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1 Notation

In this notes, f [A] (resp. f −1[A]) will denote the set f [A] = { f (x ) : x ∈ A} (resp.

with f −1). We will use [X ]κ (resp. [X ]<κ) to denote the set of all subsets of X of

size κ (resp. less than κ). Mα will be the stage α of the cumulative hierarchy in

M , and H (κ) will be the class of all sets hereditarily of cardinality < κ. We shall

writeφM to mean the interpretation ofφ in the model M .

If M is a transitive model of ZFC with P∈M , MP will be the set of P-names in

M , and M [G ]will be the forcing extension of M with a filter G that is M -generic

for some P. We will use Ȧ to denote a P-name for A ∈ M [G ], Ǎ to denote the

standard P-name for A ∈M , and valG (Ȧ) to denote the evaluation of the P-name

Ȧ with an M -generic filter G .

We recall that given a poset P, a set D ⊆ P is dense iff for every p ∈ P there

exists a q ∈D, q ≤ p ; and a filter G is M -generic for P iff G ∩D ∩M 6= ; for every

D ∈M dense subset of P.
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Forcing Axioms 2 Generalized Stationarity

2 Generalized Stationarity

In this section we shall introduce a generalization of the notion of stationarity for

subsets of cardinals to subsets of any set. This concept has been proved useful

in many contexts, and is needed in our purpose to state the strong reflection

principle SRP. Reference texts for this section are [2], [3, Chapter 2].

Definition 2.1. Let X be an uncountable set. A set C is a club onP (X ) iff there is

a function f C : X<ω→X such that C is the set of elements ofP (X ) closed under

f C , i.e.

C =
�

Y ∈P (X ) : f C [Y ]<ω ⊆ Y
	

A set S is stationary onP (X ) iff it intersects every club onP (X ).

Example 2.2. The set {X } is always stationary since every club contains X . Also

P (X )\{X } and [X ]κ are stationary for any κ≤ |X | (following the proof of the well-

known downwards Löwhenheim-Skolem Theorem). Notice that every element

of a club C must contain f C (;), a fixed element of X .

Remark 2.3. The reference to the support set X for clubs or stationary sets may

be omitted, since every set S can be club or stationary only on
⋃

S.

There is one more property of stationary sets that is worth to mention. Given

any first-order structure M , from the set M we can define a Skolem function

f M : M<ω → M (i.e., a function coding solutions for all existential first-order

formulas over M ). Then the set C of all elementary submodels of M contains

a club (the one corresponding to f M ). Henceforth, every set S stationary on X

must contain an elementary submodel of any first-order structure on X .

Definition 2.4. A set S is subset modulo club of T , in symbols S ⊆∗ T , iff
⋃

S =
⋃

T = X and there is a club C on X such that S ∩C ⊆ T ∩C . Similarly, a set S is

equivalent modulo club to T , in symbols S =∗ T , iff S ⊆∗ T ∧T ⊆∗ S.

Definition 2.5. The club filter on X is CFX = {C ⊂P (X ) : C contains a club}.
Similarly, the non-stationary ideal on X is NSX =

�

A ⊂P (X ) : A not stationary
	

.

Remark 2.6. If |X | = |Y |, then P (X ) and P (Y ) are isomorphic and so are C FX

and C FY (or NSX and NSY ): then we can suppose X ∈ON or X ⊇ω1 if needed.

Lemma 2.7. CFX is a σ-complete filter on P (X ), and the stationary sets are ex-

actly the CFX -positive sets.

Proof. CFX is closed under supersets by definition. Given a family of clubs C i ,

i < ω, let f i be the function corresponding to the club C i . Let π :ω→ω2 be a

surjection, with componentsπ1 andπ2, such thatπ2(n )≤ n . Define g : X<ω→X

to be g (s ) = fπ1(|s |)(s �π2(|s |)). It is easy to verify that C g =
⋂

i<ωC i .
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Definition 2.8. Given a family {Sa ⊆P (X ) : a ∈X }, the diagonal union of the

family is ∇a∈XSa = {z ∈P (X ) : ∃a ∈ z z ∈Sa }, and the diagonal intersection of

the family is∆a∈XSa = {z ∈P (X ) :∀a ∈ z z ∈Sa }.

Lemma 2.9 (Fodor). CFX is normal, i.e. is closed under diagonal intersection.

Equivalently, every function f : P (X )→ X that is regressive on a CFX -positive set

is constant on a CFX -positive set.

Proof. Given a family Ca , a ∈ X of clubs, with corresponding functions f a , let

g (aás ) = f a (s ). It is easy to verify that C g =∆a∈X Ca .

Even though the second part of our thesis is provably equivalent to the first

one for any filterF , we shall opt here for a direct proof. Assume by contradiction

that f : P (X )→ X is regressive (i.e., f (Y ) ∈ Y ) in a CFX -positive (i.e., stationary)

set, and f −1 [a ] is non-stationary for every a ∈X . Then, for every a ∈X there is a

function g a : [X ]<ω→X such that the club C g a is disjoint from f −1 [a ]. Without

loss of generality, suppose that C g a ⊆ Ca = {Y ⊆X : a ∈ Y }. As in the first part

of the lemma, define g (aás ) = g a (s ). Then for every Z ∈ C g and every a ∈ Z ,

Z is in C g a hence is not in f −1 [a ] (i.e., f (Z ) 6= a ). So f (Z ) /∈ Z for any Z ∈ C g ,

hence C g is a club disjoint with the stationary set in which f is regressive, a

contradiction.

Remark 2.10. The club filter is neverω2-complete, unlike its well-known coun-

terpart on cardinals. Let Y ⊆ X be such that |Y | = ω1, and Ca be the club cor-

responding to f a : [X ]<ω → {a }; then C =
⋂

a∈Y Ca = {Z ⊆X : Y ⊆Z } is disjoint

from the stationary set [X ]ω, hence is not a club.

This generalized notion of club and stationary set is closely related to the

well-known one defined for subsets of cardinals.

