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1 Notation

In this notes, f[A] (resp. f~1[A]) will denote the set f[A] ={f(x): x € A} (resp.
with f~1). We will use [X]" (resp. [X]=") to denote the set of all subsets of X of
size k (resp. less than k). M, will be the stage a of the cumulative hierarchy in
M, and H(x) will be the class of all sets hereditarily of cardinality < x. We shall
write ¢ to mean the interpretation of ¢ in the model M.

If M is a transitive model of ZEC with P € M, MT will be the set of P-names in
M, and M[G] will be the forcing extension of M with a filter G that is M-generic
for some P. We will use A to denote a P-name for A € M[G], A to denote the
standard P-name for A € M, and valg(A) to denote the evaluation of the P-name
A with an M-generic filter G.

We recall that given a poset P, a set D C PP is dense iff for every p € P there
existsa g € D, g < p; and a filter G is M -generic for P iff G N DN M # 0 for every
D € M dense subset of P.
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2 Generalized Stationarity

In this section we shall introduce a generalization of the notion of stationarity for
subsets of cardinals to subsets of any set. This concept has been proved useful
in many contexts, and is needed in our purpose to state the strong reflection
principle SRP. Reference texts for this section are [2], [3} Chapter 2].

Definition 2.1. Let X be an uncountable set. A set C is a club on & (X) iff there is
afunction f¢: X<® — X such that C is the set of elements of 22 (X) closed under

fc,i.e.
C={Ye®(X): fclY]<®C Y}

A set S is stationary on 2 (X) iff it intersects every club on 2 (X).

Example 2.2. The set {X} is always stationary since every club contains X. Also
2 (X)\{X} and [X]" are stationary for any k <|X| (following the proof of the well-
known downwards Lowhenheim-Skolem Theorem). Notice that every element
of a club C must contain f¢(0), a fixed element of X.

Remark 2.3. The reference to the support set X for clubs or stationary sets may
be omitted, since every set S can be club or stationary only on | JS.

There is one more property of stationary sets that is worth to mention. Given
any first-order structure M, from the set M we can define a Skolem function
fm i M<® — M (i.e., a function coding solutions for all existential first-order
formulas over M). Then the set C of all elementary submodels of M contains
a club (the one corresponding to fjs). Henceforth, every set S stationary on X
must contain an elementary submodel of any first-order structure on X.

Definition 2.4. A set S is subset modulo club of T, in symbols S C* T, iff US =
U T = X and there is a club C on X such that SNC € TN C. Similarly, a set S is
equivalent modulo clubto T, in symbols S=*T,iff SC* TA T C*S.

Definition 2.5. The club filter on X is CFx = {C c 2(X): C contains a club}.
Similarly, the non-stationary ideal on X is NSy ={A c 2(X): A not stationary}.

Remark 2.6. If | X| = |Y], then 2(X) and £(Y) are isomorphic and so are CFx
and CFy (or NSx and NSy): then we can suppose X € ON or X 2 w; if needed.

Lemma 2.7. CFy is a o -complete filter on & (X), and the stationary sets are ex-
actly the CFx-positive sets.

Proof. CFy is closed under supersets by definition. Given a family of clubs C;,
i < w, let f; be the function corresponding to the club C;. Let 7: w — w? be a
surjection, with components 71 and 72, such that o(n) < n. Define g : X<¢ — X
to be g(s)= fr,qsp(s I m2(ls])). It is easy to verify that Cg = ﬂ Ci. O

i<w
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Definition 2.8. Given a family {S; € 2(X): a € X}, the diagonal union of the
family is Vi, exSq = {z € 2(X): da € z z €S,}, and the diagonal intersection of
the family is AyexS, ={z € 2(X):Vacz z €S,4}.

Lemma 2.9 (Fodor). CFx is normal, i.e. is closed under diagonal intersection.
Equivalently, every function f: 2 (X)— X that is regressive on a CFx-positive set
is constant on a CFx -positive set.

Proof. Given a family C,, a € X of clubs, with corresponding functions f,, let
gla™s)= fa(s). Itis easy to verify that Cg = AzexCy.

