ qj.

In particular i(r) ≥ ∨{qj : j ∈ J}. From πi definition we get that πi is
increasing, so:

r = πi(i(r)) ≥ π(
∨
{qj : j ∈ J}),

that is, the second inequality
∨

πi[X] ≥ πi(
∨

X) holds.

(iv) If i : B→ Q is not surjective, then pick q ∈ Q \ i[B]. Then i(πi(q)) , q
and we have, by (i), i(πi(q)) > q. Thus p = i(πi(q)) \ q > 0Q and
πi(p) > 0B.

Now,

πi(q) ∨ πi(p) = πi(q ∨ p)

= πi(i(πi(q)))

= πi(q).

Thus πi(p) ∧ πi(q) = πi(p) > 0B. But πi(p ∧ q) = πi(0Q) = 0B, so πi

does not preserve meets.

We check now that πi(¬Q f ) , ¬Bπi( f ) for some f ∈ Q.
Let:

q ∈ Q \ i[B], d = ¬Bπi(q) and e = i(d).
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We have

f = q ∨ e

= q ∨ i(d)

= q ∨ i(¬πi(q))

= q ∨ ¬i(πi(q))

< q ∨ ¬q

= 1Q.

Thus f < 1Q implies that ¬ f > 0Q and πi(¬ f ) > 0Q.

On the other hand,

πi( f ) = πi(q) ∨ πi(e)

= πi(q) ∨ πi(i(d))

= πi(q) ∨ d

= πi(q) ∨ ¬πi(q)

= 1B.

Thus ¬πi( f ) = 0B and πi(¬ f ) > 0B, imply ¬πi( f ) , πi(¬ f ).

(v) Assume a ∧ b > 0Q, then we would have a contradiction:

0Q = i(πi(a) ∧ πi(b))

= i(πi(a)) ∧ i(πi(b))

≥ a ∧ b

> 0Q.

(vi) For b ∈ B, q ∈ Q, the following three equations hold:

πi(q ∧ i(b)) ∨ πi(q ∧ ¬i(b)) = πi(q); (3.4)

(πi(q) ∧ b) ∨ (πi(q) ∧ ¬b) = πi(q); (3.5)

(πi(q) ∧ b) ∧ (πi(q) ∧ ¬b) = 0B. (3.6)

Furthermore, by πi definition, we have:

πi(q ∧ i(b)) ≤ πi(q) ∧ b (3.7)

and

πi(q ∧ ¬i(b)) = πi(q ∧ i(¬b))

≤ πi(q) ∧ ¬b.
(3.8)
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Now, in order to abridge the notation, set:

a = πi(q ∧ i(b)), c = πi(q) ∧ b,

b = πi(q ∧ ¬i(b)), d = πi(q) ∧ ¬b.

By (3.7) and (3.8) we get

a ≤ c;

b ≤ d.

So, by (3.6),
a ∧ b ≤ c ∧ d = 0B,

that is, a and b are disjoint. Moreover, by (3.4) and (3.5), a and b have
the same supremum as c and d, that is,

a ∨ b = c ∨ d.

All in all, we conclude that

a = c and b = d.

In particular, translating a = c we have:

πi(q) ∧ b = πi(q ∧ i(b)),

as was to be proved.

(vii) Let s ∈ Q such that πi(s) ≤ b. By (i), and i order preserving,

s ≤ i(πi(s)) ≤ i(b).

Thus ∨
{s : πi(s) ≤ b} ≤ i(b). (3.9)

In order to prove the other inequality, recall that by (ii) we can write
b = πi(i(b)). So

i(b) ≤
∨
{s : πi(s) ≤ πi(i(b))}

=
∨
{s : πi(s) ≤ b}.

(3.10)

The result follow immediately putting (3.9) and (3.10) together.
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(viii) Join preservation and surjectivity follow from points (iii) and (ii). In
order to show that π−1(0B) = {0Q} put a = 0B in (ii), then

πi(0Q) = πi(i(0B)) = 0B.

Thus 0Q is certainly mapped in 0B and moreover by (i) it is the only
element of Q mapped in 0B. The last point of Definition 3.1.2 fol-
lows putting (vi) and (vii) together and using the equivalent equation
(3.2). �

We just proved that we can associate a retraction to any regular embed-
ding. We want now to construct the converse: we start from a retraction π

and we associate a regular embedding iπ.

Definition 3.1.6. Let π : Q → B a retraction. The regular embedding associ-
ated to π is the map

iπ : B→ Q

b 7→
∨
Q

{s ∈ Q+ : π(s) ≤ b}

In the next Proposition we see some properties of iπ and show that iπ is
actually a regular embedding and that the associated retraction of iπ is π

again.

Proposition 3.1.7. Assume that π : Q → B is a retraction. Then the map iπ

satisfies the following properties:

(i) π ◦ iπ(a) = a for all a ∈ B;

(ii) iπ ◦ π(q) ≥ q for all q ∈ Q;

(iii) iπ preserves joins;

(iv) iπ(1B) = 1Q and iπ(0B) = 0Q;

(v) iπ preserves complements and meets;

(vi) iπ is injective;

(vii) πiπ
= π;

(viii) iπi = i.
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In particular, it follows from points (iii)-(vi) that iπ is a regular embedding.

Proof. (i)

π ◦ iπ(a) = π(
∨
{s ∈ Q : 0B < π(s) ≤ a})

=
∨
{π(s) : 0B < π(s) ≤ a}

= a.

In the second equality, we used the fact that π preserves joins and in
the last equality we used π surjectivity.

(ii)

iπ ◦ π(q) =
∨
{s : π(s) ≤ π(q)}

≥ q

(iii) Let {bk : k ∈ K} ⊆ B. Certainly, by iπ definition, iπ(bk) ≤ iπ(
∨

k∈K bk).
Thus ∨

k∈K

iπ(bk) ≤ iπ(
∨

k∈K

bk).