Lemma 2.11. C ⊆ ω1 is a club in the classical sense if and only if C ∪ {ω1} is a

club in the generalized sense. S ⊆ω1 is stationary in the classical sense if and only

if it is stationary in the generalized sense.

Proof. Let C ⊆ ω1 + 1 be a club in the generalized sense. Then C is closed:

given any α = supαi with f [αi ]<ω ⊆ αi , f [α]<ω =
⋃

i f [αi ]<ω ⊆
⋃

i αi = α. Fur-

thermore, C is unbounded: given any β0 < ω1, define a sequence βi by taking

βi+1 = sup f [βi ]<ω. Then βω = supβi ∈C .

Let now C ⊆ω1 be a club in the classical sense. Let C = {cα : α<ω1} be an

enumeration of the club. For every α < ω1, let
¦

d αi : i <ω
©

⊆ cα+1 be a cofinal

sequence in cα+1 (eventually constant), and let
¦

eαi : i <ω
©

⊆ α be an enumer-

ation of α. Define f C to be f C ((cα)n ) = d αn , f C (0áαn ) = eαn , and f C (s ) = 0 oth-

erwise. The sequence eαi forces all closure points of f C to be ordinals, while the

sequence d αi forces the ordinal closure points of f C being in C .

3



Forcing Axioms 2 Generalized Stationarity

Lemma 2.12. If κ is a cardinal with cofinality at leastω1, C ⊆ κ contains a club

in the classical sense if and only if C ∪ {κ} contains the ordinals of a club in the

generalized sense. S ⊆ κ is stationary in the classical sense if and only if it is sta-

tionary in the generalized sense.

Proof. If C is a club in the generalized sense, then C∩κ is closed and unbounded

by the same reasoning of Lemma 2.11. Let now C be a club in the classical sense,

and define f : κ<ω→ κ to be f (s ) =min
�

c ∈C : sup s < c
	

. Then C f ∩κ is exactly

the set of ordinals in C ∪{κ} that are limits within C .

Remark 2.13. If S is stationary in the generalized sense on ω1, then S ∩ω1 is

stationary (sinceω1+1 is a club by Lemma 2.11), while this is not true forκ>ω1.

In this case, P (κ) \ (κ+ 1) is a stationary set: given any function f , the closure

under f of {ω1} is countable, hence not an ordinal.

Lemma 2.14 (Lifting and Projection). Let X ⊆ Y be uncountable sets. If S is sta-

tionary on P (Y ), then S ↓ X = {B ∩X : B ∈S} is stationary. If S is stationary on

P (X ), then S ↑ Y = {B ⊆ Y : B ∩X ∈S} is stationary.

Proof. For the first part, given any function f : [X ]<ω→ X , extend it in any way

to a function g : [Y ]<ω → Y . Since S is stationary, there exists a B ∈ S closed

under g , hence B ∩X ∈S ↓X is closed under f .

For the second part, fix an element x ∈X . Given any function f : [Y ]<ω→ Y ,

replace it with a function g : [Y ]<ω → Y such that for any A ⊂ Y , g [A] con-

tains A ∪ {x } and is closed under f . To achieve this, fix a surjection π : ω→ω2

(with projections π1 and π2) such that π2(n ) ≤ n for all n , and an enumeration

〈t n
i : i <ω〉 of all first-order terms with n variables, function symbols f i for i ≤ n

(that represent an i -ary application of f ) and a constant x . The function g can

now be defined as g (s ) = t π2(|s |)
π1(|s |) (s � π2(|s |)). Finally, let h : [X ]<ω→ X be defined

by h(s ) = g (s ) if g (s ) ∈ X , and h(s ) = x otherwise. Since S is stationary, there

exists a B ∈S with h[B ]⊆ B , but h[B ] = g [B ]∩X (since x is always in g [B ]) and

g [B ] ⊃ B , so actually h[B ] = g [B ]∩X = B ∈ S. Then, g [B ] ∈ S ↑ Y and g [B ] is

closed under f (by definition of g ).

Remark 2.15. Following the same proof, a similar result holds for clubs. If C f is

club on P (X ), then C f ↑ Y = C g where g = f ∪ IdY \X . If C f is club on P (Y )
such that

⋂

C f intersects X in x , and g , h are defined as in the second part of

Theorem 2.14, C f ↓X =Ch is club. If
⋂

C f is disjoint from X , C f ↓X is not a club,

but is still true that it contains a club (namely,
�

C f ∩C{x }
�

↓X for any x ∈X ).

Theorem 2.16 (Ulam). Let κ be an infinite cardinal. Then for every stationary set

S ⊆ κ+, there exists a partition of S into κ+ many disjoint stationary sets.
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Proof. For every β ∈ [κ,κ+), fix a bijection πβ : κ→ β . For ξ< κ, α< κ+, define

Aξα =
¦

β <κ+ : πβ (ξ) =α
©

(notice that β > α when α ∈ ran(πβ )). These sets can

be fit in a (κ×κ+)-matrix, called Ulam Matrix, where two sets in the same row or

column are always disjoint. Moreover, every row is a partition of
⋃

α<κ+ Aξα = κ+,

and every column is a partition of
⋃

ξ<κAξα = κ+ \ (α+1).
Let S be a stationary subset of κ+. For every α < κ+, define fα : S \ (α+

1)→ κ by fα(β ) = ξ if β ∈ Aξα. Since κ+ \ (α+ 1) is a club, every fα is regressive

on a stationary set, then by Fodor’s Lemma 2.9 there exists a ξα < κ such that

f −1
α [{ξα}] = Aξαα ∩S is stationary. Define g : κ+→ κ by g (α) = ξα, g is regressive

on the stationary set κ+ \κ, again by Fodor’s Lemma 2.9 let ξ∗ < κ be such that

g −1 [{ξ∗}] = T is stationary. Then, the row ξ∗ of the Ulam Matrix intersects S

in a stationary set for stationary many columns T . So S can be partitioned into

S ∩Aξ
∗

α for α∈ T \ {min(T )}, and S \
⋃

α∈T \{min(T )}Aξ
∗

α .