Even though the second part of our thesis is provably equivalent to the first
one for any filter #, we shall opt here for a direct proof. Assume by contradiction
that f: 2(X)— X isregressive (i.e., f(Y) € Y) in a CFx-positive (i.e., stationary)
set, and f~! [a] is non-stationary for every a € X. Then, for every a € X there is a
function g, : [X]=® — X such that the club Cg, is disjoint from f~![a]. Without
loss of generality, suppose that Cg, € C, = {Y CX: a €Y}. As in the first part
of the lemma, define g(a—s) = g,(s). Then for every Z € C; and every a € Z,
Z isin Cg, hence is not in f~![a] (i.e., f(Z) # a). So f(Z) ¢ Z for any Z € Cy,
hence Cy is a club disjoint with the stationary set in which f is regressive, a
contradiction. O

Remark 2.10. The club filter is never w,-complete, unlike its well-known coun-
terpart on cardinals. Let Y € X be such that |Y| = w;, and C, be the club cor-
responding to f, : [X]=* — {a}; then C =(),oy Ca ={Z S X: Y C Z} is disjoint
from the stationary set [X]®, hence is not a club.

This generalized notion of club and stationary set is closely related to the
well-known one defined for subsets of cardinals.

Lemma 2.11. C C w; is a club in the classical sense if and only if CU{w} is a
club in the generalized sense. S C w is stationary in the classical sense if and only
ifit is stationary in the generalized sense.

Proof. Let C € w; + 1 be a club in the generalized sense. Then C is closed:
given any a = sup a; with f[a;]<® C a;, fla]<® =], flai]<® €|, @i = a. Fur-
thermore, C is unbounded: given any 3y < w;, define a sequence f; by taking
Bi+1=sup f[Bi]<. Then S, =supf; € C.

Let now C C w; be a club in the classical sense. Let C = {c,: a < w1} be an
enumeration of the club. For every a < wy, let {d fri< w{ C cq+1 be a cofinal

sequence in cq+1 (eventually constant), and let {e‘?‘ :

{1 i<wi < abean enumer-
ation of a. Define f¢ to be fc((co)?) = d%, fc(0™a") = e%, and fc(s) = 0 oth-
erwise. The sequence e forces all closure points of f¢ to be ordinals, while the

sequence d} forces the ordinal closure points of fc beingin C. O
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Lemma 2.12. Ifx is a cardinal with cofinality at least w1, C C k contains a club
in the classical sense if and only if C U {k} contains the ordinals of a club in the
generalized sense. S C «x is stationary in the classical sense if and only if it is sta-
tionary in the generalized sense.

Proof. If Cisaclub in the generalized sense, then CNx is closed and unbounded
by the same reasoning of Lemma[2.11] Let now C be a club in the classical sense,
and define f: k<% — k tobe f(s)=min{c e C:sups < c}. Then CyNx is exactly
the set of ordinals in C U {x} that are limits within C. O

Remark 2.13. If S is stationary in the generalized sense on w;, then SN w; is
stationary (since wi+1is a club by Lemma|2.11), while this is not true for k > w;.
In this case, 2(x)\ (k +1) is a stationary set: given any function f, the closure
under f of {w;} is countable, hence not an ordinal.

Lemma 2.14 (Lifting and Projection). Let X C Y be uncountable sets. IfS is sta-
tionary on P (Y), then S | X = {BNX: BeS} is stationary. If S is stationary on
P(X), thenSTY={BCY: BNXeS} isstationary.

Proof. For the first part, given any function f : [X]<“ — X, extend it in any way
to a function g : [Y]=“ — Y. Since S is stationary, there exists a B € S closed
under g, hence BN X €S | X is closed under f.