Assume, by contradiction, that the last inequality is strict, then we
define

q = iπ(
∨

k∈K

bk) \
∨

k∈K

iπ(bk) > 0Q. (3.11)

By (3.2), we have

π(q) ∧ bk = π(q ∧ i(bk))

= π(0Q)

= 0B.

We obtain thus that

∀k ∈ K π(q) ∧ bk = 0B. (3.12)

By (3.11), it follows that q ≤ i(
∨

k∈K bk), and by π properties we have:

π(q) ≤ π(i(
∨

k∈K

bk))

=
∨

k∈K

bk.
(3.13)
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Putting (3.13) and (3.12) together we get:

π(q) = π(q) ∧
∨

k∈K

bk

=
∨

k∈K

(π(q) ∧ bk)

= 0B.

Hence q = 0Q, in contradiction with (3.11).

(iv) iπ(1B) =
∨{s ∈ Q : 0B < π(s)} = 1Q and

iπ(0B) =
∨{s ∈ Q : 0B < π(s) ≤ 0B} =

∨
Q ∅ = 0Q.

(v) Let a, b ∈ B such that a ∧ b = 0B. Then

iπ(a) ∧ iπ(b) =
∨
{s ∈ Q+ : π(s) ≤ a} ∧

∨
{t ∈ Q+ : π(t) ≤ b}

=
∨
{s ∧ t : 0B < π(s) ≤ a, 0B < π(t) ≤ b}

≤
∨
{q : π(q) ≤ a ∧ b = 0B}

= 0Q

= iπ(a ∧ b).

On the other hand since we already showed that iπ preserves joins we
have that iπ(a) ∨ iπ(b) = iπ(a ∨ b). By these equalities, we can easily
get that iπ(¬b) = ¬iπ(b).

Meet preservation follows from complement and join preservation.
By De Morgan laws we get:

iπ(a ∧ b) = iπ(¬(¬a ∨ ¬b))

= ¬iπ(¬a ∨ ¬b)

= ¬(iπ(¬a) ∨ iπ(¬b))

= ¬(¬iπ(a) ∨ ¬iπ(b))

= iπ(a) ∧ iπ(b).

(vi) We have already shown that iπ is an homomorphism, thus it suffices
to check that ker(iπ) = {0B}. Applying π to iπ(a) = 0Q, we get by (i)
a = π ◦ iπ(a) = π(0Q) = 0B.
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(vii) Using Proposition 3.1.5 (i) and applying πiπ
to point (ii) of the current

Proposition, we get for all q ∈ Q:

π(q) = [πiπ
◦ iπ](π(q))

= πiπ
◦ [iπ ◦ π(q)]

≥ πiπ
(q)

On the other hand, by (i) and applying π to Proposition 3.1.5 (i) we
have:

πiπ
(q) = [π ◦ iπ](πiπ

(q))

= π ◦ [iπ ◦ πiπ
(q)]

≥ π(q)

(viii) By Proposition 3.1.5(ii) and Proposition 3.1.7(ii) we have for all b ∈ B:

iπi(b) = iπi(πi ◦ i(b))

= [iπi ◦ πi](i(b))

≥ i(b).

The second disequality comes from Proposition 3.1.7(i) and Proposi-
tion 3.1.5(i):

i(b) = i(πi ◦ iπi(b))

= [i ◦ πi](iπi(b))

≥ iπi(b). �

3.2 Embeddings and quotients

With a slight abuse of terminology for any b ∈ B we let i � b : B � b → Q �

i(b) denote the natural restriction of i to B � b.
Given a regular embedding i : B → Q with associated retraction πi :

Q → B, let ĠB ∈ VB be the canonical name for the V-generic filter and İB

be the canonical name for its dual ideal:

ĠB = {〈b̌, b〉 : b ∈ B};
İB = {〈b̌,¬b〉 : b ∈ B}.
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We want that VB models that i[ İB] generates an ideal J̇ on Q by the
requirement that

~q ∈ J̇�B = ~πi(q) ∈ İB�B.

That is,
J̇ = {〈q̌,¬πi(q)〉 : q ∈ Q}.

Thus we get that for all q, r ∈ Q

~[q] J̇ = [r] J̇�B = ~q∆r ∈ J̇�B

= ~πi(q∆r) ∈ İB�B

= ¬(πi(q∆r))

The quotient forcing Q/i[ĠB] is a canonical B-name for the Boolean algebra
Q/ J̇.

Lemma 3.2.1. If i : B→ Q is a regular embedding of complete Boolean algebras,
then B ∗ (Q/i[ĠB]) (see Definition 4.2.3) is forcing equivalent to Q.

Proof. Let πi : Q→ B be the retraction map associated to i.
The map

i∗ : Q→ B ∗ (Q/i[ĠB]))

which maps r 7→ (π(r), [ř]i[ J̇]) is a complete embedding such that i∗[Q] is
dense in B ∗ (Q/i[ĠB]). The conclusion follows. �

We show the following variant of the mixing Lemma:

Lemma 3.2.2. Assume i : B → Q is a regular embedding. Let J̇ be a canonical
name for the dual ideal of the filter generated by i[ĠB]. For all ȧ ∈ VB such that
~ȧ ∈ (Q/ J̇)+�B = 1B, there is a unique rȧ ∈ Q such that

πi(rȧ) = 1B;

~ȧ = [rȧ] J̇�B = 1B.

Proof. Remember that for r, t ∈ Q we can compute the Boolean values:

~[r] J̇ ∈ (Q/ J̇)+�B = πi(r);

~[r] J̇ = [t] J̇�B = ¬πi(r∆t).
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Uniqueness. By contradiction, assume r , t are such that:

πi(r) = πi(t) = 1B;

~[r] J̇ = ȧ�B = ~[t] J̇ = ȧ�B = 1B.

The second condition entails that ~[r] J̇ = [t] J̇�B = 1B.
Now, r , t involves r∆t > 0Q and thus:

πi(r∆t) = ~[r] J̇ , [t] J̇�B > 0B.