Remark 2.17. In the proof of Theorem 2.16 we actually proved something more:

the existence of a Ulam Matrix, i.e. a κ× κ+-matrix such that every stationary

set S ⊆ κ+ is compatible (i.e., has stationary intersection) with stationary many

elements of a certain row.

3 More on Stationarity

In this section we present some notable definition and results about stationary

sets that are not strictly needed for the rest of the notes. Reference text for this

section is [3, Chapter 2].

Definition 3.1. Let X be an uncountable set, κ < |X | be a cardinal. A set C is a

club on [X ]κ (resp. [X ]<κ) iff there is a function f C : X<ω→ X such that C is the

set of elements of [X ]κ (resp. [X ]<κ) closed under f C , i.e.

C =
�

Y ∈ [X ]κ : f C [Y ]<ω ⊆ Y
	

A set S is stationary on [X ]κ (respectively [X ]<κ) iff it intersects every club on [X ]κ

(respectively [X ]<κ).

This definition is justified by the observation that [X ]κ (resp. [X ]<κ) is sta-

tionary on X for every κ < |X |. As in the unrestricted case, the club sets on [X ]κ

(resp. [X ]<κ) form a normal σ-complete filter on [X ]κ (resp. [X ]<κ). We can also

state an analogous formulation of Lemma 2.14, with additional care in the case

[X ]κ: in that case, the lifting [X ]κ ↑ [Y ]κ may not be a club on [Y ]κ if |X |< |Y |. For

example, such a set is not a club if there exists a Completely Jónsson cardinal

above |Y | since its complement [Y ]κ \
�

[X ]κ ↑ [Y ]κ
�

= [X ]<κ ↑ [Y ]κ is stationary.

5



Forcing Axioms 4 Forcing Axioms

Lemma 3.2 (Lifting and Projection). Let X ⊆ Y be uncountable sets, κ < |X | be a

cardinal. If C contains a club on [Y ]κ (resp. [Y ]<κ), then C ↓ [X ]κ = (C ↓X )∩ [X ]κ

(resp. C ↓ [X ]<κ) contains a club on [X ]κ (resp. [X ]<κ). If C contains a club on

[X ]<κ, then C ↑ [Y ]<κ = (C ↑ Y )∩ [Y ]<κ contains a club on [Y ]<κ.

If S is stationary on [Y ]<κ, then S ↓ [X ]<κ is stationary on [X ]<κ. If S is station-

ary on [X ]κ (resp. [X ]<κ), then S ↑ [Y ]κ is stationary on [Y ]κ (resp. with [Y ]<κ).

We can now define a natural ordering on stationary sets, that can be used to

define a poset of notable relevance in set theory.

Definition 3.3. Let S, T be stationary sets. We write S ≤ T iff
⋃

S ⊇
⋃

T and

S ⊆ T ↑
�
⋃

S
�

.

Definition 3.4. The full stationary tower up to α is the poset P<α of all the sta-

tionary sets S ∈ Vα ordered by S ≤ T as defined above. The stationary tower

restricted to size κ up to α is the poset Qκ<α =
n

S ∈Vα : S ⊆
�
⋃

S
�κ

stationary
o

ordered by the same relation.

4 Forcing Axioms

Forcing is well-known as a versatile tool for proving consistency results. The

purpose of forcing axioms is to turn it into a powerful tool for proving theorems:

this intuition is partly justified by the following Cohen’s Absoluteness Lemma 4.2.

In the following notes we will use the notation M ≺n N to mean M ≺Σn N (or

equivalently M ≺Πn N , M ≺∆n+1 N ). Reference text for this section is [1, Chapter

3]. We first recall the following lemma.

Lemma 4.1 (Levi’s Absoluteness). Let κ>ω be a cardinal. Then H (κ)≺1 V .

Proof. Given any Σ1 formula φ = ∃x ψ(x , p1, . . . , pn ) with parameters p1, . . . , pn

in H (κ), if V � ¬φ also H (κ) � ¬φ since H (κ) ⊆ V and ψ is ∆0 hence abso-

lute for transitive models. Suppose now that V � φ, so there exists a q such

that V � ψ(q , p1, . . . , pn ). Let λ be large enough so that q ∈ H (λ). By down-

ward Löwenheim Skolem Theorem there exists an M ≺ H (λ) such that q ∈ M ,

trcl(p i ) ⊆ M for all i < n , and |M | = ω ∪
�

�

⋃

i<n trcl(p i )
�

� < κ. Let N be the

Mostowski Collapse of M , with π : M → N corresponding isomorphism. Since

H (λ) �ψ(q , p1, . . . , pn ), the same does M and N �ψ(π(q ), p1, . . . , pn ). Since N is

transitive of cardinality less than κ, N ⊆H (κ) so π(q )∈H (κ) and H (κ)�φ.

Lemma 4.2 (Cohen’s Absoluteness). Let T be any theory extending ZFC, and φ

be any Σ1 formula with a parameter p such that T ` p ⊆ω. Then T `φ(p ) if and

only if T ` ∃P (1P �φ(p )).
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Proof. The left to right implication is trivial (choosing a poset like P = 2). For

the reverse implication, suppose that V � ∃P (1P �φ(p̌ )), let P be any such poset

and θ be such that p ,P ∈ Vθ and Vθ satisfies a finite fragment of T large enough

to prove basic ZFC and 1P �φ(p ). Let M , N be defined as in the previous lemma

(considering p as the parameter, P as the variable), then N �
�

1Q �φ(p )
�

where

Q = π(P). Let G be N -generic for Q, so that N [G ] � φ(p ). Since φ is Σ1, φ is

upward absolute for transitive models, hence V � φ(p ). The thesis follows by

completeness of first-order logic.

Cohen’s Absoluteness Lemma can be generalized to the case p ⊆ κ for any

cardinal κ. However, to achieve that we need the following definition.