For the second part, fix an element x € X. Given any function f: [Y]~“ - Y,
replace it with a function g : [Y]™® — Y such that for any A C Y, g[A] con-
tains AU {x} and is closed under f. To achieve this, fix a surjection 77 : w — w?
(with projections 7; and 7t2) such that n2(n) < n for all n, and an enumeration
(t!': i < w) of all first-order terms with 7 variables, function symbols f; fori <n
(that represent an i-ary application of f) and a constant x. The function g can
now be defined as g(s)= t;f((llss‘l))(s I 72(|s])). Finally, let 4 : [X]=“ — X be defined
by h(s) = g(s) if g(s) € X, and h(s) = x otherwise. Since S is stationary, there
exists a B e Swith h[B] € B, but h[B] = g[B]N X (since x is always in g[B]) and
g[B] D B, so actually h[B] = g[B]NnX =B €S. Then, g[B]€STY and g[B] is
closed under f (by definition of g). O

Remark 2.15. Following the same proof, a similar result holds for clubs. If Cy is
club on Z(X), then Cr 1 Y = Cg where g = f U Idy\x. If Cy is club on 2(Y)
such that (") Cy intersects X in x, and g, h are defined as in the second part of
Theorem Crl X=Cpisclub. Ifﬂ Cyisdisjoint from X, Cy | X is not a club,
but is still true that it contains a club (namely, (C N C{x}) | X forany x € X).

Theorem 2.16 (Ulam). Letk be an infinite cardinal. Then for every stationary set
S C k', there exists a partition of S into k™ many disjoint stationary sets.
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Proof. For every 8 € [k, k™), fix a bijection 75 : ¥k — . For £ <k, a <«*, define
Ai = {/3 <xt:mg(&)= a} (notice that > a when a € ran(7tg)). These sets can
be fitin a (k x kT)-matrix, called Ulam Matrix, where two sets in the same row or
column are always disjoint. Moreover, every row is a partition of _J,,_,.+ Af; =k,
and every column is a partition of _J £ KA;E =xt\(a+1).

Let S be a stationary subset of k*. For every a < k%, define f, : S\ (a+
1)—>xby fo(f)=¢ifB e Ag. Since k*\ (a+1) is a club, every f, is regressive
on a stationary set, then by Fodor’s Lemma [2.9] there exists a £, < x such that
f L] = Ai“ NS is stationary. Define g : k* — k by g(a) =&, g is regressive
on the stationary set x* \ k, again by Fodor’s Lemma[2.9|let £* < k be such that
g '[{&*}] = T is stationary. Then, the row &* of the Ulam Matrix intersects S
in a stationary set for stationary many columns T. So S can be partitioned into

F* . £3
SNAg forae T\ {min(T)}, and S\ U e\ pmin(ry AS O

Remark 2.17. In the proof of Theorem[2.16|we actually proved something more:
the existence of a Ulam Matrix, i.e. a k¥ X kT-matrix such that every stationary
set S C k™t is compatible (i.e., has stationary intersection) with stationary many
elements of a certain row.

3 More on Stationarity

In this section we present some notable definition and results about stationary
sets that are not strictly needed for the rest of the notes. Reference text for this
section is [3, Chapter 2].

Definition 3.1. Let X be an uncountable set, ¥ < |X| be a cardinal. A set C is a
club on [X]* (resp. [X]=¥) iff there is a function fc: X<® — X such that C is the
set of elements of [X]* (resp. [X]=") closed under f¢, i.e.

C={Ye[X]": fc[Y]<*C Y}

Aset S is stationary on [X]* (respectively [X]<¥) iff it intersects every club on [X]*
(respectively [X]<¥).

This definition is justified by the observation that [X]* (resp. [X]~¥) is sta-
tionary on X for every k < |X|. As in the unrestricted case, the club sets on [X]*
(resp. [X]=") form a normal o -complete filter on [X]* (resp. [X]=*). We can also
state an analogous formulation of Lemma [2.14} with additional care in the case
[X]*: in that case, the lifting [X]" T [Y]" may not be a club on [Y]" if | X] <|Y]. For
example, such a set is not a club if there exists a Completely Jonsson cardinal
above | Y] since its complement [Y]*\ ([X]* 1 [Y]") = [X]=" 1 [Y]" is stationary.
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Lemma 3.2 (Lifting and Projection). Let X C Y be uncountable sets, k < |X| be a
cardinal. If C contains a club on [Y]* (resp. [Y]™¥), then C | [X]* =(C | X)n[X]*
(resp. C | [X]™") contains a club on [X]* (resp. [X]=*). If C contains a club on
[X]<¥, then CT[Y]™* =(C T Y)N[Y]™* contains a club on [Y]<*.

