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Introduction

This dissertation presents some aspects of the connection between boolean valued models
for Set Theory (a subject pertaining to logic and Set Theory) with sheaves and toposes
(which are mostly studied by category theorists and algebraic geometers).

Boolean valued models for Set Theory are a standard method to present Forcing. The
forcing technique was introduced by Cohen in 1963 (see [2]) in order to prove the inde-
pendence of the Continuum Hypotesis from the ZFC axioms for Set Theory. Since then it
has been applied to prove the undecidability of many problems arsing in various branches
of mathematics, among others: group theory, topology, functional analysis.

Category Theory arose from a 1945 article written by Mac Lane and Eilenberg ([9])
on algebraic topology. It provides a foundation of mathematics alternative to the one
given by Set Theory. Its high degree of abstraction allows to find applications of category
theoretic ideas and methods everywhere in mathematics. Category theory is also used in
quantum physics and computer science.

Even if the idea of dealing with forcing from a categorial point of view has been
well developed, as far as we know the interpretation of boolean valued models for Set
Theory as categories of sheaves on a boolean topological space has not been exposed in
full details yet. This dissertation does exactly that.

The thesis is divided in four chapters.
The first chapter introduces the tools needed to develop forcing by means of boolean

valued models. The first two sections outline the basics about boolean algebras, Stone
spaces, and boolean valued models respectively, and the third and fourth sections use
these results to present the standard approach to forcing via boolean valued models for
Set Theory of the form V B.

Chapter 2 is a short introduction to Category Theory and to the notion of a sheaf
on a topological space. The first section presents the basic definitions, while the second
introduces some important categorial constructions. In the third section the notions of a
sheaf and of a Grothendieck topos are defined.

In chapter 3 a step towards the sheaf interpretation of B-names in V B is made: every
τ ∈ V B can be canonically identified with a continuous function with domain St(B) (the
Stone space of B) yelding a new boolean valued model for Set Theory V St(B), which we
will prove to be isomorphic to V B.

Chapter 4 combines all the results of the previous chapters. We prove that the cateogory
associated to V St(B) can be faithfully embedded in the category Sh(St(B)) given by all
sheaves on a topological space St(B). Particular attention is given to the class of full

v



vi INTRODUCTION

B-names. On the one hand these are relevant in order to analyze the boolean semantic
on V B. On the other hand it will be shown that their key properties give rise to a natural
associated sheaf. Conversely we show how to attach to any sheaf a corresponding full
B-name. The association is natural in the categorial sense. Finally, we prove that V St(B)

is a Grothendieck topos, this follows by an application of Giraud’s theorem. Nonetheless
we are not able to establish that this Topos is the category of all sheaves on St(B). We
expect this to be the case and we leave the write-up of the answer to a future investigation.



Chapter 1

Boolean valued models for Set Theory
and forcing

This chapter is a short review on the theory of boolean valued models and forcing. We
assume the reader is acquainted with the basics on first order logic and Set Theory as
axiomatized by ZFC. For a complete introduction to these subjects see for example [11,
Chapters 1-5 and 9], while [5] is the reference for results involving boolean algebras and
[4], [7] for boolean valued models for Set Theory and forcing.

1.1 Partial orders, boolean algebras and Stone’s duality
In this section we recall some properties of boolean algebras and their associated Stone
spaces.

Definition 1.1.1. A boolean algebra is a poset (B,≤) satisfying the following conditions:

• every couple a, b ∈ B has a unique least upper bound, denoted a ∨ b;

• every couple a, b ∈ B has a unique greatest lower bound, denoted a ∧ b;

• it is limited, that is there are two elements 1B and 0B such that 0B ≤ a ≤ 1B for
every a ∈ B;

• (distributivity) for every a, b, c ∈ B

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

and
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

• every a ∈ B admits a unique complement ¬a with the properties a ∨ ¬a = 1B and
a ∧ ¬a = 0B.

1



2CHAPTER 1. BOOLEAN VALUED MODELS FOR SET THEORY AND FORCING

A boolean algebra B is complete if every subset X ⊆ B has a supremum (denoted∨
X) and an infimum (denoted

∧
X).

Remark 1.1.2. A boolean algebra can equivalently be defined as a tuple (B,∧,∨,¬, 1B, 0B)
where B is a set, ∨ and ∧ are two commutative and associative binary operations on B, ¬
is a unary operation on B, the distributive laws hold, 1B and 0B are the identity elements
of ∧ and ∨ respectively and the complement law holds.

Given such an algebraic structure, one can recover the partial order on B setting

a ≤ b ⇐⇒ a ∧ b = a

for every a, b ∈ B.

We give some examples of boolean algebras:

• 2 = {0, 1} with 0 < 1. It is the simplest boolean algebra one can construct.

• Given a set X , its powerset P(X) with the operations of intersection, union and
complement yelds a complete boolean algebra. Stone’s representation theorem
states that every boolean algebra is isomorphic to a subalgebra of the powerset
of some X .

• let X be a topological space. Then the collection CLOP(X) of its clopen subsets
is a boolean algebra with the same operations of P(X). It may not be complete.

• Recall that a subset A of the space X is regular if A = Å. The collection RO(X)
of the regular open subsets of X is a complete boolean algebra with operations

A ∧B = A ∩B

A ∨B = ˚A ∪B

¬A =
˚

X \ A
A ≤ B ⇐⇒ A ⊆ B.

Since every clopen subset A is trivially regular, CLOP(X) is always a subalgebra
of RO(X).

Definition 1.1.3. Given two boolean algebras B and C, a function i : B→ C is a morphism
of boolean algebras if

• i(a ∨B b) = i(a) ∨C i(b),

• i(a ∧B b) = i(a) ∧C i(b),

• i(¬Ba) = ¬Ci(a)

for every a, b ∈ B, i(1B) = 1C and i(0B) = 0C.
i is an isomorphism if it is a bijective morphism.
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Before stating the properties of boolean algebras needed in the following, we outline
some facts about general posets.

Definition 1.1.4. Let (P,≤) a partial order. A subset X ⊆ P is said to be

• an antichain if every couple of elements in p, q ∈ X are incompatible, i.e. there is
no r ∈ X such that r ≤ a and r ≤ b;

• open if it is downward closed, that means if p ∈ X and q ≤ p then q ∈ X;

• dense if for every p ∈ P there is some q ∈ X such that q ≤ p. More generally, X
is dense below r ∈ P if for every p ≤ r there is some q ∈ X with q ≤ p;

• predense (below r) if

↓X = {p ∈ P : ∃q ∈ X(p ≤ q)}

is dense (below r);

• a maximal antichain if it is a predense antichain;

• a filter if it is upward closed, and for every p, q ∈ X there is r ∈ X such that r ≤ p
and r ≤ q.

Remark 1.1.5. Every partial order (P,≤) has an associated topology, which we call the
forcing topology. It is defined to be the topology generated by the collection {↓{p} : p ∈ P}.
It can be checked that X ⊆ P is open (resp. dense) if and only if it is open (resp. dense)
with respect to the forcing topology.

Remark 1.1.6. For a boolean algebra B seen as a partial order, {0B} is a dense open subset.
For our purposes it is much more interesting to consider the partial order B+ = B \ {0B}
when considering B as a partial order, and we will do so hereafter.

Theorem 1.1.7. Let B be a complete boolean algebra (sometimes abbreviated with cba).
Then:

• If X ⊆ B+ is dense below b, then X contains a maximal antichain in itself;

• X is predense below b if and only if
∨
X ≥ b.

For a proof, see [5, Thm 4.9]
This definition plays a key role in the develpment of the forcing method.

Definition 1.1.8. Let (P,≤) is a partial order and D ⊆ P(P ). A filter F on P is said to
be D-generic if it intersects all the subset belonging to D.

Theorem 1.1.9. Let (P,≤) be a partial order, D = {Di : i < ω} a countable family of
predense subsets of P , and p ∈ P . Then there exists a filter F on P which is D-generic
and contains p.
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Proof. Define by recursion the set {pi : i < ω} setting p0 = p, pi+1 requiring that pi+1 ≤
pi and pi+1 ∈↓Di (this is possible since each Di is predense). Then

F = ↑{pi : i < ω} = {q ∈ P : ∃i ∈ ω(pi ≤ q)}

is the desired filter. It is upward closed by definition, and if q, r ∈ F by construction
pj ≤ q and pj ≤ r for some j ∈ ω.

Remark 1.1.10. If P has an atom p, i.e. there is no q ∈ P with q < p, then ↑ {p} is
D-generic if D is the collection of the predense subsets of P . The notion of genericity
is of interest only when applied to atomless partial orders, and in what follows we will
consider this kind of orders and boolean algebras.

Remark 1.1.11. The thesis of theorem 1.1.9 is no more true if D is uncountable. For
example, consider the partial order (2<ω,⊇), and the dense sets

• Df = {s ∈ 2<ω : s * f} for f ∈ 2ω, and

• En = {s ∈ 2<ω : |s| > n} for n ∈ ω.

If G is a generic filter for {Df : f ∈ 2ω} ∪ {En : n ∈ ω}, then g = ∪G ∈ 2ω. But
G ∩Dg 6= ∅, hence there is some t ∈ 2<ω such that t * g and t ⊆ g, a contradiction.

Definition 1.1.12. Let B be a boolean algebra. An ultrafilter on B is a filter G on B such
that for every element a ∈ B either a ∈ G or ¬a ∈ G.

Remark 1.1.13. It follows immediately from the definition that if G is an ultrafilter on B
and a ∈ G, then exactly one among a ∈ G and ¬a ∈ G holds. In fact, if a ∈ G and
¬a ∈ G, then a ∧ ¬a = 0B ∈ G, and this situation is excluded by 1.1.6 and 1.1.10.

Remark 1.1.14. Assuming the Axiom of Choice, every filter F on B can be extended to
an ultrafilter (see [5, Thm 2.16]).

Definition 1.1.15. Let B be a boolean algebra. St(B) is the set of all the ultrafilters on B.
On St(B) we consider the topology generated by the sets

Nb = {G ∈ St(B) | b ∈ G} .

for every b ∈ B.

The following theorem summarizes the Stone duality, giving a link between the alge-
braic properties of B and the topological properties of St(B).

Theorem 1.1.16. Given a boolean algebra B, St(B) is a compact, 0-dimensional Haus-
dorff space. Moreover

• every boolean algebra B is isomorphic to CLOP(St(B)), the isomorphism given by
the map

b 7→ Nb;



1.2. BOOLEAN VALUED MODELS 5

• every compact 0-dimensional Hausdorff topological space X is homeomorphic to
St(CLOP(X)), the homeomorphism given by the map

x 7→ {A ∈ CLOP(X) : x ∈ A} .