Definition 4.3. We write FAκ(P) as an abbreviation for the sentence “for every

D ⊂P (P) family of open dense sets of P with |D| ≤ κ, there exists a filter G ⊂ P
such that G ∩D 6= ; for all D ∈D”.

In an informal sense, assuming the forcing axiom for a broad class of posets

suggests that a number of different forcing has already been done in our model

of set theory. This intuitive insight is reflected into the following equivalence.

Theorem 4.4. Let P be a poset and θ > 2|P| be a cardinal. Then FAκ(P) holds iff

there exists an M ≺H (θ ), |M |= κ, P∈M , κ⊂M and a G filter M -generic for P.

Proof. First, suppose that FAκ(P) holds and let M ≺ H (θ ) be such that P ∈ M ,

κ ⊂M , |M | = κ. There are at most κ dense subsets of P in M , hence by FAκ(P)
there is a filter G meeting all those sets. However, G might not be M -generic

since for some D ∈M , the intersection G ∩D might be disjoint from M . Define:

N =
¦

x ∈H (θ ) : ∃τ∈M ∩V P ∃q ∈G
�

q �τ= x̌
�

©

Clearly, N cointains M (hence containsκ), and the cardinality |N | ≤
�

�M ∩V P
�

�= κ
since every τ can be evaluated in an unique way by the elements of the filter G .

To prove that N ≺ H (θ ), let ∃xφ(x , a 1, . . . , a n ) be any formula with parameters

a 1, . . . , a n ∈N which holds in V . Let τi ∈MP, qi ∈G be such that qi �τi = ǎ i for

all i < n . Define Qφ =
�

p ∈P : p � ∃x ∈V φ(x ,τ1, . . . ,τn )
	

, this set is definable

in M hence Qφ ∈ M . Furthermore, Qφ ∩G is not empty since it contains any

q ∈G below all qi . By fullness in H (θ ), we have that:

H (θ )�∀p ∈Qφ p � ∃x ∈V φ(x ,τ1, . . . ,τn )⇒
H (θ )� ∃τ ∀p ∈Qφ p �τ∈V ∧φ(τ,τ1, . . . ,τn )⇒
M � ∃τ ∀p ∈Qφ p �τ∈V ∧φ(τ,τ1, . . . ,τn )

Fix such a τ, by elementarity the last formula holds also in H (θ ) and in partic-

ular for q ∈Qφ . Since the set
�

p ∈P : ∃x ∈H (θ ) p � x̌ =τ
	

is an open dense set
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definable in M , there is a q ′ ∈ G below q belonging to this dense set, and an

a ∈ H (θ ) such that q ′ � τ = ǎ . Then q ′, τ testify that a ∈ N hence the original

formula ∃xφ(x , a 1, . . . , a n ) holds in N .

Finally, we need to check that G is N -generic for P. Let D ∈ N be a dense

subset of P, and Ḋ ∈M be such that 1P � Ḋ is dense∧ Ḋ ∈V and for some q ∈G ,

q � Ḋ =D. Since 1P � Ḋ ∩ Ġ 6= ;, by fullness lemma there exists a τ ∈H (θ ) such

that 1P � τ ∈ Ḋ ∩ Ġ , and by elementarity there is such a τ also in M . Let q ′ ∈G

below q be deciding the value of τ, q ′ �τ= p̌ . Since q ′ forces that p̌ ∈ Ġ , it must

be q ′ ≤ p so that p ∈G hence p ∈G ∩D ∩N is not empty.

For the converse implication, let M , G be as in the hypothesis of the theo-

rem, and fix a collectionD = 〈Dα :α<κ〉 of dense subsets of P. Define:

S =
¦

N ≺H (|P|+) : κ⊂N ∧ |N |= κ ∧ ∃G filter N -generic
©

Note that S is definable in M then S ∈M . Furthermore, since P∈M so is H (|P|+)
hence M ∩H (|P|+) ≺H (|P|+) and M ∩H (|P|+) is in S. Given any C f ∈M club on

H (|P|+), since f ∈ M we have that M ∩H (|P|+) ∈ C f . Then V � S ∩C f 6= ; and

by elementarity the same holds for M . Thus, S is stationary in M and again by

elementarity S is stationary also in V .

Let N ∈S be such thatD ∈N . Since κ⊂N andD has size κ, Dα ∈N for every

α<κ. Thus, the N -generic filter G will meet all dense sets inD, verifying FAκ(P)
for this collection.

Corollary 4.5. Let P be a poset withP (P) ∈H (θ ). Then FAκ(P) holds if and only

if there are stationary many M ≺H (θ ) such that |M |= κ, P ∈M , κ ⊂M and a G

filter M -generic for P.

Proof. The forward implication has already been proved in the first part of the

proof of the previous Theorem 4.4. The converse implication directly follows

from the same theorem.

Lemma 4.6 (Generalized Cohen’s Absoluteness). Let T be any theory extending

ZFC, κ be a cardinal, φ be a Σ1 formula with a parameter p such that T ` p ⊆ κ.

Then T `φ(p ) if and only if T ` ∃P
�

1P �φ(p ) ∧ FAκ(P)
�

.

Proof. The forward implication is trivial; the converse implication follows the

proof of Lemma 4.2. Given p , P such that 1P �φ(p ) and FAκ(P) holds, by Corol-

lary 4.5 let M ≺ H (θ ) be such that |M | = κ, P ∈ M , κ ⊂ M and there exists a G

filter M -generic for P. Since there are stationary many such M , we can assume

that p ∈M . Let π : M →N be the transitive collapse map of M , then H =π[G ] is

N -generic for Q = π[P] and p ⊆ κ ⊆M is not moved by π so that N [H ] � φ(p ).
Sinceφ is Σ1,φ is upward absolute for transitive models, hence V �φ(p ).
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It is now clear how the forcing axiom makes forcing a strong tool for proving

theorems. For κ = ω1, the forcing axiom FAω1 (P) is widely studied for many

different poset P. In particular, for the classes of posets:

c.c.c. ⊂ proper ⊂ semiproper ⊂ locally s.s.p.

the forcing axiom is called respectively MA (Martin’s Axiom), PFA (Proper Forc-

ing Axiom), SPFA (Semiproper Forcing Axiom), MM (Martin’s Maximum). In this

notes we will be mostly interested in the latter.