Finally,

0B < πi(r∆t) = ~[r] J̇ , [t] J̇�B = ¬~[r] J̇ = [t] J̇�B = 0B,

which is impossible.
Existence. We now turn to the proof of the existence of the desired

element rȧ. Observe that if ȧ is a B-name for an element of (Q/ J̇)+, that is
~ȧ ∈ (Q/ J̇)+� = 1B, then:

~ȧ = [r] J̇�B = ~ȧ = [r] J̇�B ∧ ~ȧ ∈ (Q/ J̇)+�B

≤ ~[r] J̇ ∈ (Q/ J̇)+�B

= πi(r).

and

~ȧ = [r] J̇�B ∧ ~ȧ = [t] J̇�B

≤ ~[r] J̇ ∈ (Q/ J̇)+�B ∧ ~[t] J̇ ∈ (Q/ J̇)+�B ∧ ~[r] J̇ = [t] J̇�B

= π(r) ∧ π(t) ∧ ¬π(r∆t). (3.14)

Consider the set Aȧ = {b ∈ B+ : ∃r ∈ Q, b ≤ ~ȧ = [r] J̇�B}. We want to
construct a maximal antichain from Aȧ, for this purpose we first prove that
Aȧ is dense and then apply Proposition 1.1.7. By the fundamental forcing
theorem, we have that for any formula φ and element q ∈ B:

q ≤ ~φ�B

iff

∀G filter V-generic for B such that q ∈ G, thenV[G] |= φ.

We have to show that ∀q ∈ B+∃b ∈ Aȧ such that b ≤ q. Fix q ∈ B+ and let
G a V-generic filter for B such that q ∈ G. Thus

σG(ȧ) ∈ Q+/σG( J̇)

says that

∃r ∈ Q+ : V[G] |= σG(ȧ) = [r]σG( J̇)
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Then, for the forcing theorem,

∃s ∈ G : s ≤ ~ȧ = [r] J̇�B.

Let b = s ∧ q, then b ∈ G and

b = s ∧ q ≤ ~ȧ = [r] J̇�B;

so b ∈ Aȧ and b ≤ q, as we were looking for. Let now fix a maximal
antichain {bi : i ∈ I} ⊆ Aȧ. For every i ∈ I define:

Ai = {r ∈ Q : bi ≤ ~ȧ = [r] J̇�B}

and let

ai =
∧
B

{π(r) : r ∈ Ai} ∧B

∧
B

{¬Bπ(s∆Qt) : s, t ∈ Ai}. (3.15)

Then for all i ∈ I, bi ≤ ai, by (3.14).
For every i ∈ I, pick some ti ∈ Ai and let ri = i(bi) ∧ ti.
We get that

bi ≤ ~[ri] = [ti]�B,

in fact:

~[ri] J̇ = [ti] J̇�B = ~[i(bi) ∧ ti] J̇ = [ti] J̇�B

= ¬π((i(bi) ∧ ti)∆ti)

= ¬π(r \ i(bi))

≥ ¬π(1Q \ i(bi))

= ¬π(¬i(bi))

= ¬π(i(¬bi))

= ¬¬bi

= bi.

From bi ≤ ~[ri] J̇ = [ti] J̇�B and bi ≤ ~ȧ = [ti] J̇�B we get that {ri : i ∈ I} is a
subset of Q such that, for all i ∈ I,

bi ≤ ~[ri] J̇ = ȧ�B.

Now, define:
rȧ =

∨
Q

{ri : i ∈ I}.
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We prove that ~[rȧ] İ = ȧ�B = 1B. First of all, remark that:

¬i(bi) ≥ rȧ \ i(bi)

= (
∨
j,i

rj ∨ ri) \ i(bi) (3.16)

=
∨
j,i

(rj \ i(bi)) ∨ (ri \ i(bi)

=
∨
j,i

rj.

The last equality comes from two facts. The first is ri \ i(bi) = 0Q, by ri

definition. The second is that ∀j , i, (bj ∧ bi = 0B) implies i(bj)∧ i(bi) = 0Q

and thus rj ∧ i(bi) = 0Q. Therefore,

~[rȧ] J̇ = [ri] J̇�B = ¬π(rȧ∆ri)

= ¬π(rȧ \ ri)

= ¬π(
∨
j,i

rj)

≥ ¬(¬i(bi)) by 3.16

= ¬π(i(¬bi))

= ¬¬bi

= bi.

All in all, since {bi : i ∈ I} is a maximal antichain in B+, we get that
~[rȧ] J̇ = [ri] J̇�B ≥

∨{bi : i ∈ I} = 1B, as we were looking for.
This gives a canonical representation of any B-name ȧ for an element of

(Q/ İ)+ by an element rȧ ∈ Q+.
Moreover, applying the last point of Proposition 3.1.5 to π(ti) ≥ bi we

get:

π(ri) = π(i(bi) ∧ ti)

= bi.

Thus, because π(rȧ) ≥ π(ri) = bi, we finally have

π(rȧ) ≥
∨
B

{bi : i ∈ I} = 1B.

The proof of the lemma is completed. �



Chapter 4

Limits of Boolean algebras and
iterated forcing

In this chapter, we study how to apply embeddings and retractions in order
to get iteration systems of complete Boolean algebras. We then summarize
the construction of iterated forcing with posets and start in the last section
a comparison between iterated forcing and iteration systems of complete
Boolean algebras.

4.1 Iteration systems of complete Boolean algebras

Definition 4.1.1.

F = {iαβ : Bα → Bβ : α ≤ β < δ}

is a complete iteration system of complete Boolean algebras if for all α, β, γ ∈
δ:

(i) each Bα is a Boolean algebra;

(ii) each iαβ is a regular embedding with associated retraction παβ and iαα

is the identity;

(iii) for α ≤ β ≤ γ we have iβγ ◦ iαβ = iαγ.

Lemma 4.1.2. It follows from point (iii) of Definition 4.1.1 that the composition
of the associated retractions is an associated retraction, i.e.