For a proof, see [5, Thms 7.8 and 7.10]
We conclude this section with the following result:

Proposition 1.1.17. Given a boolean algebra B, G ∈ St(B) is principal if G = ↑{a} for
some a ∈ B. Then

• G is principal if and only it is an isolated point in St(B), therefore St(B) has no
isolated points whenever B is atomless;

• consequently if B is atomless St(B) \ {G} is open and dense in St(B) for every
G ∈ St(B);

• it follows that the intersection of all dense subsets of St(B) for B atomless is empty.

The proof can be found for example in [5, Thm 7.18]

1.2 Boolean valued models
In this section, we brifely discuss an approach to the method of forcing via boolen valued
models. Boolean valued logic generalize the Tarski semantics for first order logic, letting
the truth values of a given statement (expressed by a first order formula φ) range over a
boolean algebra B. In other words, φ can be neither true nor false, but it can be assigned
an intermediate value between “completely true” and “completely false”.

Since we are interested in boolean valued models for Set Theory (which is axiom-
atized in a first order relational language), and to simplify slightly the definition of the
boolean semantics, we will assume that all the languages we will deal with are relational,
i.e. they contain no function symbols.

Definition 1.2.1. Given a complete boolean algebra B and a first order relational language
L, a B-valued modelM of signature L consists of

• a nonempty set M called the domain ofM, whose elements are called B-names;

• a function giving the boolean value of the equality symbol =

=M : M2 → B

(τ, σ) 7→ Jτ = σKMB ;

• for every n-ary relation symbol r in L, a function giving the boolean value of r

rM : Mn → B

(τ1, . . . , τn) 7→ Jr(τ1, . . . , τn)KMB ;
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• for every constant symbol c in L, an element cM ∈M .

The apexM and the pedix B will be omitted if this does not generate confusion. We also
require the following conditions to hold:

• Jτ = τK = 1B;

• Jτ = σK = Jσ = τK;

• Jτ = σK ∧B Jσ = ηK ≤ Jτ = ηK;

for every τ, σ, η ∈M , and( n∧
i=1

Jτi = σiK
)
∧B Jr(τ1, . . . , τn)K ≤ Jr(σ1, . . . , σn)K

for every n-ary relation symbol r and (τ1, . . . , τn), (σ1, . . . , σn) ∈Mn.

Remark 1.2.2. If B = 2, thenM is a classical first order model of signature L.

Given a B-valued modelM, the boolean semantic forM is a function attaching an
element JφK ∈ B to every L-statement φ. To define this semantic on a boolean valued
model M (with domain M ) we expand the language L so that it contains a constant
symbol ca for every element a ∈M , ca will be often denoted by a.

Definition 1.2.3. Let L be a relational first order signature andM a boolean valued L-
model. Let LM = L ∪ {ca : a ∈M}. Given an LM-statement φ (i.e. a formula with no
free variables), the boolean truth value JφK inM is given recursively as follows:

• if φ is c1 = c2

Jc1 = c2K = =M(cM1 , cM2 );

• if φ is r(c1, . . . , cn)

Jr(c1, . . . , cn)K = rM(cM1 , . . . , cMn );

• Jφ ∧ ψK = JφK ∧B JψK;

• Jφ ∨ ψK = JφK ∨B JψK;

• J¬φK = ¬B JφK;

• Jφ→ ψK = ¬B JφK ∨B JψK;

• J∃xφ(x)K =
∨
τ∈M Jφ(τ)K;

• J∀xφ(x)K =
∧
τ∈M Jφ(τ)K.

In what follows we will omit the pedix B in ∧B,∨B and ¬B when there is no risk of
ambiguity.
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Remark 1.2.4. We used the completeness of B in the last two clauses of the definition to be
able to compute the supremum and the infimum of certain subsets of B. The requirement
that B must be complete is stronger than what is really needed to interpret quantifier in
this semantics. Nonetheless, we will use complete boolean algebras in our semantics, also
to simplify a number of calculations.

Recall that every boolean algebra B has a unique boolean completion up to isomor-
phism (see [5, Thms 4.13 and 4.14]).

The following can be proved by induction on the complexity of φ (or using 1.2.9).

Theorem 1.2.5. Let L be a relational first order signature andM a boolean valued L-
model with domain M . Let LM = L ∪ {ca : a ∈M}. Given an LM-formula φ(x) (i.e. a
formula with just x as a free variable), and τ, σ ∈M

Jτ = σK ∧ Jφ(τ)K ≤ Jφ(σ)K .

Given two first order models of signature L, a morphism between them is a function
respecting the interpretation of every symbol in L. In the same way it can be defined what
a morphism between boolean valued models is.

Definition 1.2.6. GivenM a B-valued model andN a C-valued model, both of signature
L, the couple (Ψ, i) is a morphism betweenM and N if

• Ψ ⊆M ×N is a relation, and dom Ψ = M ;

• i : B→ C is a morphism of boolean algebras;

• for every (τ1, σ1) and (τ2, σ2) belonging to Ψ

i(Jτ1 = τ2K
M
B ) ≤ Jσ1 = σ2K

N
C ;

• for all n-ary relation symbols r and (τ1, σ1), . . . , (τn, σn) ∈ Ψ

i(Jr(τ1, . . . , τn)KMB ) ≤ Jr(σ1, . . . , σn)KNC ;

• for every constant symbol c and (τ, σ) ∈ Ψ

i(Jτ = cKMB ) ≤ Jσ = cKNC .

We say that (Ψ, i) is injective when it holds

i(Jτ1 = τ2K
M)B ≤ Jσ1 = σ2K

N
C

for all (τ1, σ1), (τ2, σ2) ∈ Ψ.
If in addition the equality sign instead of the ≤ holds in all the clauses above, we

speak of embedding.
Finally, an isomorphism is an embedding such that
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• for all σ ∈ N there exists (τ, η) ∈ Ψ with Jη = σKNC = 1B,

• i is an isomorphism of boolean algebras.

In such caseM and N are said to be isomorphic.

We will assume that i = IdB when C = B.
The following can be proved by induction on the complexity of φ:

Theorem 1.2.7. IfM andN are isomorphic boolean valued models, then for all formulas
φ(x1, . . . , xn) and (τ1, σ1), . . . , (τn, σn) ∈ Ψ

i(Jφ(τ1, . . . , τn)KM) = Jφ(σ1, . . . , σn)KN .

We now state the soundness and completeness theorem for this boolean semantics.

Definition 1.2.8. LetM be a B-valued model of signature L and φ an L-sentence. φ is
valid inM if JφKM = 1B.

A first order theory T consisting of L-sentences is valid inM if every φ ∈ T is valid
inM.

Recall that a formal proof of φ from a first order theory T is a sequence (φ1, . . . , φn)
of formulas where φn = φ, and every φi can be deduced from (φ1, . . . , φi−1) through a
rule of inference by a deductive system for first order logic. In this case φ is said to be
syntactically provable from T .

There are many types of deductive systems, here we assume throught that the deduc-
tive system we may emply is that one presented in [11, Section 2.6].

The analogous of the Soundness and Completeness theorem holds for boolean valued
models:

Theorem 1.2.9. A sentence φ is syntactically provable from a theory T consisting of
sentences if and only if φ is valid in every boolean valued modelM such that T is valid
inM.

The Completeness direction of the proof is trivial since, as already remarked, the
collection of Tarski models is a subcollection of the boolean valued models so the Com-
pleteness theorem for first order logic applies. For the Soundness direction, the proof
depends on the deductive system for first order logic chosen, and is done by induction
on the length of the proof with respect to its applications of the rules of inference of the
deductive system.

We now define the Tarski quotient of a boolean valued model.

Definition 1.2.10. LetM be a B-valued model of signature L, and G an ultrafilter on B.
The modelM/G is defined as follows:

• The domain ofM/G is {[τ ]G : τ ∈M}, where τ ∼G σ ⇐⇒ Jτ ∈ σK ∈ G;
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• for every n-ary relation symbol r and (τ1, . . . , τn) ∈Mn

([τ1]G, . . . , [τn]G) ∈ rM/G ⇐⇒ Jr(τ1, . . . , τn)K ∈ G;

• for every constant symbol c ∈ L and τ ∈M

cM/G = [τ ]G ⇐⇒ Jτ = c K ∈ G.

1.1.13 entails that ∼G is an equivalence relation on M , and that the above definition
yelds a 2-valued model, i.e. a Tarski model.

One would expect that for every formula φ(x1 . . . , xn), Jφ(τ1, . . . , τn)K ∈ G if and
only ifM/G |= φ([τ1]G, . . . , [τn]G). This however is not the case for all B-modelsM,
hence we give a definition which characterizes this property ofM.

Definition 1.2.11. A B-valued modelM is full when for every existential formula ∃xφ(x)
there is some τ ∈M such that

J∃xφ(x)K = Jφ(τ)K .

Theorem 1.2.12 (Łos Theorem). LetM be a full B-valued model. Then for every G ∈
St(B), every formula φ(x1, . . . , xn) and all (τ1, . . . , τn) ∈M

M/G |= φ(τ1, . . . , τn) ⇐⇒ Jφ([τ1]G, . . . , [τn]G)K ∈ G.

Proof. By induction on the complexity of φ.

• If φ(x1, . . . , xn) = r(x1, . . . , xn), the tesis follows immediately from the definition
ofM/G;

• If φ(x1, . . . , xn) = ψ(x1, . . . , xn) ∧ χ(x1, . . . , xn)

M/G |= φ([τ1]G, . . . , [τn)]G)

⇐⇒ M/G |= ψ([τ1]G, . . . , [τn]G) and M/G |= χ([τ1]G, . . . , [τn)]G)

⇐⇒ Jψ(τ1, . . . , τn)K ∈ G and Jχ(τ1, . . . , τn)K ∈ G
⇐⇒ Jψ(τ1, . . . , τn) ∧ χ(τ1, . . . , τn)K ∈ G

• If φ(x1, . . . , xn) = ¬ψ(x1, . . . , xn)

M/G |= ¬ψ([τ1]G, . . . , [τn)]G)

⇐⇒ M/G does not model ψ([τ1]G, . . . , [τn)]G)

⇐⇒ Jψ(τ1, . . . , τn)K /∈ G
⇐⇒ J¬ψ(τ1, . . . , τn)K ∈ G

• If φ(x1, . . . , xn) = ψ(x1, . . . , xn) ∨ χ(x1, . . . , xn) the tesis follows from the previ-
ous items and the fact that ψ ∨ χ is logically equivalent to ¬(¬ψ ∧ ¬χ);
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• If φ(x1, . . . , xn) = ψ(x1, . . . , xn) → χ(x1, . . . , xn) the tesis follows from the pre-
vious items and the fact that ψ → χ is logically equivalent to ¬ψ ∨ χ;

• If φ(x1, . . . , xn) = ∃xψ(x, x1, . . . , xn)

M/G |= ∃xψ(x, [τ1]G, . . . , [τn]G)

⇐⇒ M/G |= ψ([σ]G, [τ1]G, . . . , [τn]G) for some σ ∈M
⇐⇒ Jψ(σ, τ1, . . . , τn)K ∈ G for some σ ∈M
=⇒ J∃xψ(τ1, . . . , τn)K ∈ G.