Definition 4.7. A poset P is c.c.c. iff every antichain in P is countable.

Definition 4.8. A poset P is proper iff for every θ regular cardinal such that

P (P)∈H (θ ), countable elementary substructure M ≺H (θ ) and p ∈P∩M , there

is a condition q ≤ p that is M -generic (i.e., for every D ∈ M dense subset of P
and r ≤q , r is compatible with an element of D ∩M ).

Equivalently, a poset P is proper iff it preserves stationary sets on [λ]ω for

any λ uncountable cardinal.

Definition 4.9. A poset P is semiproper iff for every θ regular cardinal such that

P (P)∈H (θ ), countable elementary substructure M ≺H (θ ) and p ∈P∩M , there

is a condition q ≤ p that is M -semigeneric (i.e., for every α̇ ∈ M name for a

countable ordinal, q � ∃β ∈M β̌ = α̇).

Under SPFA every s.s.p. poset is semiproper and viceversa, hence SPFA is

equivalent to MM.

Definition 4.10. A poset P is stationary set preserving (in short, s.s.p.) iff for

every stationary set S ⊆ω1, 1P �∀x ⊆ ω̌1(x club ⇒ x ∩ Š 6= ;).

Definition 4.11. A poset P is locally s.s.p. iff there exists a p ∈P such that P � p =
�

q ∈P : q ≤ p
	

is an s.s.p. poset.

The class of locally s.s.p. posets play a special role in the development of

forcing axioms: MM is the strongest possible form of forcing axiom forω1. This

is the case as shown by the following theorem.

Theorem 4.12 (Shelah). If P is not locally s.s.p. then FAω1 (P) is false.

Proof. Given P that is not locally s.s.p. let S be a stationary set onω1 and Ċ ∈V P

be such that 1P � Ċ ⊆ ω̌1 club, 1P � Š ∩ Ċ = ;̌. Define:

Dα =
¦

p ∈P : p � α̌∈ Ċ ∨p � α̌ /∈ Ċ
©

Eβ =
¦

p ∈P : p � β̌ /∈ Ċ ⇒∃γ<β p � Ċ ∩ β̌ ⊆ γ̌
©

Fγ =
¦

p ∈P : ∃α>γ p � α̌∈ Ċ
©

9



Forcing Axioms 5 More on Forcing Axioms

Those sets are dense by the forcing theorem, since Ċ is forced to be a club and

the above formulas are true for clubs (hence forced by a dense set of conditions).

Suppose by contradiction that FAω1 (P) holds, and let G be a filter that intersects

all the Dα, Eβ , Fγ. Then the set C =
¦

α<ω1 : ∃p ∈G p �α∈ Ċ
©

is a club in V , so

there is a β ∈ S ∩C . By definition of C , there exists a condition q ∈G such that

q �β ∈ Ċ , and β ∈S⇒q �β ∈ Š ∩ Ċ 6= ;̌, a contradiction.

5 More on Forcing Axioms

In this section we will state a few interesting results without proof, not directly

involved in the development of MM and SRP. Reference texts for this section are

[4], [5]. Cohen’s Absoluteness Lemma 4.2 is a valuable result, but is limiting in

two aspects. First, it involves only Σ1 formulas, and second, forces the param-

eter to be a subset of ω (or of larger cardinals, assuming stronger and stronger

versions of forcing axioms). The following Woodin’s Absoluteness Lemma, with

an additional assumption on large cardinals, enhances Cohen’s result to any for-

mula relativized to L(R).

Theorem 5.1 (Woodin’s Absoluteness). Let T be a theory extending ZFC + there

are class many Woodin cardinals. Let φ be any formula with a parameter p such

that T ` p ⊆ω. Then T `φ(p )L(R) if and only if T ` ∃P (1P �φ(p̌ )L(R)).

We would expect to generalize Woodin’s result from L(R) = L(P (ω)) to some

bigger class by means of forcing axioms, as we did with Cohen’s. This happens

to be possible, at least for L([ON]<ω2 ), by a result of Viale. To state it we need to

introduce some common variations of the forcing axiom.

Definition 5.2. We write BFAκ(B) as an abbreviation for the sentence “for every

D ⊂ [B ]≤κ family of predense sets ofB with |D| ≤ κ, there exists a filter G ⊂B
such that G ∩D 6= ; for all D ∈ D”. If P is a poset, we write BFAκ(P) to mean

BFAκ(B) forB the regular open algebra of P.

The bounded forcing axiom BFAκ(P) can be used to define weaker versions

of the usual forcing axioms: BMA, BPFA, BMM. Furthermore, BFAκ(P) has an in-

teresting equivalent formulation in terms of elementary substructures: namely,

BFAκ(P) holds if and only if H (κ+)≺1 V P.

Definition 5.3. We write FA++ω1
(P) as an abbreviation for the sentence “for every

D ⊂P (P) family of open dense sets of P with |D| ≤ω1, there exists a filter G ⊂ P
such that G ∩D 6= ; for all D ∈ D and valG (Ṡ) is stationary for every Ṡ ∈ V P such

that 1P � Ṡ ⊆ω1 stationary”.

10
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The forcing axiom FA++ω1
(P) can be used to define analogous versions of the

usual forcing axioms: MA++, PFA++, MM++. It is also possible to find an equiv-

alent formulation of FA++ω1
(P) similar to Theorem 4.4.

While MA++ is provably equivalent to MA, MM++ is an actual strengthen-

ing of MM. These axioms also have distinct consistency strengths: for example,

BPFA and BSPFA++ are consistent relative to a reflecting cardinal, while BMM is

consistent relative to ω-many Woodin cardinals, and MM++ is consistent rela-

tive to a supercompact cardinal.