∀α ≤ β ≤ γ : παβ ◦ πβγ = παγ.

47
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Proof. Let g ∈ Bγ, then:

παβ(πβγ(g)) =
∧
{a ∈ Bα : iαβ(a) ≥ πβγ(g)}

≥
∧
{a ∈ Bα : iβγ ◦ iαβ(a) ≥ iβγ ◦ πβγ(g)}

≥
∧
{a ∈ Bα : iαγ(a) ≥ g}

= παγ(g)

and

παγ(g) =
∧
{a ∈ Bα : iαγ(a) ≥ g}

=
∧
{a ∈ Bα : iβγ ◦ iαβ(a) ≥ g}

≥
∧
{a ∈ Bα : πβγ ◦ iβγ ◦ iαβ(a) ≥ πβγ(g)}

=
∧
{a ∈ Bα : iαβ(a) ≥ πβγ(g)}

= παβ ◦ πβγ(g). �

Definition 4.1.3. We say that f ∈ Πα∈δBα is a thread (Figure 4.1) for F if for
all α ≤ β < δ:

παβ( f (β)) = f (α).

Definition 4.1.4. We say that c ∈ Πα∈δBα is a constant thread (Figure 4.2) if
c is a thread and there is some α < δ such that, for all α ≤ β < δ:

iαβ ◦ παβ(c(β)) = c(β).

Definition 4.1.5. The support S of a constant thread c is the least α for which
the above holds, that is:

S(c) = min{α < δ : iαβ ◦ παβ(c(α)) = c(α)}

Remark that generally we only have iαβ ◦ παβ( f (β)) ≤ f (β).

Definition 4.1.6. The set of all threads is denoted by T(F ). The set of all
constant threads is denoted by C(F ).

f = 〈 f (0), f (1), . . . , f (α), f (β), f (γ), . . . 〉

παγ

Figure 4.1: A thread f ∈ T(F ).
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c = 〈 c(0), c(1), . . . , c(α), c(β), c(γ), . . . 〉

π0α π1α

iαβ iαγ

Figure 4.2: A constant thread c ∈ C(F ) with support α.

It is easy to check that a thread is uniquely determined by its restriction
to D for any D cofinal subset of δ and a constant thread by its value on any
α greater or equal than its support.

Definition 4.1.7. Given p ∈ Bα we let cα
p ∈ C(F ) be the unique constant

thread with support α such that cα
p(α) = p.

Proposition 4.1.8. There is a natural partial order on T(F ) and C(F ) given by
f ≤T(F ) g ( f ≤C(F ) g) iff f (α) ≤Bα g(α) for all α ∈ δ.

Proposition 4.1.9. For every complete iteration system F of complete Boolean al-
gebras there is a natural Boolean algebra structure on C(F ), where the operations
are given component wise i.e. if f = 〈 fα : α ∈ δ〉 and g = 〈gα : α ∈ δ〉 are in
C(F ) we have that f ∧C(F ) g = h if h is the unique thread such that for eventu-
ally all α < δ g(α)∧Bα f (α) = h(α). All the other Boolean operations are defined
similarly.

Notice however that C(F ) most likely is not a complete Boolean alge-
bra.

Remark 4.1.10. C(F ) may not be a complete Boolean algebra and most
likely it is not a complete Boolean subalgebra of B(T(F )). In general for
a linear system indexed by ω, let p = 〈pn : n < ω〉 be a thread in T(F ) \
C(F ). Thus ∀n < ω:

in,n+1(pn) = in,n+1(πn,n+1(p(n + 1)))

> pn+1

then
{cn

p(n) : n < ω} ⊂ C(F )
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is a strictly decreasing sequence in C(F ):

〈p0, i01(p0), i02(p0), . . . , i0n(p0), . . .〉 >C(F )〈p0, p1, i12(p1), . . . , i1n(p1), . . .〉
...

>C(F )〈p0, p1, p2, . . . , pn, in,n+1(pn), . . .〉

which may have no exact lower bound or could have a lower bound differ-
ent from its exact lower bound in T(F ) which is p.

For example let

F = {ink : B(∏
i<n

2<ω)→ B(∏
i<k

2<ω) : n ≤ k < ω}

with each ink the natural injection. Observe that F is a complete itera-
tion system. Now B(C(F )) is the Boolean completion of the finite support
product of ∏i<ω 2<ω and is forcing equivalent to Cohen forcing. If s ∈ 2<ω,
we get that {c(〈s : i < n〉) : n < ω} is a strictly decreasing sequence
in C(F )+ with no lower bound in C(F )+, thus in C(F ) its exact lower
bound is 0C(F ). On the other hand in T(F ) its exact lower bound will be
{〈s : i < n〉 : n < ω} which is a non 0-element of T(F ). This shows that
the inclusion map of C(F ) into B(T(F )) is an injective homomorphism of
Boolean algebras which is not complete.

Remark 4.1.11. We can not identify T(F ) with its Boolean completion. In
fact, let { fi : i ∈ I} ⊆ T(F ), then 〈∨i∈I fi(0),

∨
i∈I fi(1), . . .〉 is a thread that

can not be the supremum in B(T(F )) of { fi : i ∈ I}.
As an example, we can find a thread b = 〈bn : n < ω〉 such that

πn,n+1(in,n+1(bn) ∧ ¬bn+1) = bn, that is: πn,n+1(¬bn+1) = 1Bn . Let K =

{cn
¬bn

: n ∈ ω}, that is K contains elements of the form:

c0
¬b0

= 〈¬b0, i01(¬b0), . . . , i0n(¬b0), . . .〉,
c1
¬b1

= 〈1B0 ,¬b1, i12(¬b0), . . . , i1n(¬b1), . . .〉,
. . .

cn
¬bn

= 〈1B0 , 1B1 , . . . , 1Bn−1 ,¬bn, in,n+1(¬bn), . . .〉.