Conversely, if J∃xψ(τ1, . . . , τn)K ∈ G, sinceM is full there is some σ ∈ M such
that

Jψ(σ, τ1, . . . , τn)K = J∃xψ(τ1, . . . , τn)K ∈ G

yeldingM/G |= ψ([σ]G, [τ1]G, . . . , [τn]G), henceM/G |= ∃xψ(x, [τ1]G, . . . , [τn]G).

• If φ(x1, . . . , xn) = ∀xψ(x, x1, . . . , xn) the tesis follows from the previous items
and the fact that ∀xψ(x) is logically equivalent to ¬(∃x¬ψ(x)).

1.3 Boolean valued models for Set Theory
In this section we introduce the boolean valued model for Set Theory V B. For these
models we require some extra conditions to hold:

Definition 1.3.1. Let L = {∈,⊆,=} be the language for Set Theory with three binary
relation symbols (including equality), and B a cba. A B-valued modelM of signature L
is a boolean valued model for Set Theory if for any σ, τ, η ∈M

• Jτ ⊆ σK ∧ Jσ ⊆ τK = Jτ = σK;

• Jτ ∈ σK ∧ Jσ ⊆ ηK ≤ Jτ ∈ σK.

We proceed to construct explicitly a boolean valued model for Set Theory. Recall that
the universe V of all the sets can be construed as

V0 = ∅
Vα+1 = P(Vα)

Vλ =
⋃
β<λ

Vβ if λ is limit

and
V =

⋃
α∈Ord

Vα.
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Notice that P(Vα) is isomorphic to the set 2Vα of all functions from Vα to 2: every
subset X ⊆ Vα corresponds naturally to its characteristic function χX : Vα → 2 = {0, 1}
with χX(y) = 1 ⇐⇒ y ∈ X . So, if we wish to get some B-valued model for Set Theory,
we try to replace 2 with B in the definition of the universe V .

Definition 1.3.2. Given a complete boolean algebra B, the boolean universe V B is defined
recursively as follows:

V B
0 = ∅;

V B
α+1 =

{
f : V B

α → B : f is a partial function
}

;

V B
λ =

⋃
β<λ

V B
β for λ limit ordinal.

Finally
V B =

⋃
α∈Ord

V B
α .

Remark 1.3.3. V B contains an isomorphic copy of V : every set x can be represented in
V B with the B-name x̌ defined recursively as

x̌ = {(y̌, 1B) : y ∈ x} ;

and V̌ = {x̌ : x ∈ V } ' V .

Remark 1.3.4. Assume M ∈ V is a transitive model of ZFC, and let B ∈ M be such that
M models B to be complete. Then one can construct inside M as a definable subclass the
boolean valued model MB in the same way as V B is construed in V .

Definition 1.3.5. For every τ ∈ V B, we define by recursion

rank(τ) = sup {rank(σ) + 1 : σ ∈ dom(τ)} .

The boolean semantic for V B is defined as follows:

Definition 1.3.6. For every τ, σ ∈ V B we define by recursion on the pair (rank(τ), rank(σ))
with respect to Godel’s well ordering of Ord2

Jτ ∈ σK =
∨

τ0∈dom(σ)

(Jτ = τ0K ∧ σ(τ0));

Jτ ⊆ σK =
∧

σ0∈dom(τ)

(¬τ(σ0) ∨ Jσ0 ∈ σK);

Jτ = σK = Jτ ⊆ σK ∧ Jσ ⊆ τK .

Theorem 1.3.7. V B with the boolean predicates defined above is a boolean valued model
for Set Theory, and ZFC is valid in V B.
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The proof is done by induction on the semantic of V B and the rank of the B-names.
For the details, see for example [4, Lemma 14.16 and Thm 14.24].

Moreover, it can be shown that V B has nice properties, in particular it is a full B-valued
model.

Theorem 1.3.8. For every existential formula ∃xφ(x) there is some τ ∈ V B such that

J∃xφ(x)K = Jφ(τ)K .

Therefore V B is a full boolean valued model for Set Theory.

This is a consequence of the following:

Lemma 1.3.9 (Mixing lemma). Let B be a complete boolean algebra in V , and A an
antichain in B. Assume that for every a ∈ A, τa ∈ V B is a B-name in V B. Then there
exists τ ∈ V B such that a ≤ Jτ = τaK for each a ∈ A.

For a proof, see [4, Lemma 14.18]

Proof. (of 1.3.8) Let

D =
{
b ∈ B+ : ∃σb ∈ V B(b ≤ Jφ(σb)K)

}
.

D is open and dense below J∃xφ(x)K by definition, so it contains a maximal antichain A
below J∃xφ(x)K. Therefore it holds that∨

A = J∃xφ(x)K .

By the Mixing lemma, there is τ ∈ V B such that Jτ = τbK ≥ b for every b ∈ A. This
entails that

b ≤ Jτb = τK ∧ Jφ(τb)K ≤ Jφ(τ)K

for every b ∈ A, hence
J∃xφ(x)K =

∨
A ≤ Jφ(τ)K .

Since the inequality Jφ(τ)K ≤ J∃xφ(x)K holds by befinition, we have Jφ(τ)K = J∃xφ(x)K.

1.4 Cohen’s forcing theorem
In this section we briefly outline how the forcing technique works. Assume we want to
prove that a certain statement φ (for example the Continuum Hypotesis or its negation) is
consistent with ZFC. This can be done building a model of ZFC in which φ is true. The
strategy adopted is to start from a countable transitive model M of ZFC, choose a boolean
algebra B ∈ M such that M models B to be complete, and then extend M to a larger
model M [G] of ZFC with the property that M [G] |= φ.
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Remark 1.4.1. Working in ZFC, by Godel’s second incompleteness theorem one cannot
produce a countable transitive model of ZFC (unless ZFC is inconsistent). This is roughly
how this issue is overcomen: when saying that φ is consistent with ZFC, what we really
mean that if ZFC + φ is contradictory, then so is ZFC. Hence, resorting to the compact-
ness theorem, it can be shown it suffices for M to model only a finite subset of the ZFC
axioms, and the existence of such a countable transitive model M is a consequence of the
Reflection principles. The forcing method will grant that the generic extension M [G] will
be a model of this same set of axioms. For the details, see for example [6, Section II.5].

Definition 1.4.2. Let M be a transitive countable model of ZFC, B ∈ M be such that
M models B to be a cba, and G ∈ St(B) be M -generic. For every τ ∈ MB, define by
recursion

τG = {σG : τ(σ) ∈ G} .

M [G] = {τG : τ ∈M} is the generic extension of M with G.

Remark 1.4.3. The transitivity of M is not strictly necessary, but it simplifies the work,
since we can appeal to standard absoluteness results (see [6, SectionsI.16 and II.4]) to
grant that computations in V B yeld the same result when applied to MB.

Remark 1.4.4. It can easily be proved by induction that for all x ∈ M it holds x̌G = x.
Furthermore if Ḡ =

{
(b̌, b) : b ∈ B

}
, then ḠG = G.

Remark 1.4.5. We have seen that there exists no V -generic ultrafilter on B when B is atom-
less, nonetheless, by theorem 1.1.9, there existM -generic ultrafiltersG ifM is countable,
moreover the set of such M -generic ultrafilters on B is dense in St(B). Furthermore if G
is M -generic, then G /∈M ; since G ∈M [G] (by the previous remark), we see that M [G]
strictly extends M .

Now we analyze the relation between M [G] and the usual Tarski quotient MB/G.

Theorem 1.4.6. Let M be a countable transitive model of ZFC, B a cba in M and G an
M -generic ultrafilter on B. Then for all τ, σ ∈MB

• Jτ ∈ σK ∈ G ⇐⇒ τG ∈ σG;

• Jτ = σK ∈ G ⇐⇒ τG = σG.

Proof. By induction on (rank(τ), rank(σ)). For the details, see [4, Lemma 14.28]

Combining this result with Łos theorem for full boolean valued models, we obtain

Theorem 1.4.7. Let M be a countable transitive model of ZFC, B a cba in M and G an
M -generic ultrafilter on B. Then the map

πMG : MB/G→M [G]

[τ ]G 7→ τG

is an isomorphism between MB/G and M [G].
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The last result we presents outlines how the theory of M [G] is related to the topology
of St(B):

Theorem 1.4.8 (Cohen’s forcing theorem). Let M be a ctm for set theory. Then

M [G] |= φ ⇐⇒ JφK ∈ G.

Furthermore, for every b ∈ B and every L-statement φ, the following are equivalent:

• M [G] |= φ for every M -generic ultrafilters G such that b ∈ G;

• the set {G ∈ St(B) : G is M -generic and M [G] |= φ} is dense in Nb;

• b ≤ JφK.

For a proof, see [13, Lemma 4.2.6].



Chapter 2

Category theory and sheaves

In this chapter we introduce some notions of Category theory, and we define the notion of
sheaf on a topological space. For a complete introduction to the subject, see [8] and [1].

2.1 Categories and functors
Definition 2.1.1. A category C consists of:

• a class C = ObC whose elements are called objects;

• a class ArwC whose elemens are called arrows or morphisms;

• a function domC : ArwC → C assigning to every arrow its domain;

• a function codC : ArwC → C assigning to every arrow its codomain;

• a function IdC : C → Arw attaching to every object c its identity arrow Idc;

• a function ◦C : E → ArwC where E =
{

(f, g) ∈ ArwC
2 : codC(g) = domC(f)

}
.

The pedix C is often omitted if the category C is clear form the context, and f ◦ g is
abbreviated fg. If f ∈ Arw, dom(f) = c and cod(f) = d we will write f : c→ d.

We require the following conditions to hold:

• dom(Idc) = cod(Idc) = c for every c ∈ C;

• if dom(f) = c and cod(g) = c, then f ◦ Idc = f and Idc ◦ g = g;

• dom(g ◦ f) = dom(f), and cod(g ◦ f) = cod(g);

• ◦ is associative, (f ◦ g) ◦ h = f ◦ (g ◦ h) for every f, g, h ∈ Arw such that this
expression makes sense.