IfS is stationary on [ Y™, then S | [X]=* is stationary on [X]~". IfS is station-
aryon [X]* (resp. [X]=¥), then ST [Y]" is stationary on [Y]* (resp. with [Y]™").

We can now define a natural ordering on stationary sets, that can be used to
define a poset of notable relevance in set theory.

Definition 3.3. Let S, T be stationary sets. We write S < T iff ( JS 2 |JT and

sc11(USs).

Definition 3.4. The full stationary tower up to a is the poset P, of all the sta-
tionary sets S € |, ordered by S < T as defined above. The stationary tower
restricted to size x up to « is the poset Q¥ = {S el:SC [Us] K Stationary}
ordered by the same relation.

4 Forcing Axioms

Forcing is well-known as a versatile tool for proving consistency results. The
purpose of forcing axioms is to turn it into a powerful tool for proving theorems:
this intuition is partly justified by the following Cohen’s Absoluteness Lemmal4.2]

In the following notes we will use the notation M <,, N tomean M <x,, N (or
equivalently M <y, N, M <a,,, N). Reference text for this section is [I, Chapter
3]. We first recall the following lemma.

Lemma 4.1 (Levi’s Absoluteness). Let k > w be a cardinal. Then H(k) <1 V.

Proof. Given any X, formula ¢ = 3x Y (x, p1,..., pn) with parameters py,...,pn
in H(x), if V E ¢ also H(k) F =¢ since H(x) € V and v is Ay hence abso-
lute for transitive models. Suppose now that V E ¢, so there exists a g such
that V F (g, p1,...,pn). Let A be large enough so that g € H(A). By down-
ward Léwenheim Skolem Theorem there exists an M < H(A) such that g € M,
trcl(p;) € M for all i < n, and |[M| = w U |Ui<n trcl(pl-)| < k. Let N be the
Mostowski Collapse of M, with 7: M — N corresponding isomorphism. Since
H(A)EY(q,p1,-.-,pn), the same does M and N E Y (7(q), p1,--., prn)- Since N is
transitive of cardinality less than x, N € H(x) so n(q) € H(x) and H(xk)F ¢. O

Lemma 4.2 (Cohen’s Absoluteness). Let T be any theory extending ZFC, and ¢
be any ¥, formula with a parameter p such that THp C w. Then T+ ¢(p) ifand
onlyif THIAP (1p Ik p(p)).
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Proof. The left to right implication is trivial (choosing a poset like P = 2). For
the reverse implication, suppose that VEJP (1p I ¢(p)), let P be any such poset
and 6 be such that p,P € \j) and j satisfies a finite fragment of T large enough
to prove basic ZFC and 1p I+ ¢(p). Let M, N be defined as in the previous lemma
(considering p as the parameter, P as the variable), then N F (]lQ I+ ¢(p)) where
@ = n(P). Let G be N-generic for Q, so that N[G] F ¢(p). Since ¢ is ¥;, ¢ is
upward absolute for transitive models, hence V E ¢(p). The thesis follows by
completeness of first-order logic. O

Cohen’s Absoluteness Lemma can be generalized to the case p C « for any
cardinal k. However, to achieve that we need the following definition.

Definition 4.3. We write FA,(P) as an abbreviation for the sentence “for every
9 c 2 (P) family of open dense sets of P with |2| < k, there exists a filter G C P
such that GND # W forall D€ 2.

In an informal sense, assuming the forcing axiom for a broad class of posets
suggests that a number of different forcing has already been done in our model
of set theory. This intuitive insight is reflected into the following equivalence.

Theorem 4.4. Let P be a poset and 0 > 2! be a cardinal. Then FA.(P) holds iff
there existsan M < H(0), |M|=x,Pe M,k C M and a G filter M -generic for P.