Each element of K is incompatible with b, but the pointwise supremum
of K which is 〈1B0 , 1B1 , . . . , 1Bn , . . .〉 is compatible with b, so 1T(F ) can not
be
∨

B(T(F )) K.
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4.2 General iterated forcing

We summarize definitions and properties related to general iterated forc-
ing. For further informations and proofs we refer to [5][VII-VIII]. Here
M is a transitive model of ZFC. A p.o. is a triple 〈P,≤P, 1P〉 such that ≤P

partially orders P and 1P is a largest element of P.

Definition 4.2.1. We mean for complete embedding of two p.o. 〈P,≤P, 1P〉
and 〈Q,≤Q, 1Q〉 a map i : P→ Q such that:

(i) ∀p, p′ ∈ P[p ≤P p′ → i(p) ≤Q i(q)];

(ii) ∀p1, p2 ∈ P[p1 ⊥ p2 ↔ i(p1) ⊥ i(p2)];

(iii) ∀q ∈ Q∃p ∈ P∀p′ ∈ P[p′ ≤P p → i(p′) ‖ q]. We call p a reduction of q
to P.

Definition 4.2.2. If P is a p.o. in M, a P-name for a p.o. is a triple of P-
names, 〈ν, ν′, ν′′〉 ∈ M, such that ν′′ ∈ dom(ν) and

1P P [(ν′′ ∈ ν) ∧ (ν′ is a partial order of ν with largest element ν′′)]

We often write ν for 〈ν, ν′, ν′′〉, ≤ν for ν′ and 1ν for ν′′.

Definition 4.2.3. If P is a p.o. in M and 〈ν,≤ν, 1ν〉 is a P-name for a p.o.,
define

Xν = {τ ∈ MP : 1P  τ ∈ ν, ∀ρ ∈ MP[1P  ρ = ν→ rank(ρ) ≥ rank(ν)]}

then P ∗ ν is the p.o. whose base set is

{〈p, τ〉 : p ∈ P ∧ τ ∈ Xν}

In P ∗ ν, we define 〈p, τ〉 ≤P∗ν 〈q, σ〉 iff

p ≤P q ∧ p  τ ≤ν σ,

and we set
1P∗τ = 〈1P, 1ν〉.

Define i : P→ P ∗ ν by i(p) = 〈p, 1ν〉.

Lemma 4.2.4. In the notation of Definition 4.2.3:
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(i) ∀p, p′ ∈ P(p ≤P p′ ↔ 〈p, 1ν〉 ≤P∗ν 〈p′, 1ν〉);

(ii) i(1P) = 1P∗ν;

(iii) ∀〈p, τ〉, 〈p′, t′〉 ∈ P ∗ ν(p ⊥ p′ → 〈p, τ〉 ⊥ 〈p′, t′〉);

(iv) ∀〈p, τ〉 ∈ P ∗ ν ∀p′ ∈ P(p ⊥ p′ ↔ 〈p, τ〉 ⊥ 〈p′, 1ν〉);

(v) ∀p, p′ ∈ P(p ⊥ p′ ↔ i(p) ⊥ i(p′));

(vi) i : P→ P ∗ ν is a complete embedding.

Proof. Proofs of (i)-(iii) come from the definitions. To prove (iv) from right
to left, if q ≤P p and q ≤P p′ then 〈q, τ〉 ≤P∗ν 〈p, τ〉 and 〈q, τ〉 ≤P∗ν 〈p′, 1ν〉.
(v) is a special case of (iv). (vi) follows from (i), (v) and (vi), where p is a
reduction of 〈p, τ〉 to P. �

Definition 4.2.5. In the notation of Definition 4.2.3, if G is P-generic over
M and H ⊆ νG, then

G ∗ H = {〈p, τ〉 ∈ P ∗ ν : p ∈ G ∧ τG ∈ H}.

Theorem 4.2.6. Assume that P is a p.o. in M and ν is a P-name for a p.o. Let K
be P ∗ ν-generic over M, and let

H = {τG : τ ∈ dom(τ) ∧ ∃q(〈q, τ〉 ∈ K)}.

Then G is P-generic over M, H is νG-generic over M[G], K = G ∗H, and M[K] =
M[G][H].

We now turn to consider α-stage iterated forcing for α any ordinal. Re-
mark that for α = 1 we have ordinary forcing and for α = 2 we have
iterations of the form P ∗ ν just discussed.

Definition 4.2.7. In M, suppose α is any ordinal, I ⊆ P(α), I is an ideal
on α + 1, and I contains all finite subsets of α. An α-stage iterated forcing
construction with supports in I is an object in M of the form,

〈〈〈Pξ ,≤Pξ
, 1Pξ
〉 : ξ ≤ α〉, 〈〈νξ ,≤νξ

, 1νξ
〉 : ξ < α〉〉〉,

which satisfies the following conditions:

(i) Each 〈Pξ ,≤ξ , 1Pξ
〉 is a p.o.;
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(ii) Elements of Pξ are all sequences of length ξ;

(iii) If p ∈ Pη and ξ < η, then p � ξ ∈ Pξ ;

(iv) Each 〈νξ ,≤Pξ
, 1Pξ
〉 is a Pξ-name for a p.o.;

(v) If 〈ρµ : µ < ξ〉 ∈ Pξ , then each ρµ ∈ Xνµ ;

(vi) 1Pξ
is the sequence 〈ρµ : µ < ξ〉 such that each ρµ = 1νµ .

Define supt(〈ρµ : µ < ξ〉) = {µ < ξ : ρµ , 1νµ}. We demand further that
the construction satisfy:

(a) Basis. P0 = {0}.

(b) Successors. If p = 〈ρµ : µ ≤ ξ〉, then p ∈ Pξ+1 iff p � ξ ∈ Pξ , ρξ ∈ Xνξ
,

and p � ξ Pξ
(ρξ ∈ νξ). If also p′ = 〈ρ′µ : µ ≤ ξ〉, then p ≤ p′ iff

p � ξ ≤ p′ � ξ and p � ξ  (ρξ ≤ ρ′ξ).