Here are some examples of categories

15
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• Set is the category of all the sets. The collection of the objects is V , an arrow from
X to Y is a function f : X → Y ;

• Grp is the category where the objects are the groups, and the arrows are the group
homomorphisms. Likewise Ab, Ring, Field, VectK are respectively the categories of
abelian groups, rings, fields and vector spaces over a field K with group, ring, field
homomorphisms and linear maps between vector spaces;

• more generally, given a class C of sets equipped with a certain type of structure,
there is a category C with C as the collection of the objects and the arrows are the
structure-preserving functions;

• as a special case of the previos point, Top is the category where topological spaces
are the objects and continuous functions between them are the arrows;

• every partial order (P,≤) can be seen as a category where P is the collection of
objects, and for every p, q ∈ P there is an arrow from p to q if and only if p ≤ q;

• Poset has partially ordered sets as objects, and order-preserving maps between them
as the morphisms.

Definition 2.1.2. Given a category C and two objects x, y ∈ C, the collection of all the
arrows from x to y is denoted by homC(x, y).

Definition 2.1.3. Given two categories C and D, we say that D is a subcategory of C if
ObD ⊆ ObC and ArwD ⊆ ArwC .
D is a full subcategory of C if it is a subcategory of C and homD(x, y) = homC(x, y)

for every x, y ∈ ObD.

For example the category Ab of abelian groups is a (full) subcategory of the category
Grp of all the groups.

As stated above, a category may consist of a proper class of objects and of a proper
class of arrows. Hence it is important to recognise when the objects (or arrows) of a
category form a set (for example this is the case for a preorder (P,≤) if P is a set) or a
proper class as in Set. This motivates the following

Definition 2.1.4. A category C is said to be

• small if ArwC is a set;

• locally small if homC(x, y) is a set for every x, y ∈ C.

Remark 2.1.5. Notice that the conditions posed on IdC : C → ArwC makes it an injective
function. So, if ArwC is a set, then so is C.

For example, except for (P,≤), all the categories mentioned above are not small, but
they are locally small.

Among the arrows, we can distinguish those having certain properties.
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Definition 2.1.6. An arrow f : c→ d is

• a monomorphism or mono when for every couple g, h of arrows with cod(h) =
cod(g) = c, if fg = fh then g = h;

• an epimorphism or epi when for every couple g, h of arrows with dom(h) = dom(g) =
d, if gf = hf then g = h;

• an isomorphism or iso if there is an arrow g : d → c such that fg = Idg and
gf = Idc. In this case it is easily proved that g is unique, and it is denoted by f−1

and called the inverse of f .

For example, in Set an arrow f is mono if and only if it is an injective function, epi if
and only if it is a surjective function an iso if and only if it is a bijection.

Likewise in a category we can distinguish some objects:

Definition 2.1.7. An object c ∈ C in C is

• initial if for every x ∈ C there is a unique arrow f : c→ x;

• terminal if for every x ∈ C there is a unique arrow f : x→ c.

For example, in Set the object {∅} is terminal; the trivial group is both initial and
terminal in Grp.

A major tool in category theory is the concept of duality. This can be abstractly formu-
late introducing the notion of the opposite of a category, which is obtained by “reversing
all the arrow”.

Definition 2.1.8. Given a category C, its opposite category Cop is constructed as follows:

• ObCop = ObC;

• ArwCop = ArwC;

• domCop = codC , and codCop = domC;

• ◦Cop : E ′ → ArwC where E ′ =
{

(f, g) ∈ ArwC
2 : codC(f) = domC(g)

}
;

• f ◦Cop g = g ◦C f for every f, g ∈ ArwC such that this expression makes sense.

It can be checked that an arrow f is mono (epi) in C if and only if it is epi (mono) in
Cop, and an object c is initial (terminal) in C if and only if it is terminal (initial) in Cop.
In this vein, duality allows to produce new interesting statements about categories from a
known theorem.

We now introduce the notion of a morphism between categories, i.e. a functor.

Definition 2.1.9. Given two categories C and D, a functor from C to D is a function
F : C ∪ ArwC → D ∪ ArwD such that
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• F (c) ∈ D for every object c ∈ C;

• F (f) ∈ ArwD, domD F (f) = F (domC(f)) and codD F (f) = F (codC(f)) for
every arrow f of C;

• F (Idc) = IdF (c) for every c ∈ C;

• F (g ◦C f) = F (g) ◦D F (f) for every pair of composable arrows f, g ∈ ArwC .

Here are some example of functors:

• U : Grp → Set assigning to every group G its underlying set and the underlying
function to every group homomorphism is trivially a functor. The same argument
applies to every category of algebraic or topological structures, and such a functor
is called forgetful functor;

• the fundamental group π : Top→ Grp assigning to every topological space its fun-
damantal group, and to every continuous function the induced homomorphism of
fundamental group.

Definition 2.1.10. A functor F : C → D is

• faithful if for every c, d ∈ C the map

homC(c, d)→ homD(F (c), F (d)), f 7→ F (f)

is injective;

• full if for every c, d ∈ C the above map is surjective;

• injective on objects if the map c 7→ F (c) is injective;

• surjective on objects if the map c 7→ F (c) is surjective;

• essentially surjective on objects if for every d ∈ D there exists c ∈ C such that
F (c) is isomorphic to d;

• an isomorphism of categories if it is full, faithful, injective and surjective on objects;

• an equivalence of categories if it is full, faithful, injective and essentially surjective
on objects;

Functors behaving like in 2.1.9 are called covariant. There is another type of functor:

Definition 2.1.11. A contravariant functor from the category C to the category D is a
covariant functor F : Cop → D. More explicitly, F is a contravariant functor when

• domD F (f) = F (codC(f)), codD F (f) = F (domC(f)) for every arrow f of C;

• F (g ◦C f) = F (f) ◦D F (g) for every pair of composable arrows f, g ∈ ArwC .
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An example of a contravariant functor is

O : Top→ Poset, X 7→ O(X)

attachig to everyX the posetO(X) of its open subsets ordered by inclusion, and for every
continuous function f : X → Y

O(f) : O(Y )→ O(X), O(f)(U) = f−1(U)

for every open subset U ⊆ Y .
If F : C → D is a functor and G : D → E is another functor, then the composition

G ◦ F is a functor from C to E . Moreover the identity function on C is a functor. This
means that there is a category Cat where the objects are the small categories, and an arrow
from C to D is a functor F : C → D.

Making a step further, we will see in the next section that the collection of all the
functors between two fixed categories is a category as well.

2.2 Natural transformations, limits and colimits
In category theory it is common to use commutative diagrams. A commutative diagram
consists of a picture where objects are points, and morphisms between objects are repre-
sented by graphic arrows connecting them. Moreover it is assumed that if there are more
paths connecting two objects, then the corresponding composition of arrow commute.

As an example, the following commutative diagram

x

g

��

h

��
y

f
// z

says that g is an arrow between x and y, f is an arrow between y and z, h is an arrow
between x and z, and h = fg.

Our aim here is to define what a category of functors is. To this aim, the first step is
to characterise a morphism between functors.

Definition 2.2.1. Let F : C → D and G : C → D two functors with the same domain
and codomain. A natural transformation from F to G consists of a collection of arrows
α = {αc : c ∈ C} such that

• αc : F (c)→ G(c) for every object c ∈ C;

• for every arrow f : c→ d in C, the diagram

F (c)

F (f)

��

αc // G(c)

G(f)

��
G(c) αd

// G(d)

is commutative.
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Theorem 2.2.2. Let α and β be natural transformations from the two functors F : C → D
and G : C → D. Then β ◦ α defined by (β ◦ α)c = βc ◦ αc for every c ∈ C is also a
natural transformation.

Definition 2.2.3. Given two locally small categories C and D, CD is the category of all
functors from C to D and natural transformations between them. It is actually a category
due to the previous theorem.

We now introduce the notions of a limit and colimit of a given diagram, and see how
these concepts generalize many common set-theoretic constructions.

Definition 2.2.4. Given a small category J and a category C, a diagram of shape J in C is
an object in CJ, that is a functor from J to C.

If D is a diagram of shape J in C, a cone over D with summit c ∈ C is a natural
transformation from the constant functor ∆J(c) (that one sending every object in J to c
and every arrow in J to Idc) to D.

For example, if D is the the diagram displayed as

x
f // y

with x, y ∈ C, a cone over D with summit c is represented by the diagram

c
λx

��

λy

��
x

f // y

λ = {λx, λy} being the natural transformation in question.

Definition 2.2.5. Given a diagram D, limD is a terminal object in the category of the
cones over D.

For example, the cone in the previos example is a limit cone if, for every cone over D
with summit c′ there is a unique arrow α : c′ → c making the diagram

c′

µx

��

α

�� µy

��

c

λx�� λy ��
x

f
// y

commute.
It can be shown tht if a limit exists, then it is unique up to isomorphism. We now list

the major examples of limits.
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• Given two objects a, b ∈ C, a product of a and b is a limit of the diagram

a b

that is an object a× b with two arrows πa : a× b→ a and πb : a× b→ b such that
for every object x ∈ C with two arrows f : x → a and g : x → b there is a unique
arrow (f, g) : x→ a× b making the diagram

x
f

��
(f,g)
��

g

��
a a× bπa
oo

πb
// b

commute.

For example, in Set a product of a and b is the usual cartesian product a× b.

• A pullback is a limit of a diagram of type

a
f // c y

goo

that is an object a×c b with two arrows pa : a×c b→ a and pb : a×c b→ b such that
for every object x ∈ C with two arrows r : x → a and s : x → b there is a unique
arrow (r, s) : x→ a× b making the diagram

x
(r,s)

##

s

  

r

��

a×c b
pa //

pb
��

a

f

��
b g

// c

commute.

For example, in Set a pullback of f : a → b and g : b → c is the fibered product
a×c b = {(y, w) ∈ a× b : f(y) = g(w)}.

• an equalizer is a limit of a diagram of type

a
f
((

g
66 b

explicitly an object e with an arrow i : e → a such that for every object x with an
arrow h : x→ a satisfying fh = gh there is a unique arrow u making the following
diagram

x

u

��

h

��
e

i // a
f
((

g
66 b
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commute.

In Set, the equalizer of f and g is the set e = {y ∈ a : f(x) = g(x)}, with i : e→ a
the inclusion.

The dual notion of the limit is the colimit of a diagram of shape J.

Definition 2.2.6. If D is a diagram of shape J in a category C, a cone under D with nadir
c ∈ C is a natural transformation from D to the constant functor ∆J(c).

Definition 2.2.7. Given a diagram D, the colimit of limD is an initial object in the cate-
gory of the cones under D.

The dual notions of product, pullback and equalizer are respectively the coproduct,
the pushout and the coequalizer, obtained by reversing all the arrows in the definitions.
For example, in Set, the coproduct of a and b is the disjoint union of a and b.