Proof. First, suppose that FA,(P) holds and let M < H(0) be such that P € M,
K C M, |[M| = k. There are at most k¥ dense subsets of P in M, hence by FA.(PP)
there is a filter G meeting all those sets. However, G might not be M-generic
since for some D € M, the intersection G N D might be disjoint from M. Define:

N={xeH(0): IreMnV’3geG (qlrt=%)}

Clearly, N cointains M (hence contains k), and the cardinality | N| < |M N VP{ =K
since every T can be evaluated in an unique way by the elements of the filter G.
To prove that N < H(0), let 3x¢(x,a,,...,a,) be any formula with parameters
ai,...,an, € N which holdsin V. Let 7; € M?, g; € G be such that g; I T; = d; for
all i < n. Define Qy = {peP: plkaxeV ¢(x,11,...,T,)}, this set is definable
in M hence Qy € M. Furthermore, Q4 N G is not empty since it contains any
g € G below all g;. By fullness in H(8), we have that:

H(O)FVpeQy plFIxeV ¢(x,71,...,Tn)=>
H(O)F3ITtVpeQy plFT€VAQP(T,T1,...,Th) =
MFEATVpeQy plkT1€VAP(T,T1,...,Th)

Fix such a 7, by elementarity the last formula holds also in H(8) and in partic-
ular for g € Q4. Since the set {p €P: 3x € H(0) p IF ¥ =7} is an open dense set
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definable in M, there is a g’ € G below g belonging to this dense set, and an
a € H(0) such that g’ IF T = d. Then ¢q’, 7 testify that a € N hence the original
formuladx¢(x,a,,...,a,) holdsin N.

Finally, we need to check that G is N-generic for P. Let D € N be a dense
subset of P, and D € M be such that 1p I D is dense A D € V and for some g € G,
qF D= D. Since 1p IF DN G #0, by fullness lemma there exists a T € H(6) such
that 1p IF T € DN G, and by elementarity there is such a T also in M. Let ¢’ € G
below g be deciding the value of 7, g’ I- T = p. Since g’ forces that p € G, it must
be g’ < p so that p € G hence p € GNDNN is not empty.

For the converse implication, let M, G be as in the hypothesis of the theo-
rem, and fix a collection ¥ = (D,, : a < k) of dense subsets of P. Define:

S= {N—< H(|P|*): k€ N A |[N|=x A 3G filter N-generic }

Note that S is definable in M then S € M. Furthermore, since P € M so is H(|P|*")
hence M N H(|P|*) < H(|P|*) and M N H(|P|") is in S. Given any Cr € M club on
H(|P"), since f € M we have that M N H(|P|*) € Cr. Then VESNCy #0 and
by elementarity the same holds for M. Thus, S is stationary in M and again by
elementarity S is stationary also in V.

Let N € Sbe such that 2 € N. Since x € N and % has size x, D, € N for every
a < k. Thus, the N-generic filter G will meet all dense sets in 2, verifying FA,(PP)
for this collection. U

Corollary 4.5. LetP be a poset with 2 (P) € H(0). Then FA.(P) holds if and only
if there are stationary many M < H(0) such that|M|=x,Pe M,k C M andaG
filter M -generic for P.

Proof. The forward implication has already been proved in the first part of the
proof of the previous Theorem The converse implication directly follows
from the same theorem. O

Lemma 4.6 (Generalized Cohen’s Absoluteness). Let T be any theory extending
ZFC, k be a cardinal, ¢ be a, formula with a parameter p such that T+ p C x.
Then TH ¢(p) ifand only if THIP (1p Ik ¢ (p) A FAL(P)).