Theorem 5.4. Let P be a poset withP (P)∈H (θ ). Then FA++ω1
(P) holds if and only

if there exists an M ≺ H (θ ), |M | = ω1, P ∈M , ω1 ⊂M and a G filter M -generic

for P such that for every Ṡ ∈ V P ∩M name for a stationary subset ofω1, valG (Ṡ) is

stationary.

We are now ready to state the concluding results of this section, generaliza-

tions of Woodin’s Absoluteness Lemma.

Theorem 5.5 (Viale). Let T be a theory extending ZFC +MM+++ there are class

many Woodin cardinals. Let φ be any Σ2 formula with a parameter p such that

T ` p ∈H (ω2). Then T `φ(p )H (ω2) iff T ` ∃P∈ SSP 1P �
�

φ(p̌ )H (ω2) ∧BMM
�

.

Theorem 5.6 (Viale). Let T be a theory extending ZFC +MM+++ there are class

many supercompact cardinals limit of supercompact cardinals. Let φ be any for-

mula with a parameter p such that T ` p ∈H (ω2). Then T `φ(p )L([ON]<ω2 ) if and

only if T ` ∃P∈ SSP 1P �
�

φ(p̌ )L([ON]<ω2 ) ∧MM++
�

.

6 Strong Reflection Principle

In the study of the consequences of MM, there are certain statements that have

been proved useful in isolating many of the characteristics of MM: among those,

the most prominents are the strong reflection principle SRP, the open coloring

axiom OCA, and the P-ideal dichotomy PID. Reference text for this section is [1,

5A]. In this section we shall state the first one, prove it under MM and examine

its consequences. We first need the following definition.

Definition 6.1. A set S ⊆ [X ]ω is projectively stationary iff it is stationary,ω1 ⊆X ,

and its restriction S ↓ω1 = {A ∩ω1 : A ∈S} contains a club on [ω1]ω.

The property of being projectively stationary will be mostly used by means

of the following lemma.

Lemma 6.2. Let S ⊆ [X ]ω be projectively stationary, and T ⊂ ω1 be stationary.

Then S ∩ (T ↑X ) is stationary.

11
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Proof. Given a club C on X , S′ =S ∩C is clearly projectively stationary. Let α be

in T ∩ (S′ ↓ω1), and A ∈S′ such that A ∩ω1 =α. Then A ∈S ∩ (T ↑X )∩C .

Definition 6.3. A stationary set S ⊆P (X ) reflects on Z iff Z ⊆ X and S ∩P (Z ) is

stationary (notice that S ↓Z is necessarily stationary while S ∩P (Z )may not). A

stationary set S ⊆P (X ) strongly reflects on Z iff S ∩ [Z ]ω contains a club on [Z ]ω.

Definition 6.4. We call strong reflection principle on X and write SRP(X ) as an

abbreviation for the sentence “every projectively stationary set on [X ]ω strongly

reflects on some Z ⊇ω1 of sizeω1”. We say strong reflection principle (and write

SRP) to mean “SRP(X ) for all X ⊇ω1”.

The reflection property can be restated in the following equivalent way.

Lemma 6.5. SRP(X ) holds iff for every projectively stationary S ⊂ [X ]ω there exists

a continuous increasing function f : ω1→S with
⋃

ran( f )⊇ω1.

Proof. First, suppose that SRP(X ) holds and let S ⊂ [X ]ω be a projectively sta-

tionary set. Let Z ⊃ω1 be such that S strongly reflects on Z . Fix an enumeration

〈zα : α<ω1〉 of Z , and let Zα =
¦

zβ : β <α
©

. The set C1 = {Zα : α<ω1} is a club

on [Z ]ω (by a similar argument to the one for ω1 club in Lemma 2.11). Since S

strongly reflects on Z , S ∩C1 = {Zα : Zα ∈S} contains a club C2. Thus, the in-

creasing enumeration of C2 is a continuous increasing function f : ω1→S with
⋃

ran( f ) =Z ⊇ω1, as required.

Conversely, suppose there exists a function f :ω1 → S as above, and define

Z =
⋃

ran( f ). Then S ∩ [Z ]ω contains ran( f ) that is a club on [Z ]ω by the same

argument as above.

Notice that the requirement ran( f ) ⊇ ω1 prevents f to be eventually con-

stant. To prove that SRP is a consequence of MM, we shall define a poset PS

that forces a projectively stationary set S to strongly reflect on some Z ⊇ω1, and

argue that this poset is s.s.p. for any S.

Definition 6.6. Given S a projectively stationary set, PS is the poset of all the

continuous increasing functions f : α+ 1→ S with α < ω1 ordered by reverse

inclusion.

Lemma 6.7. The following sets are open dense in PS for α<ω1, a ∈
⋃

S:

Dα =
�

f ∈PS : α∈ dom( f )
	

Ea =
¦

f ∈PS : a ∈
⋃

ran( f )
©

Proof. For the first part, given any f ∈PS , f : β +1→S define g ∈Dα below f to

be constant after β , i.e. g (γ) = f (β ) for every γ∈α+1\β , g (γ) = f (γ) otherwise.
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For the second part, given any f ∈ PS , f : β + 1 → S let A be any set in

the intersection of S with the club C f (β )∪{a } =
�

Y ⊆X : f (β )∪{a } ⊆ Y
	

. Then

g = f ∪ 〈β +1, A〉 ∈ Ea extends f and is in Ea .

Lemma 6.8. PS is an s.s.p. poset.

Proof. Let T ⊆ω1 be a stationary set, and Ċ be a PS-name for a club. Given any

p ∈PS , we need to find a q ≤ p , δ ∈ T such that q � δ̌ ∈ Ċ .

Let M be a countable elementary submodel of H (θ ) such that p ,S, T,Ċ ∈M

and M ∩
⋃

S ∈S, M ∩ω1 =δ ∈ T (such an M exists by Lemma 6.2 and lifting). Fix

an enumeration 〈An : n <ω〉 of the PS-dense sets in M , and define a sequence

pn such that p0 = p , pn+1 ∈ An and pn+1 ≤ pn . Then pω =
⋃

n<ωpn is a func-

tion from δ to S, since pω is below all Dα as in Lemma 6.7 for α ∈M ∩ω1 = δ.