2.3 Sheaves on a topological space
We can now introduce the main concept in category theory we are interested in.

We start with an example: let X be a topological space, and let C(X) be the set of
continuous functions from X to R. If U is an open subset of X , then for every f ∈ C(X)
we have f �U is a continuous function from U to R. Moreover, if {Ui : i ∈ I} is an open
covering of X , and fi is a continuous function from Ui to R for every i ∈ I , then there
exists f : X → R continuous with f �Ui= fi if and only if for every i, j ∈ I it holds
fi �Ui∩Uj= fj �Ui∩Uj , and this f is uniquely determined. Notice that to every inclusion
V ⊆ U of open subsets of X it corresponds an operation of restriction of continuouus
functions

�V : C(U)→ C(V ), f 7→ f �V

which is compatible with nested inclusions, that is (f �V ) �W= f �W when W ⊆ V ⊆ U .
This means that the association

C : O(X)→ Set, U 7→ C(U)

is in fact a contravariant functor.

Definition 2.3.1. Given a category C, Ĉ is the category of contravarant functors from C to
Set and natural transformations between them. A presheaf on C is an element of Ĉ.

Consider for any topological space (X, τ)

B∞(X) = {f : f : X → R is a continuous function with bounded range }.

The functor

B∞ : τ → Set, U 7→ B∞(U)
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is a presheaf mapping an inclusion of subsets to the restriction of bounded functions
as in the previous example. However, there is a substantial difference between the two
functors. Let X = R and {Ui = (i, i+ 2) : i ∈ Z}; this is an open covering of R, and let
fi ∈ B∞(Ui) be the identity function on Ui for every i ∈ Z. Clearly fi �Ui∩Uj= fj �Ui∩Uj
for every i, j ∈ I . The identity function Id : R→ R is the gluing of the family {fi : i ∈ I}
is not bounded, therefore it is not an element of B∞(R).

Definition 2.3.2. A presheaf F on a topological space X is a sheaf if for every open
covering {Ui : i ∈ I} of an open subset U ⊆ X and every collection {fi : i ∈ I} with
fi ∈ F (Ui) such that F (Ui∩Uj)(fi) = F (Uj ∩Uj)(fj) for every i, j ∈ I there is a unique
f ∈ F (U) satisfying F (Ui ⊆ U)(fi) = f for every i ∈ I .

We have just seen that the collection C(X) determines a sheaf on X . Furthermore the
above definition can be easily generalized for a presheaf on any category C.

Definition 2.3.3. Sh(C) is the full subcategory of Ĉ spanned by all the sheaves on C.

Definition 2.3.4. A Grothendieck Topos is a category which is equivalent to the category
Sh(O(X)) for some topological space X .

The aim of the following chapters is to show that B-valued models for Set Theory as
categories of sheaves on St(B), we will find of some interest the next result:

Theorem 2.3.5. Let U = {Ui : i ∈ I} be a basis for the topology of some space X . Then
Sh(O(X)) is equivalent to Sh(U).

We now introduce Giraud’s theorem.

Definition 2.3.6. LetX be the coproduct of {Xi : i ∈ I}with universal arrows {fi : i ∈ I}
in a category C. X is disjoint if every fi is mono, and the pullback Xi ×X Xj is an initial
object for every i 6= j.

X is stable when the coproduct of {Y ×X Xi : i ∈ I} is isomorphic to Y for every
object Y ∈ C.

Definition 2.3.7. Let X be an object in C. R is an equivalence relation on X if there is a
mono arrow (i0, i1) : R→ X ×X such that

• the diagonal arrow ∆: X → X ×X factors through (i0, i1);

• (i0, i1) factors through (i1, i0);

• given the pullback diagram

R×X R
π1
��

π2 // R

i0
��

R
i1

// X

then (i0π1, i1π0) factors through R.
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The quotient of R is the coequalizer of (i0, i1).

Definition 2.3.8. Let f be any arrow in a category C. The kernel pair of f is the pullback
of f along itself.

A fork is a diagram like

R
i0 ))

i1

55 X
f // Q

and it is said to be exact if f is the coequalizer of i0 and i1 while the latter form the
pullback of f along itself, stably exact if it reamins exact after composing f with any
arrow g such that dom(g) = Q.

Definition 2.3.9. A set of objects {xi : i ∈ I} is said to generate a category C if for any
couple of parallel arrows f, g : a→ b in C

fh = gh for all h : xi → a and i ∈ I =⇒ f = g.

Theorem 2.3.10 (Giraud’s theorem). A locally small category C is a Grothendieck topos
if and only if it satisfies the following properties:

• C has all small coproducts, ad these are disjoint and stable under pullback;

• every epi arrow in C is a coequalizer;

• every equivalence relation in C is a kernel pair and has a quotient;

• every exaxt fork is stably so;

• there is a set of object in C generating C.

For a proof, see [10, Thm 1, p. 575]
It can be checked using the standard set-theoretical constructions corresponding to the

categorical ones involved in Giraud’s theorem that Set is a Grothendieck topos (see [10,
Chapter IV]).



Chapter 3

The model V St(B)

In this chapter, we introduce the boolean valued model for Set Theory V St(B) where B is
a complete boolean algebra, and explore its connection with the standard boolean valued
model V B commonly used to introduce the technique of forcing. We first present its con-
struction, which is similar to that of V B, then we prove that V St(B) and V B are isomorphic
boolean valued models.

3.1 Construction of V St(B)

Definition 3.1.1. Let B be a complete boolean algebra.
We define by recursion on the ordinals

V St(B)

0 = ∅;
V St(B)

1 = {f : St(B)→ {∅}} = {{(G, ∅) | G ∈ St(B)}} ;

V St(B)

α+1 =
{
f : St(B)→ 2

⋃
β≤αV

St(B)
α | f is continuous

}
;

where the product topology on 2
⋃
β≤αV

St(B)
α is considered;

V St(B)

λ =
⋃
α<λ

V St(B)

α

for λ limit ordinal.
Finally we set

V St(B) =
⋃

α∈Ord

V St(B)

α .

Notation 3.1.2. V St(B)

≤α will stand for
⋃
β≤αV

St(B)
α .

We define the boolean semantic in V St(B) in way analogous to that used for V B. In this
case it’s convenient to identify B with RO(St(B)) = CLOP(St(B)) (by 1.1.16 these are
isomorphic via the duality map b 7→ Nb).
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Definition 3.1.3. For ∅ 6= f ∈ V St(B) rank(f) = α where α is the unique ordinal such

that f : St(B)→ 2V
St(B)
≤α . (clearly rank(∅) = 0).

Definition 3.1.4. Let L = {∈,⊆,=} be the language of Set Theory, and f, g ∈ V St(B).
We define, by recursion on the pair (rank(f), rank(g)) with respect to Godel’s well-
ordering of Ord2, the boolean interpretation of the symbols of L :

Jf ∈ gKV
St(B)

=
∨

h∈V St(B)
≤rank(g)

(Jh = fKV
St(B)

∧ {G ∈ St(B) | g(G)(h) = 1)});

Jf ⊆ gKV
St(B)

=
∧

h∈V St(B)
≤rank(f)

(Jh ∈ gKV
St(B)

∨ {G ∈ St(B) | f(G)(h) = 0});

Jf = gKV
St(B)

= Jf ⊆ gKV
St(B)

∧ Jg ⊆ fKV
St(B)

.

Remark 3.1.5. The definition just given makes sense: the set {G ∈ St(B) | f(G)(h) = j}
is a clopen subset of St(B) for every h ∈ V St(B)

≤rank(f) since

• for all h ∈ V St(B)

≤rank(f)

{G ∈ St(B) | f(G)(h) = j} = f−1
[{
s ∈ 2V

St(B)
≤rank(f) | s(h) = j

}]
,

• the set
{
s ∈ 2V

St(B)
≤rank(f) | s(h) = j

}
is clopen in 2V

St(B)
≤rank(f) , and f is continuous.

Our goal is to prove the following

Theorem 1. V St(B) with the boolean interpretation of the symbols in L introduced above
is a full boolean valued model for Set Theory isomorphic to V B.

In fact it suffices only to construct the isomorphism since we already know by Theo-
rem 1.3.8 that V B with B a cba is a full boolean valued model for Set Theory.

3.2 The isomorphism between V B and V St(B)

We must find a boolean isomorphism between V B and V St(B). To this aim it is convenient
to resort to a special class of B-names in V B. More specifically, let

Ṽ B
0 = ∅;

Ṽ B
α+1 =

{
τ ∈ B

⋃
β≤αṼ

B
β : τ is a total function

}
;

Ṽ B
λ =

⋃
α<λ

Ṽ B
α for λ limit ordinal;
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and
Ṽ B =

⋃
α∈Ord

Ṽ B
α .

It is convenient to denote
⋃
β≤αṼ

B
β by Ṽ B

≤α.

Obviously Ṽ B
α ∩ Ṽ B

β = ∅ when α 6= β since the functions in the two sets have different

domains and are total. Furthermore by induction it is easily proved that if τ ∈ Ṽ B
α+1 then

τ ∈ V B and rank(τ) = α in V B. The boolean semantic for Ṽ B is the restriction of the
semantic defined for V B. The following holds:

Proposition 3.2.1. For every τ ∈ V B
α there is some τ̃ ∈ Ṽ B

α such that Jτ = τ̃KV
B

= 1B.
So V B and Ṽ B are isomorphic boolean valued models.

Proof. Suppose by induction that the thesis is true for all β ≤ α. Let for all η ∈ V B
α ,

η̃ ∈ Ṽ B
≤α be such that Jη = η̃KV

B

= 1B. For τ : X → B with X ⊆ V B
α , define

τ̃ : Ṽ B
≤α → B

σ̃ 7→
∨
η∈X

(τ(η) ∧ Jη = σ̃K).

We compute the boolean value Jτ = τ̃KV
B

:

Jτ ⊆ τ̃K =
∧
σ∈X

(Jσ ∈ τ̃K ∨ ¬τ(σ)) =
∧
σ∈X

(( ∨
η̃∈Ṽ B
≤α

(Jη̃ = σK ∧ τ̃(η̃))
)
∨ ¬τ(σ)

)
≥

≥
∧
σ∈X

((Jσ = σ̃K ∧ τ(σ)) ∨ ¬τ(σ)) ≥
∧
σ∈X

(τ(σ) ∨ ¬τ(σ)) = 1B.

On the other hand

Jτ̃ ⊆ τK =
∧

σ̃∈Ṽ B
≤α

(Jσ̃ ∈ τK ∨ ¬τ̃(σ̃)) =
∧

σ̃∈Ṽ B
≤α

((∨
η∈X

(Jη = σ̃K ∧ τ(η))
)
∨ ¬τ̃(σ̃)

)
=

=
∧

σ̃∈Ṽ B
≤α

((∨
η∈X

(Jη = σ̃K ∧ τ(η))
)
∨ ¬
(∨
η∈X

(Jη = σ̃K ∧ τ(η))
))

=
∧

σ̃∈Ṽ B
≤α

1B = 1B.

So Jτ = τ̃KV
B

= 1B.