(c) Limits. If η is a limit ordinal and p = 〈ρµ : µ < η〉, then p ∈ Pη iff

∀ξ < η(p � ξ ∈ Pξ ∧ supt(p) ∈ I).

If p, p′ ∈ Pη , then p ≤ p′ iff ∀ξ < η(p � ξ ≤ p′ � ξ).

Definition 4.2.8. In Definition 4.2.7, we say the iteration is of finite support
iff I = {X ⊆ α : |X| < ω}, and of countable support iff I = {X ⊆ α : (|X| ≤
ω)M}. Iterations with full limits means I = (P(α))M.

Generalizing the i : P → P ∗ ν from two stage iterations, we have the
following.

Definition 4.2.9. In the notation of Definition 4.2.7, if ξ ≤ η ≤ α, define
iξη : Pξ → Pη so that iξη(p) is the p′ ∈ Pη , such that p′ � ξ = p and
p′(µ) = 1νµ for ξ ≤ µ < η.

We summarize now some abstract order-theoretic properties of iterated
forcing constructions.

Lemma 4.2.10. In the notation of Definitions 4.2.7 and 4.2.9, assume that ξ ≤
η ≤ ζ ≤ α. Then:

(a) iξζ = iηξ ◦ iξη ;
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(b) iξη(1Pξ
) = 1Pη ;

(c) ∀p, p′ ∈ Pη(p ≤ p′ → p � ξ ≤ p′ � ξ);

(d) ∀p, p′ ∈ Pξ(p ≤ p′ ↔ iξη(p) ≤ iξη(p′));

(e) ∀p, p′ ∈ Pη(p � ξ ⊥ p′ � ξ → p ⊥ p′);

(f) ∀p, p′ ∈ Pη [supt(p) ∩ supt(p′) ⊆ ξ → (p � ξ ⊥ p′ � ξ ↔ p ⊥ p′)];

(g) ∀p, p′ ∈ Pξ(p ⊥ p′ ↔ iξη(p) ⊥ iξη(p′));

(h) iξη is a complete embedding.

Lemma 4.2.11. Assume that in M,

〈〈Pξ : ξ ≤ α〉, 〈νξ : ξ < α〉〉

is an α-stage iterated forcing construction. Let G be Pα− generic over M. For each
ξ ≤ α, let Gξ = i−1

ξα (G). Then Gξ is Pξ− generic over M and

ξ ≤ η → M[Gξ ] ⊆ M[Gη ].
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4.3 Iterated forcing and Boolean algebras iteration sys-
tems

In this last section we start to relate α-stage iterated forcing and linear iter-
ation systems of complete Boolean algebras.

We begin by recalling the definitions of p.o. complete embedding, Boolean
algebras regular embedding and Boolean completion of p.o.

Complete embedding: We mean for complete embedding of two p.o. 〈P,≤P

, 1P〉 and 〈Q,≤Q, 1Q〉 a map i : P→ Q such that:

• ∀p, p′ ∈ P(p ≤P p′ → i(p) ≤Q i(q));

• ∀p1, p2 ∈ P(p1 ⊥ p2 ↔ i(p1) ⊥ i(p2));

• ∀q ∈ Q∃p ∈ P∀p′ ∈ P(p′ ≤P p→ i(p′) ‖ q). We call p a reduction
of q to P.

Regular embedding: Let B, Q be complete Boolean algebras. ı̂ : B → Q

is a regular embedding if it is a complete and injective homomorphism
of Boolean algebras.

Boolean completion: Let P a poset, then there is a complete Boolean alge-
bra B, unique up to isomorphism, and a map j : P→ B such that:

• j[P] is dense in B;

• j is order preserving, that is, ∀p, q ∈ P(p ≤ q→ j(p) ≤ j(q));

• ∀p, q ∈ P(p ‖ q↔ j(p) ∧ j(q) , 0B)

We want to study how the previous definitions are related. The next
lemma states the equivalence between regular embeddings and complete
embeddings of Boolean algebras.

Lemma 4.3.1. ı̂ : B → Q is a regular embedding if and only if ı̂ : B+ → Q+ is
a complete embedding.

Proof. We begin the proof with the implication from left to right.

Predensity preservation: Let D ⊆ B a predense subset of B. By hypothe-
sis, we know that ∀q ∈ Q∃p ∈ B such that ∀p′ ≤ p (ı̂(p′) ‖ q). By D
predensity, ∀p′ ≤ p∃d ∈ D(d ‖ p′), that is ∃r ∈ P such that r ≤ d and
r ≤ p′. It follows that ı̂ (r) ≤ ı̂ (d) and ı̂ (r) ‖ q. Hence ı̂ (d) ‖ q and
ı̂ [D] is predense.
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1B is mapped in 1Q: By the predensity preservation, for D ⊆ P predense,
it follows:

1Q =
∨

ı̂[D] ≤ ı̂ (
∨

D) = ı̂ (1B)

Complement preservation: We already know that for a ∈ B we have ı̂ (a)∨
ı̂ (¬a) = 1Q since the subset {a,¬a} is predense.

We check instead that ı̂(a) ∧ ı̂ (¬a) = 0Q. By hypothesis, ı̂ preserves
incompatibility so a ∧ ¬a = 0B must implies ı̂(a) ∧ ı̂ (¬a) = 0Q

Completeness: Let A ⊆ B. If A is not predense we complete it with A ∪
{¬∨ A} = A′.

A′ is predense. If not, for all b ∈ B and a ∈ A′, we wold have a ∧ b =

0B, that imply∨
a∈A′

(a ∧ b) = 0B → (
∨

A ∨ ¬
∨

A) ∧ p = 0B

→ 1B ∧ p = 0B

→ p = 0B.

Now, applying ı̂ to elements of A′, we get that ı̂[A′] is predense, and∨
ı̂[A] ∨ ı̂(¬

∨
A) = 1B = ı̂(

∨
A) ∨ ı̂(¬

∨
A). (4.1)

We also know that ∨
ı̂[A] ≤ ı̂(

∨
A) (4.2)

and ∨
ı̂[A] ∧ ı̂(¬A) =

∨
ı̂[A] ∧ ¬ı̂(A)

≤ ı̂(
∨

A) ∧ ¬ı̂(
∨

A)

= 0Q.