Furthermore,
⋃

pω[δ] =M ∩
⋃

S, since pω is below all Ea as in Lemma 6.7 for

a ∈M ∩
⋃

S. Then q = pω ∪ 〈δ, M ∩
⋃

S〉 is continuous, hence q ∈ PS . Moreover,

q � δ̌ ∈ Ċ : given any generic filter G containing q , G is generic also for M hence

M [G ]� valG (Ċ ) club onω1, but M [G ]∩ω1 =δ so valG (Ċ )∩δ is unbounded and

δ ∈ valG (Ċ ). This holds for any G 3q hence q � δ̌ ∈ Ċ , δ ∈ T .

Theorem 6.9 (Todorcevic). MM⇒ SRP.

Proof. Let S be a projectively stationary set, and PS be defined as in Lemma 6.8.

For every α < ω1, Dα, Eα are open dense sets by Lemma 6.7. From Lemma 6.8

we know that PS is s.s.p., so using MM we get a filter G meeting all Dα, Eα for

α < ω1. Define g =
⋃

G : ω1 → S, then g is a continuous increasing function

with
⋃

ran(g )⊇ω1 hence by Lemma 6.5, SRP holds.

The strong reflection principle has a number of interesting consequences.

The most known is the following result on cardinal arithmetic.

Theorem 6.10. Assume SRP(κ)with κ regular cardinal. Then κω1 = κω = κ.

Proof. Let 〈Eα : α<κ〉 be a partition of {α∈ κ : cf(α) =ω} into stationary sets by

Ulam Theorem 2.16. Similarly, let 〈Dα : α<ω1〉 be a partition ofω1\{0} into sta-

tionary sets such that min Dα >α. To accomplish this, from 〈Bα : α<ω1〉 parti-

tion ofω1 into stationary sets define Aα = Bα\α+1, A0 = (ω1 \ {0})\
⋃

0<α<ω1
Aα).

Given f :ω1→ κ, define S f =
¦

X ∈ [κ]ω : ∀α X ∩ω1 ∈Dα⇔ sup(X )∈ E f (α)
©

.

Lemma 6.10.1. S f is projectively stationary for any f .

Proof of Lemma. Let A ⊆ω1 be stationary, and C g be the club corresponding to

the function g : κ<ω→ κ. We shall define an X ∈ S f ∩C g ∩ (A ↑ κ) that testifies

the projective stationarity of S f . Let h : A \ {0} → ω1 be defined by h(α) = β

13
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iff α ∈ Dβ . Since min(Dβ ) > β , h is a regressive function on the stationary set

A \ {0}. By Fodor’s Lemma 2.9 let γ be such that f −1
��

γ
	�

= A ∩Dγ is stationary.

Let 〈Mα : α< κ〉 be a continuous strictly increasing sequence of elementary

substructures of H (θ ) (for some large θ ) of size less than κ, such that g ∈ M 0,

Mα ∈Mα+1, α⊂Mα+1. Since Mα∩κ is an ordinal in club many α<κ, by restrict-

ing to a subsequence we can assume that Mα ∩κ is an ordinal for all α<κ.

Then C1 = {Mα ∩κ : α<κ} is a club subset of κ, so there is a δ ∈ E f (γ) ∩C1,

hence a structure Mξ such that Mξ ∩κ= δ ∈ E f (γ). Since δ is in E f (γ), cf(δ) =ω
and we can define an increasing sequence 〈δi : i <ω〉 converging to δ.

Let 〈Nα : α < ω1〉 be defined by letting Nα ∈ C g be the closure under g of

the set {δi : i <ω} ∪α. Since this set is a subset of Mξ and g is in Mξ (that is

closed under g ), for all α the set Nα is a subset of Mξ hence sup(Nα) =Mξ ∩κ=
δ ∈ E f (γ). Furthermore, the set C2 = {α<ω1 : Nα ∩ω1 =α} is a club: closed

by continuity of the sequence, and unbounded since given α0 we can define

αi+1 = sup(Nαi ∩ω1) so that αω = supi<ωαi ∈C2.

Thus, there exists a β in the intersection of C2 with the stationary set A ∩Dγ.

The corresponding Nβ will be such that Nβ ∩ω1 = β ∈ A ∩Dγ, and Nβ ∈ C g ,

sup(Nβ ) =δ ∈ E f (γ). So Nβ is in S f , completing the proof of Lemma 6.10.1.

Claim 6.10.2. Given f , g : ω1 → κ, if there exists h f : ω1 → S f , h g : ω1 → Sg

continuous increasing functions such that
⋃

ran(h f ) ⊇ ω1,
⋃

ran(h g ) ⊇ ω1 and

sup
�
⋃

ran(h f )
�

= sup
�
⋃

ran(h g )
�

, then f = g .

Proof of Claim. Note that by Lemma 6.5 functions h f , h g satisfying all but the

last condition exist. Let C1 =
¦

α<ω1 : h f (α)∩ω1 = h g (α)∩ω1 =α
©

be a club.

Define δαf = sup
�

h f (α)
�

, δ = supα<ω1
δαf . Given any α ∈ Dξ ∩C1 (for some

ξ), there exists a β > α with β ∈Dζ ∩C1 (for some ζ 6= ξ), so by definition of S f

we have that δαf ∈ E f (ξ), δ
β
f ∈ E f (ζ) and δαf 6=δ

β
f (since E f (ξ)∩E f (ζ) = ;). Then, the

sequence 〈δαf : α<ω1〉 is continuously increasing and not eventually constant,

so the limit δ has cofinalityω1 and the sequence 〈δαf : α<ω1〉 is club on δ.