To complete the proof that V B and V St(B) are boolean isomorphic, it suffices to find a
boolean isomorfism of Ṽ B with V St(B), since the above proposition shows that V B and Ṽ B

are boolean isomorphic. The stratified nature of Ṽ B and V St(B) suggests to define again
the isomorphism level by level. Since Ṽ B

1 = {∅} and V St(B)

1 = {c∅} where c∅ is the only
function from St(B) to {∅}, φ(∅) must be c∅. At level 2 we have

Ṽ B
2 = {{〈∅, b〉} | b ∈ B},
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while
V St(B)

2 = {f : St(B)→ 2{c∅} | f is continuous}.

Both sets have a canonical bijection with B: the former is obvious; for the latter notice
that if f : St(B) → 2{c∅} ∼= 2 is continuous, then f−1[{(c∅, 1)}] must be a clopen subset
of St(B), so it can be identified via the Stone isomorphism with the unique b ∈ B such
that f−1[{(c∅, 1)}] = Nb = {G ∈ St(B) | b ∈ G}. By composing these two maps we
obtain a bijection between Ṽ B

2 and V St(B)

2 , explicitly let τb = {〈∅, b〉} and

fb : St(B)→ 2{c∅}, G 7→

{
{(c∅, 1)} if b ∈ G
{(c∅, 0)} if b /∈ G

for all b ∈ B. Then

φ : Ṽ B
2 → V St(B)

2

τb 7→ fb

is the desired isomorphism of Ṽ B
2 with the second level of V St(B). In order to extend φ to

the upper levels of Ṽ B and V St(B) we look more closely on the definition of φ just given:
in fact for every b ∈ B and every G ∈ St(B) it holds

fb(G)(c∅) = 1 ⇐⇒ τb(∅) ∈ G.

We will extend recursively this definition to obtain a total function φ : Ṽ B → V St(B).

Definition 3.2.2. φ : Ṽ B → V St(B) is defined by recursion on the ordinals as follows:
Assume φβ : Ṽ B

β → V St(B)

β has been defined for all β < α and is surjective.

• If α is limit, define φα = ∪β<αφβ .

• If α = β + 1, let φ̄β =
⋃
ξ≤β φξ and φ̄β(η) = fη for all η ∈ Ṽ B

≤β . Now define:

φα+1 : Ṽ B
α+1 → V St(B)

α+1

τ 7→ fτ

where for all η ∈ Ṽ B
≤β and G ∈ St(B)

fτ (G)(fη) = 1 ⇐⇒ τ(η) ∈ G.

Finally φ : Ṽ B → V St(B) is given by

φ =
⋃

α∈Ord

φα.
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It remains to prove that φ is a boolean isomorphism. We will first prove that φ is even
a bijection between Ṽ B and V St(B), next we will show that φ preserves the boolen values
(i.e. that Jτ R σK = Jφ(τ) R φ(σ)K for all σ, τ ∈ Ṽ B and R ∈ {∈,=,⊆}). We start
proving that φ is a bijection:

Definition 3.2.3. Let

τ : V St(B) → Ṽ B

f 7→ τf

be defined by the following rule: given f ∈ V St(B)

α+1 (hence f : St(B)→ 2V
St(B)
≤α is continu-

ous),

τf : Ṽ B
≤α → B

τ0 7→ {G ∈ St(B) | f(G)(fτ0) = 1},

where the latter set is identified, as a clopen subset of St(B) (see 3.1.5), with an element
of B.

Lemma 3.2.4. The following holds:

1. For every f in V St(B) φ(τf ) = f (i.e. φ : Ṽ B → V St(B) is surjective).

2. If σ ∈ Ṽ B
α then τφ(σ) = σ.

Proof. We prove 1. We proceed by induction. Assume that 1 holds for all h ∈ V St(B)

≤α ,
and let f ∈ V St(B)

α+1 . For every G ∈ St(B) and h ∈ V St(B)

≤α (by 1 applied to α) we have that
h = fτh for all h ∈ V St(B)

≤α ; hence

φ(τf )(G)(h) = φ(τf )(G)(fτh) = 1 ⇐⇒ τf (τh) ∈ G ⇐⇒ f(G)(h) = 1

for all h ∈ V St(B)
α ; therefore φ(τf ) = f .

We now prove 2, again by induction on the rank of σ ∈ Ṽ B: assume the thesis holds
for all τ ∈ Ṽ B

≤α, and let σ have rank α. By definition dom(τφ(σ)) = Ṽ B
≤α and

τφ(σ)(σ0) = {G ∈ St(B) | φ(σ)(G)(fσ0) = 1} = {G ∈ St(B) | σ(σ0) ∈ G} = Nσ(σ0) = σ(σ0).

Remark the following byproduct of the above Lemma:

Remark 3.2.5. rank(fτ ) = rank(τ) for all τ ∈ Ṽ B, and rank(τf ) = rank(f) for all
f ∈ V St(B).

The following assertion completes the proof that V B and V St(B) are isomorphic boolean
valued models for Set Theory.
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Lemma 3.2.6. For every couple of B-names σ and η in Ṽ B and R ∈ L it holds

Jfσ R fηK
V St(B)

= JσR ηKV
B

.

Proof. By induction on the pair (rank(σ), rank(η)):

Jfσ ∈ fηK
V St(B)

=
∨

h∈V St(B)
≤rank(η)

(Jh = fσK
V St(B)

∧ {G ∈ St(B) | fη(G)(h) = 1}) =

=
∨

h∈V St(B)
≤rank(η)

(Jfτh = fσK
V St(B)

∧ τφ(η)(τh)) =
∨

h∈V St(B)
≤rank(η)

(Jτh = σKV
B

∧ η(τh)) =

=
∨

η0∈ ˜V B
≤rank(η)

(Jη0 = σKV
B

∧ η(η0)) = Jσ ∈ ηKV
B

,

where we used the inductive assumption to state that Jfτh = fσK
V St(B)

= Jτh = σKV
B

, plus
the results proved in 3.2.4 for the other steps. In the same vein:

Jfσ ⊆ fηK
V St(B)

=
∧

h∈V St(B)
≤rank(σ)

(Jh ∈ fηKV
St(B)

∨ {G ∈ St(B) | fσ(G)(h) = 0}) =

=
∧

h∈V St(B)
≤rank(σ)

(Jτh ∈ ηKV
B

∨ ¬σ(τh)) =
∧

σ0∈ ˜V B
≤rank(σ)

(Jσ0 ∈ ηKV
B

∨ ¬σ(σ0)) = Jσ ⊆ ηKV
B

.

Finally

Jfσ = fηK
V St(B)

= Jfσ ⊆ fηK
V St(B)

∧ Jfη ⊆ fσK
V St(B)

=

= Jσ ⊆ ηKV
B

∧ Jη ⊆ σKV
B

= Jσ = ηKV
B

.



Chapter 4

V St(B) and sheaves

In this chapter we show the connection between boolean valued models for Set Theory
and categories of sheaves. We first represent V St(B) (or equivalently V B) as a category,
then we will see that any B-name in V St(B) gives rise to a sheaf in a functorial way, and
that V St(B) can be identified with a full subcategory of Sh(St(B)). Finally we will use
Giraud’s theorem to show that the category in question is in fact a Grothendieck Topos.

4.1 V St(B) as a category
Set is the trivial sheaves category associated to V , likewise V St(B) has an associated cate-
gory of sheaves. This category will be denoted by Bname and it is defined as follows:

• an object in Bname is an equivalence class of B-names in V St(B), with two elements
x and y identified when Jx = yK = St(B);

• an arrow between two B-names C and D is an equivalence class of B-names f such
that Jf : C → DK = St(B). Two elements f and g of this kind are considered the
same arrow if Jf = gK = St(B).

There is a foundational issue here to be addressed: literally our definition yelds that
every object and every arrow is a proper class, making it impossible to even define the
collection of all the objects, as well as the collection of all the arrows between two classes
of B-names. We can resolve this prolem resorting to Scott’s trick or to the global axiom
of choice to grant that each object and each arrow is a set.

It follows from the definition and the analogous properties of V (or Set) that the above
definition actually gives rise to a category. For example, the arrows are composable: if
Jf : C → DK = St(B) and Jg : D → EK = St(B) then Jφ := ∃h(h = g ◦ f)KV

St(B)

=
St(B) because φ can be proved from the ZFC axioms, and by fullness of V St(B) there is
h ∈ V St(B) for which Jh = g ◦ fK = St(B). Similar arguments give the associativity of
composition of arrows and the existence of identities.

In order to establish a connection between B-names and sheaves it is convenient to
resort to a special kind of B-names.

31



32 CHAPTER 4. V St(B) AND SHEAVES

Definition 4.1.1. A B-name A ∈ V St(B) is full if it satisfies the following property:

for every B-name x ∈ V St(B) and every b ∈ B such that Jx ∈ AK ≥ Nb, there
exists some x̃ ∈ V St(B)

≤rank(A) such that Jx̃ = xK ≥ Nb and A(G)(x̃) = 1 for every
ultrafilter G ∈ Nb.

In other words, A is full if the supremum defining the boolean value

Jx ∈ AK =
∨

y∈V St(B)
≤rank(A)

(Jx = yK ∧ {G ∈ St(B) | A(G)(y) = 1})

is actually a maximum for every x ∈ V St(B).
The next result ensures that the class of full B-names preserves all the information

carried by the boolean valued model for Set Theory.

Theorem 2. For every A ∈ V St(B) there is some B-name Ã such that
r
A = Ã

z
= St(B)

and Ã is full.

In order to find such an Ã, the natural idea is to ”fill” A defining Ã as

Ã : St(B)→ 2V
St(B)
≤rank(A) , Ã(G)(x) = 1 ⇐⇒ G ∈ Jx ∈ AK . (4.1)

For this construction to work, we have to make sure that for every b ∈ B and x ∈ V St(B)

such that Jx ∈ AK ≥ Nb there is some y ∈ V St(B)

≤rank(A) with Jx = yK ≥ Nb. We will use the
following lemmas:

Lemma 4.1.2. For every A ∈ V St(B), if rank(A) = α and β > α there is some Ā ∈ V St(B)

β+1

such that
q
A = Ā

y
= St(B).

Proof. Define Ā : St(B)→ 2V
St(B)
≤β as

Ā(G)(y) =

{
A(G)(y) if rank(y) < α

0 if rank(y) ≥ α.

for every G ∈ St(B). Since ZFC ` ∀A, Ā [A = Ā ↔ ∀x(x ∈ A ⇐⇒ x ∈ Ā)], we can
equivalently show that

Jx ∈ AK =
q
x ∈ Ā

y
for all x ∈ V St(B);

and this is the case because
q
x ∈ Ā

y
=

∨
y∈V St(B)
≤β

(Jy = xK ∧ {G ∈ St(B) : Ā(G)(y) = 1}) =

=
∨

y∈V St(B)
≤α

(Jy = xK ∧ {G ∈ St(B) : A(G)(y) = 1}) = Jx ∈ AK .
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Lemma 4.1.3. Let x and y be two B-names in V St(B)

β+1 satisfying x�Nb= y �Nb for some
clopen subset Nb of St(B). Then Jx = yK ≥ Nb.