Proof. The forward implication is trivial; the converse implication follows the
proof of Lemmaf4.2] Given p, P such that 1p I ¢(p) and FA,(P) holds, by Corol-
larylet M < H(60) be such that |[M| =k, P € M, k C M and there exists a G
filter M-generic for P. Since there are stationary many such M, we can assume
that p € M. Let 7 : M — N be the transitive collapse map of M, then H = [G] is
N-generic for Q = #[lP] and p € k¥ € M is not moved by 7 so that N[H] F ¢(p).
Since ¢ is X1, ¢ is upward absolute for transitive models, hence V E ¢(p). O
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It is now clear how the forcing axiom makes forcing a strong tool for proving
theorems. For k = w;, the forcing axiom FA,,, (P) is widely studied for many
different poset P. In particular, for the classes of posets:

c.c.c. C proper C semiproper C locally s.s.p.

the forcing axiom is called respectively MA (Martin’s Axiom), PFA (Proper Forc-
ing Axiom), SPFA (Semiproper Forcing Axiom), MM (Martin's Maximum). In this
notes we will be mostly interested in the latter.

Definition 4.7. A poset PP is c.c.c. iff every antichain in IP is countable.

Definition 4.8. A poset P is proper iff for every 6 regular cardinal such that
2 (P)e H(0), countable elementary substructure M < H(8) and p € PNM, there
is a condition g < p that is M-generic (i.e., for every D € M dense subset of P
and r < ¢, r is compatible with an element of DN M).

Equivalently, a poset P is proper iff it preserves stationary sets on [A]“ for
any A uncountable cardinal.

Definition 4.9. A poset P is semiproper iff for every 0 regular cardinal such that
2 (P)e H(0), countable elementary substructure M < H(6) and p € PNM, there
is a condition g < p that is M-semigeneric (i.e., for every &¢ € M name for a
countable ordinal, g IF3f € M f = @).

Under SPFA every s.s.p. poset is semiproper and viceversa, hence SPFA is
equivalent to MM.

Definition 4.10. A poset P is stationary set preserving (in short, s.s.p.) iff for
every stationary set S C w1, 1plF Vx € 1 (x club = x NS#0).

Definition 4.11. A poset P is locally s.s.p. iff there existsa p e Psuch thatP [ p =
{geP: q<p}isans.s.p. poset.

The class of locally s.s.p. posets play a special role in the development of
forcing axioms: MM is the strongest possible form of forcing axiom for w;. This
is the case as shown by the following theorem.

Theorem 4.12 (Shelah). IfPP is not locally s.s.p. then FA,,,(P) is false.

Proof. Given PP that is not locally s.s.p. let S be a stationary set on w; and C € VF
be such that 1p I C € 1 club, 1p IF SN C =0. Define:

D, = {peP:placCvplra¢cl
Eg = {peP:plrpgC=>Ir<fplCnpcy}
E = {pEIP’:EIa>7'pII-&eC}

9
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Those sets are dense by the forcing theorem, since C is forced to be a club and
the above formulas are true for clubs (hence forced by a dense set of conditions).
Suppose by contradiction that FA,,, (P) holds, and let G be a filter that intersects
all the Dy, Eg, F,. Then the set C = {a <wi;:dpeGpltac C} isaclubin V, so
there is a f € SN C. By definition of C, there exists a condition g € G such that
glFBeC,and BeS=qlF B eSNC #0, a contradiction. O

5 More on Forcing Axioms

In this section we will state a few interesting results without proof, not directly
involved in the development of MM and SRP. Reference texts for this section are
[4], [5]. Cohen’s Absoluteness Lemma [4.2]is a valuable result, but is limiting in
two aspects. First, it involves only ¥ ; formulas, and second, forces the param-
eter to be a subset of w (or of larger cardinals, assuming stronger and stronger
versions of forcing axioms). The following Woodin’s Absoluteness Lemma, with
an additional assumption on large cardinals, enhances Cohen’s result to any for-
mula relativized to L(RR).

Theorem 5.1 (Woodin’s Absoluteness). Let T be a theory extending ZFC + there
are class many Woodin cardinals. Let ¢ be any formula with a parameter p such
that THp Cw. Then T+ ¢p(p)"®) ifand only if T+3P (1p IF ¢(p)LR),

We would expect to generalize Woodin’s result from L(R) = L(#(w)) to some
bigger class by means of forcing axioms, as we did with Cohen’s. This happens
to be possible, at least for L([ON]=“?), by a result of Viale. To state it we need to
introduce some common variations of the forcing axiom.