(4.3)

By (4.1)- (4.2)- (4.3), we conclude that∨
ı̂[A] = ı̂(

∨
A).

Injectivity: It is obvious from the fact that, by hypothesis, ı̂ goes from pos-
itive elements of B to positive elements of Q.

To the other implication, assume ı̂ is a complete and injective homomor-
phism of Boolean algebras.
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Order preservation (“→“): Let a ≤ b, then ı̂(a) ≤ ı̂(a) ∨ ı̂(b) = ı̂(a ∨ b) =
ı̂(b).

Incompatibility preservation (”↔”): Let a ∧ b = 0B then 0Q = ı̂(a ∧ b) =
ı̂(a) ∧ ı̂(b). Conversely, let ı̂(a) ∧ ı̂(b) = 0Q, then ı̂(a) ∧ ı̂(b) = ı̂(a ∧
b) = 0Q. By ı̂ injectivity, a ∧ b = 0B.

Reduction: Let q ∈ Q+. We claim that D = {b ∈ B : ı̂(b) ⊥ q} is not
predense. By contradiction, if

∨
D = 1B then ∃d ∈ D : ı̂(d) ∧ q >

0Q. Now letting r = 1B \
∨

D, the reduction of q to B is r. In fact,
∀s ≤ r, ı̂(s) ‖ q. If not, we would have a contradiction: s ∈ D but, by
definition, s ∧∨D = 0B. �

We now show how a complete embedding of two posets defines a reg-
ular embedding of their Boolean completions.

Lemma 4.3.2. Consider two refined p.o. 〈P,≤P, 1P〉 and 〈Q,≤q, 1Q〉 and let i :
P → Q be a complete embedding. Let 〈B(P), e〉 and 〈B(Q), f 〉 be the Boolean
completions of P and Q.
Then i defines a regular embedding ı̂ : B(P) → B(Q) that makes commutative
the following diagram:

P Q

B(P) B(Q)

i

ı̂

e f

Proof. We define the map between B(P) and B(Q) as:

ı̂ : B(P)→ B(Q)

a 7→
∨
{ f ◦ i(p) : e(p) ≤ a}.

We check that ı̂ makes commutative the diagram and that it is a regular
embedding by means of Lemma 4.3.1.

Commutativity: For all p ∈ P :

ı̂ ◦ e(p) = { f ◦ i(p′) : e(p′) ≤ e(p)}
= f ◦ i(p).
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Double incompatibility preservation (“↔“) : We shall control that for all
a, b ∈ P :

a ⊥ b ↔ ı̂(a) ∧ ı̂(b) = 0B(Q).

For the implication from left to right, define:

Aa = {p ∈ P : e(p) ≤ a};
Ab = {q ∈ P : e(q) ≤ b}.

For all p ∈ Aa and q ∈ Ab, we have that e(p) ⊥ e(q) and, in particular,
the following implications hold:

e(p) ⊥ e(q)→ p ⊥ q

→ i(p) ⊥ i(q)

→ f ◦ i(p) ∧ f ◦ i(q) = 0B(Q)

→
∨
{ f ◦ i(p) : e(p) ≤ a} ∧

∨
{ f ◦ i(q) : e(q) ≤ b} = 0B(Q)

= ı̂(a) ∧ ı̂(b) = 0B(Q).

To prove the implication from right to left, assume a ∧ b > 0B(P).
By e[P] density in B(P), there is a p ∈ P such that e(p) ≤ a ∧ b.
In particular e(p) ≤ a and e(p) ≤ b. Thus f ◦ i(p) ≤ ∨{ f ◦ i(p′) :
e(p′) ≤ a} = ı̂(a) and f ◦ i(p) ≤ ∨{ f ◦ i(p′) : e(p′) ≤ b} = ı̂(b).
Hence the conclusion: 0B < f ◦ i(p) ≤ ı̂(a) ∧ ı̂(b).

Order preservation (”→”): By ı̂ definition, it follows that for all a, b ∈ B(P) :

a ≤ b→ ı̂(a) ≤ ı̂(b).

Reduction existence: Let q ∈ B(Q). By f [Q] density in B(Q), there is a
q′ ∈ Q such that f (q′) ≤ q. Now, we can pick a reduction p ∈ P of q′

to P, so we have:
∀p′ ≤ p : i(p′) ‖ q′.

It follows that ∀p′ ≤ p :

i(p′) ‖ q′ ↔ f (i(p′)) ∧ f (q′) > 0B(Q)

↔ ı̂(e(p′)) ∧ f (q′) > 0B(Q). (4.4)

We affirm that the reduction of q to B(P) is e(p).
In fact, let 0B(P) < r ≤ e(p). By e[P] density in B(P), there is a p′′ ∈ P
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such that e(p′′) ≤ r ≤ e(p). Then in particular, p′′ ‖ p, that is, there
exists a t ∈ P such that t ≤ p′′ and t ≤ p. Hence we get the following
chain:

e(t) ≤ e(p′′) ≤ r ≤ e(p).

Applying ı̂ we get in particular that

ı̂(e(t)) ≤ ı̂(r),

and, by (4.4), we finally conclude that

0B(Q) < ı̂(e(t)) ∧ q ≤ ı̂(r) ∧ q. �

Lemma 4.3.3. Let P ∗ ν a two step iteration and consider the Boolean completion
maps j0 : P → B(P), j1 : P ∗ ν → B(P ∗ ν). Let i : P → P ∗ ν the complete
embedding such that i(p) = 〈p, 1ν〉, ı̂ : B(P)→ B(P ∗ ν) the regular embedding
generated by i and π̂ the retraction associated to ı̂. If b1 ∈ B(P ∗ ν) and b0 =

π̂(b1), by j0[P] density in B(P) pick r ∈ P such that j0(r) ≤ b. Then there is a
τ ∈ Xν such that j1(〈r, τ〉) ≤ b1.