The same argument holds for 〈δαg : α<ω1〉, δ= supα<ω1
δαg (by hypothesis)

and C2 =
n

α<ω1 : δαf =δ
α
g

o

∩C1 is a club: closed by continuity, unbounded

since given any α0 < ω1 we can define α2i+1 = min
n

β ∈C1 : δ
β
f ≥δ

α2i
g

o

, and

α2i+2 =min
n

β ∈C1 : δ
β
g ≥δ

α2i+1

f

o

, so that αω = supi<ωαi is in C2.

Suppose by contradiction that f 6= g , and let β be such that f (β ) 6= g (β ), and

γ∈C2∩Dβ . Then f (γ)∩ω1 = γ∈Dβ , f (γ)∈S f implies that δ
γ
f ∈ E f (β ). The same

argument for g implies that δ
γ
g ∈ E g (β ), but δ

γ
f = δ

γ
g and E f (β ) is disjoint from

E g (β ), a contradiction.

Proof of Theorem 6.10. Define a map π : ω1κ→ κ to be π( f ) = δ for δ least such
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thatδ= sup
�
⋃

ran(h f )
�

for some continuous increasing h f : ω1→S f . By Claim

6.10.2, π is well-defined and injective so |κ| ≥ |ω1κ| hence κω1 = κ.

Corollary 6.11. MM⇒ 2ℵ0 = 2ℵ1 =ℵ2.

Proof. Since MM implies MAω1 , we know that 2ℵ0 ≥ ℵ2. But MM also implies

SRP(ω2), then 2ℵ0 ≤ℵℵ0
2 =ℵ2. Similarly, 2ℵ1 ≤ℵℵ1

2 =ℵ2 hence 2ℵ1 =ℵ2.

Remark 6.12. The purpose of cardinal arithmetic is to determine the value of

λκ. Assuming MM we can determine the result at least for κ ≤ ℵ2 with κ reg-

ular: in this case, λκ = max(λ,ℵ2). Unfortunately, the consequences of MM in

cardinal arithmetic for regular cardinals stop there (for example, the value of

ℵℵ2
0 can be changed by forcing). However, MM implies the singular cardinal hy-

pothesis SCH. Our proof actually shows that assuming SRP λκ = λ++ 2κ for all

λ≥ κ≥ cf(λ).

The following corollary gives us an interesting example of projectively sta-

tionary set.

Corollary 6.13. Let S be a stationary set on κ restricted to cofinality ω. Then

E (S) =
�

X ∈ [κ]ω : sup(X )∈S
	

is projectively stationary.

Proof. The proof mimics the one of Lemma 6.10.1. Let A, C g , 〈Mα : α < κ〉, C ′

be defined as in the lemma above. Since C ′ is a club, we can find a δ ∈ S ∩C ′,

hence a structure Mξ such that Mξ ∩κ=δ ∈S so that cf(δ) =ω. Let 〈δi : i <ω〉,
〈Nα : α<ω1〉, C ′′ be defined as in Lemma 6.10.1. Recall that for all α the set Nα
is a subset of Mξ in C g such that sup(Nα) =Mξ∩κ=δ ∈S (i.e., Nα ∈ E (S)). Since

C ′′ is club, let β be in C ′′ ∩S: the corresponding Nβ is in E (S)∩C g ∩ (A ↑ κ).

The last consequence of SRP that we shall examine is the following Theorem

6.15 about the structure of NSω1 .

Definition 6.14. An ideal I on κ is saturated iffP (κ)/I is a κ+-c.c. poset.

Theorem 6.15. SRP(ω2)⇒NSω1 saturated.

Proof. SRP(ω2) implies that ωω1
2 = ω2 hence also |P (ω1)| = 2ω1 = ω2, so that

NSω1 is necessarily ω3-cc. Assume by contradiction that NSω1 is not saturated,

then there exists a maximal antichainA = 〈Aα : α<ω2〉 inP (ω1)/NSω1 . Define

S =
�

X ∈ [ω2]ω : ∃δ ∈X X ∩ω1 ∈ Aδ
	

. We claim that S is projectively stationary.

Given any stationary T ⊆ω1, and g : ω<ω2 →ω2 with corresponding club C g ,

we need to find an X ∈S ∩C g (to prove the stationarity) such that X ∩ω1 ∈ T (to

prove the projective stationarity). By maximality ofA , let α<ω2 be such that T

is compatible with Aα (i.e., T ∩Aα is stationary). Let 〈Mβ : β <ω1〉 be a continu-

ous strictly increasing sequence of countable elementary substructures of H (ω3)
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such thatA , T,α, g ∈M 0 and β ∈Mβ+1. Then C =
¦

β <ω1 : Mβ ∩ω1 =β
©

is a

club: closed by continuity of 〈Mβ : β < ω1〉, unbounded since for any β0 in

ω1 if βi+1 = sup(Mβi ∩ω1), then Mβω ∩ω1 = βω for βω = supi<ωβi . Let ξ be

in T ∩ Aα ∩C , then Mξ ∈ C g since g ∈ Mξ. Furthermore, Mξ ∩ω2 ∈ S since

Mξ ∩ω1 = ξ ∈ Aα ∩T (this proves also the projectivity) and α ∈Mξ. This com-

pletes the proof that S is projectively stationary.

Since S is projectively stationary onω2 and SRP(ω2) holds, there is a Z ⊇ω1

of sizeω1 such that S∩[Z ]ω is club. Letβ be inω2\Z , and define T =S∩
�

Aβ ↑Z
�

stationary set on Z . Let g : T → Z be defined by g (X ) = δ for a δ as in the

definition of S (i.e., such that X∩ω1 ∈ Aδ andδ ∈X ). The function g is regressive

on the stationary set T , then by Fodor’s Lemma 2.9 there exists a fixed γ ∈ Z

(hence γ 6= β ) such that T ′ = g −1
�

γ
�

is a stationary subset of T . Since T ′ =
¦

X ∈ [Z ]ω : γ∈X ∧ X ∩ω1 ∈ Aγ ∩Aβ
©

, T ′ ↓ ω1 is a stationary subset of Aγ ∩Aβ ,

contradicting thatA is an antichain.
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