Proof.

Jx ⊆ yK =
∧

z∈V St(B)
≤β

(
Jz ∈ yK ∨ {G ∈ St(B) : x(G)(z) = 0}

)
=

=
∧

z∈V St(B)
≤β

( ∨
w∈V St(B)

≤β

[
Jw = zK ∧ {G ∈ St(B) : y(G)(w) = 1}

]
∨ {G ∈ St(B) : x(G)(z) = 0}

)
≥

≥
∧

z∈V St(B)
≤β

(
{G ∈ St(B) : y(G)(z) = 1} ∨ {G ∈ St(B) : x(G)(z) = 0}

)
.

Now, if G ∈ Nb by hypotesis x(G)(z) = 1 ⇐⇒ y(G)(z) = 1, so

{G ∈ St(B) : y(G)(z) = 1} ∨ {G ∈ St(B) | x(G)(z) = 0} ≥ Nb for all z ∈ V St(B)

≤β

giving Jx ⊆ yK ≥ Nb. The proof of Jy ⊆ xK ≥ Nb is exactly the same.

Lemma 4.1.4. Assume α = β + 1 is a successor ordinal. For any A ∈ V St(B)

α+1 and
b ∈ B, and for all x ∈ V St(B) such that Jx ∈ AK ≥ Nb there is some x̄ ∈ V St(B)

α with
Jx = x̄K ≥ Nb.

Proof. Jx ∈ AK ≥ Nb entails that
∨
y∈V St(B)
≤α

Jx = yK ≥ Nb. This means that the set

↓
{
Jx = yK : y ∈ V St(B)

≤α

}
is dense below Nb. Extract a maximal antichain {Ni : i ∈ I}, and for every i ∈ I let yi ∈
V St(B)

≤α be such that Jx = yiK ≥ Ni. By 4.1.2 we can assume yi ∈ V St(B)
α so rank(yi) = β

for all i ∈ I . Define
x̄ �
⋃
i∈I

Ni =
⋃
i∈I

(yi � Ni).

Since
⋃
i∈I Ni is a dense open subset of Nb, x̄ can be extended by continuity on the whole

Nb as follows:

LetNbs,j be the closure of
⋃
{Ni : yi(s) = j} for all s ∈ 2V

St(B)
≤β . ThenNbs,0∪

Nbs,1 ⊇ Nb and Nbs,0 ∩ Nbs,1 = ∅ for all s ∈ 2V
St(B)
≤β . Hence for all G ∈ Nb

and s ∈ 2V
St(B)
≤β , just one among bs,0, bs,1 belongs to G; let X̄(G)(s) = j if

and only if bs,j ∈ G.

On the remainder N¬b, let x̄(G) = 0̄, where 0̄ is the zero function in 2V
St(B)
≤β . By construc-

tion Jx = yiK ≥ Ni, and by 4.1.3 Jx̄ = yiK ≥ Ni, hence

Jx = x̄K ≥
∨
i∈I

Ni ≥ Nb.
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We can now prove Theorem 2:

Proof. 4.1.2 allows to assume WLOG that rank(A) is not a limit ordinal. Let Ã be defined
as in 4.1. We compute the boolean value

r
A = Ã

z
:

r
A ⊆ Ã

z
=

∧
x∈V St(B)
≤rank(A)

(r
x ∈ Ã

z
∨ {G ∈ St(B) : A(G)(x) = 0}

)
=

=
∧

x∈V St(B)
≤rank(A)

( ∨
y∈V St(B)
≤rank(A)

[
Jx = yK ∧ {G ∈ St(B) : Ã(G)(y) = 1}

]
∨ {G ∈ St(B) : A(G)(x) = 0}

)
≥

≥
∧

x∈V St(B)
≤rank(A)

({G ∈ St(B) : Ã(G)(x) = 1} ∨ {G ∈ St(B) : A(G)(x) = 0}) =

=
∧

x∈V St(B)
≤rank(A)

(Jx ∈ AK ∨ {G ∈ St(B) : A(G)(x) = 0}) = St(B)

because
Jx ∈ AK ≥ {G ∈ St(B) : A(G)(x) = 1}

by definition for every x ∈ V St(B)

≤rank(A). On the other hand

r
Ã ⊆ A

z
=

∧
x∈V St(B)
≤rank(A)

(
Jx ∈ AK ∨

{
G ∈ St(B) : Ã(G)(x) = 0

})
=

=
∧

x∈V St(B)
≤rank(A)

(Jx ∈ AK ∨ ¬ Jx ∈ AK) =
∧

x∈V St(B)
≤rank(A)

St(B) = St(B).

It remains to prove that Ã is full; but this is the case because
r
A = Ã

z
= St(B) iff

Jx ∈ AK ≥ Nb ⇐⇒
r
x ∈ Ã

z
≥ Nb for all x ∈ V St(B) and b ∈ B,

hence 4.1 and 4.1.4 yeld the fullness of Ã.

4.2 The sheaf associated to a full B-name
The definition of the B-names in V St(B) as continuous functions from St(B) suggests that
the concept of B-name is connected with the idea of a sheaf on St(B). Every B-name A
whose rank is a successor ordinal corresponds to the two sets of continuous functions

U0(A) =
{
x ∈ V St(B)

rank(A) : Jx ∈ AK = St(B)
}
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and
U1(A) =

{
x ∈ V St(B)

≤rank(A) : ∀G ∈ St(B)A(G)(x) = 1
}

;

related respectively to the presheaves

F0(A) : Bop → Set, b 7→
{
x�Nb : x ∈ V St(B)

rank(A) ∧ Jx ∈ AK ≥ Nb

}
and

F1(A) : Bop → Set, b 7→ {[x�Nb ]∼ : for all G ∈ Nb A(G)(x) = 1}
where x�Nb ∼ y�Nb if x and y can be taken so that Jx = yK ≥ Nb.

It can be shown that F0(A) is always a sheaf. Suppose in fact that {bi : i ∈ I} is a
maximal antichain in B, and for every i ∈ I let xi ∈ V St(B)

α be such that Jxi ∈ AK ≥ Nbi .
Let x ∈ V St(B)

α be the unique continuous function respecting on the dense open set
⋃
i∈I Ni

the requirement x(G) = xi(G) if bi ∈ G. We have

Jx ∈ AK ≥
∨
i∈I

(Jxi ∈ AK ∧ Jx = xiK) ≥
∨
i∈I

Nbi ;

that is, the collation of local sections of F0(A) is again a local section of F0(A).
This is not the case for F1(A), and gives a motivation to focus on full B-names:

Theorem 3. F1(A) is a sheaf if and only if A is full.

Proof. Assume A is full, let {bi : i ∈ I} be an antichain in B. For every i ∈ I , consider
a function xi ∈ V St(B)

≤rank(A) such that A(G)(xi) = 1 for all G ∈ Nbi . To prove that F1(A)
is a sheaf it must be found an x ∈ V St(B)

≤rank(A) with the property Jx = xiK ≥ Nbi for all i
and A(G)(x) = 1 if bi ∈ G for some i ∈ I . We use 4.1.2 to find x̃i ∈ V St(B)

rank(A) so that
Jx̃i = xiK = St(B) for every i ∈ I , and define x̃ to be the unique continuous function
satisfying for all i ∈ I the condition:

x̃(G) = x̃i(G) if and only if bi ∈ G.

It holds

Jx̃i ∈ AK = Jxi ∈ AK =
∨

y∈V St(B)
≤rank(A)

(Jxi = yK ∧ {G ∈ St(B) | A(G)(y) = 1}) ≥

≥ Jxi = xiK ∧ {G ∈ St(B) | A(G)(xi) = 1} ≥ Nbi .

Now, calculating the boolean value Jx̃ ∈ AK:

Jx̃ ∈ AK ≥
∨
i∈I

(Jx̃ = xiK ∧ Jxi ∈ AK) ≥
∨
i∈I

Nbi = St(B).

Furthermore Jx̃ = xiK ≥ Nbi , hence x̃ works.
Conversely, suppose F1(A) is a sheaf, and take x ∈ V St(B) such that Jx ∈ AK ≥ Nb.

Arguing as in the proof of 4.1.4, we know that the set

↓
{
Jx = wK ∧ {G ∈ St(B) | A(G)(w) = 1} : w ∈ V St(B)

≤rank(A)

}
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is dense below Nb, so a maximal antichain {Nbi : i ∈ I} can be extracted, and for all
i ∈ I there is yi ∈ V St(B)

≤rank(A) such that Jx = yiK ∧ {G ∈ St(B) | A(G)(yi) = 1} ≥ Nbi .
Since F1(A) is a sheaf and {[yi] : i ∈ I} is a collating family in F1(A), there is x̃ such
that A(G)(x̃) = 1 for every G ∈ Nb and Jx̃ = yiK ≥ Nbi for all i ∈ I , therefore

Jx̃ = xK ≥
∨
i∈I

(Jx̃ = yiK ∧ Jyi = xK) ≥
∨
i∈I

Nbi ≥ Nb

showing that A is full.

Remark 4.2.1. If one wants F1(A) to be a sheaf, the equivalence classes of the local
sections of the B-names have to be considered. It can be shown that

F̃1(A) : Bop → Set, b 7→ {x�Nb : ∀G ∈ Nb A(G)(x) = 1}

may not be a sheaf even if A is full. To see this, take two distict B-names x1, x2 ∈ V St(B)
α

for some α ∈ Ord, b ∈ B and let x ∈ V St(B)
α given by

x(G) =

{
x1(G) if b ∈ B

x2(G) if b /∈ B.

Using 4.1.2, choose an x̃ ∈ V St(B)

α+1 such that Jx̃ = xK = St(B), and define A ∈ V St(B)

α+2 as

A(G)(y) = 1 ⇐⇒ y = x̃ ∨ (b ∈ G ∧ y = x1) ∨ (b /∈ G ∧ y = x2).

Now, for every z ∈ V St(B)

Jz ∈ AK =
∨

y∈V St(B)
≤rank(A)

(Jz = yK ∧ {G ∈ St(B) | A(G)(y) = 1}) =

= (Jz = x1K ∧Nb) ∨ (Jz = x2K ∧N¬b) ∨ Jz = x̃K ≤
≤ (Jz = x1K ∧ Jx1 = x̃K) ∨ (Jz = x2K ∧ Jx2 = x̃K) ∨ Jz = x̃K =

≤ Jz = x̃K ;

so x̃ is the witness of the fullness of A. But F̃1(A) is not a sheaf because A(G)(x) = 0
for all G ∈ St(B) even if x is obtained by collating local sections of F̃1(A).