Finally, by means of the previous lemmas, we can connect iterated forcing
and iterations systems of Boolean algebras.

Theorem 4.3.4. In the notation of Definition 4.2.7, consider an α-stage iterated
forcing construction with support I ⊆ P(α) :

〈〈〈Pξ ,≤Pξ
, 1Pξ
〉 : ξ ≤ α, 〈〈νξ ,≤νξ

, 1νξ
〉 : ξ < α〉〉〉.

Then
F = {ı̂ξη : Bξ → Bη : ξ < η ≤ α }

is such that:

(a) ∀ξ ≤ α : 〈Bξ , jξ〉 is a Boolean completion of Pξ .

(b) ∀ξ < η ≤ α, the map ı̂ξη makes commutative the following diagram:

Pξ Pη

Bξ Bη

iξη

ı̂ξη

jξ jη
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where iξη(p) = pa〈1πµ : ξ ≤ µ < η〉

(c) ∀ξ < η ≤ α, the retraction π̂ξη associated to ı̂ξη makes commutative the
following diagram:

Pξ Pη

Bξ Bη

πξη

π̂ξη

jξ jη

where πηξ(q) = q � η

(d) F is an iteration system of complete Boolean algebras;

(e) if I = P(α), Pα is dense in T(F ) and thus Bα � B(T(F )); if ∀X ∈ I(∪X <

α) then Bα � C(F ).

Proof. (a) We choose Bξ � B(Pξ).

(b) Use Lemma 4.3.2.

(c) Remember that π̂ξη(jη(p)) =
∧

Bξ
{b : ı̂ξη(b) ≥ jη(p)}. We certainly

have that jξ(p � ξ) ≥ π̂ξη ◦ jη(p) because

ı̂ξη(jξ(p � ξ)) = jη ◦ iξη(p � ξ)

≥ jη(p)

and thus jξ(p � ξ) ∈ {b : ı̂ξη(b) ≥ jη(p)}.

Conversely, if jξ(p � ξ) > π̂ξη ◦ jη(p), then there is a s ∈ Pξ such that
jξ(s) ≤ jξ(p � ξ) and jξ(s) ∧ π̂ξη ◦ jξ(p) = 0Bξ

, we can choose s ≤ p � ξ.
Applying ı̂ξη we get:

0Bη = ı̂ξη(0Bξ
)

= ı̂ξη(jξ(s) ∧ π̂ξη(jξ(p)))

= ı̂ξη(jξ(s)) ∧ ı̂ξη(π̂ξη(jξ(p))))

≥ jη(iξη(s)) ∧ jξ(p)

= jη(sa〈1πµ : ξ ≤ µ < η〉) ∧ jξ(p)

thus sa〈1πµ : ξ ≤ µ < η〉 ⊥ p.
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But we also have that s ≤ p � ξ so sa〈p(µ) : ξ ≤ µ < η〉 ≤ iξη(s) and
sa〈p(µ) : ξ ≤ µ < η〉 ≤ p, a contradiction.

(d) We already know that: Bξ for ξ ≤ α are complete Boolean algebras, ı̂ξη

are regular embeddings with associated retractions π̂ξη ; it remains to
show that for all ξ < η < ν ≤ α the composition works: ı̂ην ◦ ı̂ξη = ı̂ξν.
In fact, for all a ∈ Bξ

ı̂ξη(a) =
∨
{jν ◦ iξν(p) : jξ(p) ≤ a}

=
∨
{jν ◦ iην ◦ iξη(p) : jξ(p) ≤ a}

=
∨
{ı̂ην ◦ jη ◦ iξη(p) : jξ(p) ≤ a}

=
∨
{ı̂ην ◦ ı̂ξη ◦ jξ(p) : jξ(p) ≤ a}

= ı̂ξν ◦ ı̂ξη(a),

the last equality comes from jξ [Pξ ] density in Bξ .

(e) Define the map

f : Pα → T(F )
p = 〈ρµ : µ < α〉 7→ 〈jµ(p � µ) : µ < α〉

f is a well-defined map, that is f (p) ∈ T(F ), in fact for all µ < ξ < α

π̂µξ( f (p)ξ) = π̂µξ(jξ(p � ξ))

= jµ ◦ πµξ(p � ξ)

= jµ(p � µ)

= f (p)µ

If ∪supp(p) < α then f (p) ∈ C(F ).
f is order preserving. In fact if p ≤Pα q then p � µ ≤Pµ q � µ for all
µ < α, thus jµ(p � µ) ≤Bµ jµ(q � µ) and hence f (p) ≤T(F ) f (q).

f [Pα] is dense in T(F ). Let b = 〈bξ : ξ < α〉 ∈ T(F ), we can build a
p ∈ Pα such that jξ(p � ξ) ≤Bξ

bξ for all ξ < α by means of Lemma
4.3.3.

f preserves incompatibility (i.e. p ⊥ q→ f (p) ⊥ f (q))
Let p ⊥ q ∈ Pα, if by absurd f (p) ‖ f (q), then there is a t ∈ T(F ) such
that t ≤ f (p) and t ≤ f (q). Now, by f [Pα] density, we can choose a
r ∈ Pα so that f (r) ≤ t. It follows that f (r) ≤ f (p) and f (r) ≤ f (q),
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i.e. 〈jξ(r � ξ) : ξ < α〉 ≤T(F ) 〈jξ(p � ξ) : ξ < α〉 and 〈jξ(r � ξ) : ξ <

α〉 ≤T(F ) 〈jξ(q � ξ) : ξ < α〉
In particular, for all ξ < α we have jξ(r � ξ) ≤Pξ

jξ(p � ξ) and jξ(r �
ξ) ≤Pξ

jξ(q � ξ).
By jξ property, it follows that r � ξ ‖ p � ξ and r � ξ ‖ q � ξ for all
ξ < α. �
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