The following result gives a connection between the semantic notion of boolean equal-
ity of two B-names and the condition of isomorphism of sheaves.

Theorem 4.2.2. Let A and B be two full B-names. Then JA = BK = St(B) if and only if
F1(A) ' F1(B).

Proof. Suppose it holds JA = BK = St(B), that is Jx ∈ AK = Jx ∈ BK for every x ∈
V St(B). If [x �Nb ]A ∈ F1(A)(b), then Jx ∈ BK = Jx ∈ AK ≥ Nb, so by the fullness of
B there is y ∈ V St(B) such that [y�Nb ]B ∈ F1(B)(b) and Jx = yK ≥ Nb. If ỹ is another
B-name with the property [ỹ �Nb ]B ∈ F1(B)(b) and Jx = ỹK ≥ Nb, then Jy = ỹK ≥
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Jx = yK ∧ Jx = ỹK ≥ Nb yelding [y�Nb ]B = [ỹ�Nb ]B Then the collection i = {ib : b ∈ B}
with

ib : F1(A)(b)→ F1(B)(b); ib([x�Nb ]A) = [y �Nb ]B

for every b ∈ B defines a natural transformation from F1(A) to F1(B) (i trivially com-
mutes with the restrictions). The same holds for j = {jb : b ∈ B} with

jb : F1(A)(b)→ F1(B)(b); jb([z �Nb ]B) = [w �Nb ]A

where w ∈ V St(B) is any B name satisfying Jz = wK ≥ Nb and [w �Nb ]B ∈ F1(B)(b).
Moreover, for every b ∈ B, ib and jb are inverse functions: if [y �Nb ]B = ib([x �Nb ]A)
and [w �Nb ]A = jb([y �Nb ]B), then Jw = xK ≥ Jw = yK ∧ Jx = yK ≥ Nb ∧ Nb = Nb, so
[w �Nb ]A = [x�Nb ]A. The same argument applies for ib ◦ jb.

Conversely, suppose F1(A) and F1(B) are isomorphic sheaves, and let i and j be the
inverse natural transformations witnessing the isomorphism. If x ∈ V St(B) is such that
Jx ∈ AK ≥ Nb, there is x̃ with [x̃ �Nb ]A ∈ F1(A)(b) and Jx = x̃K ≥ Nb. Let [y �Nb
]B = ib([x̃ �Nb ]A). Then Jy = x̃K ≥ Nb and Jy ∈ BK ≥ Nb, yelding Jx ∈ BK ≥ Nb.
In the same way, for every x ∈ V St(B), Jx ∈ BK ≥ Nb =⇒ Jx ∈ AK ≥ Nb. Then
JA = BK = St(B).

We proceed to show that the function F1 : V St(B) → ̂O(St(B)) induces a functor

F : Bname→ Sh(St(B)).

To see this, consider an object [C] ∈ Bname, and define F ([C]) = F1(C̄) where C̄ is
any full B-name in [C] (no matter which for 4.2.2). If f is such that

q
f : C̄ → D̄

y
= St(B)

and [x �Nb ]C̄ ∈ F1(C̄)(Nb) then J∃!y(y ∈ D ∧ f(x) = y)K ≥ Nb, and by the fullness of
V St(B) there is some z̃ such that

q
z̃ ∈ D̄

y
≥ Nb and Jf(x) = z̃K ≥ Nb, and by the fullness

of D̄ there is z so that [z �Nb ]D̄ ∈ F1(D̄) and Jz̃ = zK ≥ Nb. If w is another B-name such
that Jw = z̃K ≥ Nb and [w �Nb ]D̄ ∈ F1(D̄), then Jw = yK ≥ Nb so [w �Nb ]D̄ = [y �Nb ]D̄.

So an arrow f (more precisely a representative of f ) gives rise to a collection of
functions

F (f)(b) : F1(C̄)(b)→ F̄1(D̄)(b), [x�Nb ]C̄ 7→ [z �Nb ]D̄

defining a natural transformation between the sheaves F ([C]) and F ([D]) (naturality of
F (f) follows immediately from the definition). Taking the identity arrow of [C] as f , one
has

F (Id[C])(b)([x�Nb ]C̄) = [IdC̄(x)�Nb ]C̄ = [x�Nb ]C̄

so F (Id[C]) is the identity transformation of F ([C]). Furthermore, if Jh = g ◦ fK =
St(B), Jy = f(x)K ≥ Nb and Jz = g(y)K ≥ Nb then Jz = g ◦ f(x)K ≥ Nb, giving
F (g ◦ f) = F (g) ◦ F (f).

It can be proved that F is not only a functor, but it also gives an immersion of cate-
gories between Bname and its image:

Theorem 4. F : Bname → Sh(St(B)) is a full and faithful functor, which is injective on
objects.
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Proof. Injectivity on objects is an immediate consequence of 4.2.2. Let f and g be (rep-
resentatives of) two different arrows from [C] to [D]. Jf = gK < St(B) means that∧

x∈V St(B)

(x ∈ C̄ → f(x) = g(x)) < St(B)

so
q
x ∈ C̄ → f(x) = g(x)

y
= ¬

q
x ∈ C̄

y
∨Jf(x) = g(x)K < St(B) for some x ∈ V St(B),

equivalently
q
x ∈ C̄ ∧ f(x) = g(x)

y
<

q
x ∈ C̄

y
. Let b be the element in B such thatq

x ∈ C̄
y

= Nb. By the fullness of C̄ we can assume [x�Nb ]C̄ ∈ F1(C̄)(b), and
q
x ∈ C̄ ∧ f(x) = g(x)

y
< Nb =⇒ [f(x)�Nb ]D̄ 6= [g(x)�Nb ]D̄,

then F (f) 6= F (G). So F is faithful.
Now, let α be a natural trasformation from F ([C]) to F ([D]). From α it can be

constructed a B-name f such that:

•
q
f : C̄ → D̄

y
= St(B),

• for every x ∈ V St(B) with [x �Nb ]C̄ ∈ F1(C̄)(b) and y ∈ V St(B) such that [y �Nb ]D̄ =
αb([x�Nb ]C̄) it holds Jf(x) = yK ≥ Nb.

We define the B-name attached to α as follows:

• For two B-names x and y define

ins(x, y) : St(B)→ 2V
St(B)
≤max(rank(x),rank(y))+1

ins(x, y)(G)(h) = 1 ⇐⇒ h = x ∨ h = y.

It follows that J∀h(h ∈ ins(x, y) ⇐⇒ (h = x ∨ h = y))K = St(B), or put in an-
other way Jins(x, y) = {x, y}K = St(B);

• Define

co(x, y) : St(B)→ 2V
St(B)
≤max(rank(x),rank(y))+2

co(x, y)(G)(h) = 1 ⇐⇒ h = ins(x, x) ∨ h = ins(x, y)

It follows that J∀h(h ∈ co(x, y) ⇐⇒ (h = ins(x, x) ∨ h = ins(x, y)))K = St(B),
that is Jco(x, y) = {{x} , {x, y}}K = St(B);

• Define f as f : St(B)→ 2V
St(B)
≤max(rank(C),rank(D))+3 where

f(G)(h) = 1 ⇐⇒ h = co(x, y) ∧ [y �Nb ]C̄ = αb([y �Nb ]D̄)

for some x, y ∈ V St(B) and b ∈ G. It follows that for all z with Jz ∈ fK > ∅ there
exists x, y ∈ V St(B) such that Jz = (x, y)K = St(B) and

q
x ∈ C̄

y
≤ J(x, y) ∈ fK,

and there is such a z for all x with
q
x ∈ C̄

y
> ∅. So

q
f : C̄ → D̄

y
= St(B), and

α = F (f) by definition.
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4.3 V St(B) as a Grothendieck Topos
So far we have shown that certain B-names in V St(B) have an interpretation as sheaves
of continuous functions on St(B). The natural question is: can all V St(B) be seen as a
category of sheaves? The answer is positive because, as it will be proved soon, Bname
satisfies all the clauses of Giraud’s theorem.

To see this, the key observation is that the properties of the category Set (i.e. the
universe V) are given by the ZFC axioms. Now, the hypoteses of Giraud’s theorem char-
acterizing a Grothendieck Topos (GT in the following) can be expressed as first order
formulas in the language of Set Theory, and the fact that Set is a GT means that these
sentences are provable from ZFC. Recalling that V St(B) is a boolean valued model for Set
Theory, this entails that the boolean values JψK are all equal to St(B) if ψ is a sentence
expressing one of the hypoteses of Giraud’s theorem. From this, with some technical
reasoning, it follows that Bname is a GT, the clauses of Giraud’s theorem being valid for
it.

Theorem 5. V St(B) satisfies the hypotheses of Giraud’s theorem, hence it is a Grothendieck
Topos.

Proof. We make use of the idea just exposed. For example, to see that Bname has a set
of generators consider the formula

ψ := ∃x∀y∀z∀f∀g∀h[(f, g : y → z ∧ h : x→ y ∧ f ◦ h = g ◦ h) =⇒ f = g]

expressing exactly this property. Set, as a GT, has a set of generators, in particular the
object {∅} is a generator for Set. So ψ is a statement provable from ZFC, hence valid
in V St(B), i.e. we have that JψK = St(B). By fullness of V St(B) we know there is some
B-name x such that

J∀y∀z∀f∀g∀h([f, g : y → z ∧ h : x→ y ∧ f ◦ h = g ◦ h)] =⇒ f = g)K = St(B).

Now, if f and g are two (representatives of) arrows between the B-names y and z for all
arrows h with codomain x we have Jf ◦ h = g ◦ hK ≤ Jf = gK, and if f ◦ h and g ◦ h
are all the same arrows then Jf ◦ h = g ◦ hK = St(B), so Jf = gK = St(B) and f and
g are the same arrow and [x] is a generator for Bname. Furthermore the object [x] can
be shown explicitly: since the generator for Set is {∅}, x can be taken with the property
Jp(x)K = St(B) where p is the formula saying that every element of x is the empty set.
Such an x can easily be constructed:

x : St(B)→ 2V
St(B)
1 , G 7→ c∅.

In the same way in can be shown that in Bname every epi arrow is a coequalizer.
Being a Gr. topos, in Set every epimorphism is a coequalizer. The formula expressing
this fact is

ψ := ∀x∀y∀f [f : x→ y is epi =⇒ ∃g∃h∃z(f, h : z → x ∧ fg = fh∧
∀d∀w(d : x→ w ∧ dg = dh) =⇒ ∃e(d = ef))].
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Arguing as in the previous point, knowing that JψK = St(B), if f is an epi arrow then
by fullness of V St(B) there are two arrows g and h such that fg = fh universal with this
property, so f is an equalizer. The other three clauses of Giraud’s theorem are proved in
the same vein.
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