Definition 5.2. We write BFA,(93) as an abbreviation for the sentence “for every
9 < [ 8] family of predense sets of % with |Z| < k, there exists a filter G C %
such that GND # @ for all D € 9”. If P is a poset, we write BFA,(P) to mean
BFA, (%) for % the regular open algebra of IP.

The bounded forcing axiom BFA,(P) can be used to define weaker versions
of the usual forcing axioms: BMA, BPFA, BMM. Furthermore, BFA,(PP) has an in-
teresting equivalent formulation in terms of elementary substructures: namely,
BFA,(P) holds if and only if H(x*) <1 V.

Definition 5.3. We write FA::F(IP) as an abbreviation for the sentence “for every
9 C 2 (P) family of open dense sets of P with |2| < w, there exists a filter G C P
such that G N D #0 for all D € 2 and valg(S) is stationary for every S € V¥ such
that 1p IS C w stationary”.

10
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The forcing axiom FAjI(]P’) can be used to define analogous versions of the
usual forcing axioms: MA™™, PFAT*, MM**. It is also possible to find an equiv-
alent formulation of FA;T(IP’) similar to Theorem

While MA*™ is provably equivalent to MA, MM™™ is an actual strengthen-
ing of MM. These axioms also have distinct consistency strengths: for example,
BPFA and BSPFA™ are consistent relative to a reflecting cardinal, while BMM is
consistent relative to w-many Woodin cardinals, and MM™ is consistent rela-
tive to a supercompact cardinal.

Theorem 5.4. LetP be a poset with 2 (P) € H(0). Then FAZT(]P’) holds if and only
if there existsan M < H(0), |M| = w1, Pe M, w1 C M and a G filter M -generic
for P such that for every S € VE 0 M name for a stationary subset of w1, valg(S) is
stationary.

We are now ready to state the concluding results of this section, generaliza-
tions of Woodin’s Absoluteness Lemma.

Theorem 5.5 (Viale). Let T be a theory extending ZFC + MM™™" + there are class
many Woodin cardinals. Let ¢ be any >, formula with a parameter p such that
T+ p € H(ws). Then T+ ¢(p) (@2 iff T+3IP € SSP 1p I (¢ (p) () ABMM).

Theorem 5.6 (Viale). Let T be a theory extending ZFC +MM™™ + there are class
many supercompact cardinals limit of supercompact cardinals. Let ¢ be any for-
mula with a parameter p such that T+ p € H(ws). Then T+ ¢(p)XON™?) if and
only if T3P € SSP 1plk (¢(p)HON™) AMM*).

6 Strong Reflection Principle

In the study of the consequences of MM, there are certain statements that have
been proved useful in isolating many of the characteristics of MM: among those,
the most prominents are the strong reflection principle SRP, the open coloring
axiom OCA, and the P-ideal dichotomy PID. Reference text for this section is [T},
5A]. In this section we shall state the first one, prove it under MM and examine
its consequences. We first need the following definition.

Definition 6.1. A setS C [X]“ is projectively stationary iff it is stationary, w; C X,
and its restriction S | w1 ={ANw;: A€ S} contains a club on [w1]%.

The property of being projectively stationary will be mostly used by means
of the following lemma.

Lemma 6.2. Let S C [X]“ be projectively stationary, and T C w; be stationary.
Then SN (T 1 X) is stationary.

11
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Proof. Given a club C on X, 8’ =SnN C is clearly projectively stationary. Let a be
inTN(S | w;),and A€ S suchthat ANw;=a. ThenAeSN(TTX)NC. O

Definition 6.3. A stationary set S € Z(X) reflectson Z iff Z C X and SN2 (Z) is
stationary (notice that S | Z is necessarily stationary while SN #?(Z) may not). A
stationary set S € 2 (X) strongly reflects on Z iff SN[Z]“ contains a club on [Z]®.

Definition 6.4. We call strong reflection principle on X and write SRP(X) as an
abbreviation for the sentence “every projectively stationary set on [X]“ strongly
reflects on some Z 2 w; of size w,”. We say strong reflection principle (and write
SRP) to mean “SRP(X) for all X 2 w,".

The reflection property can be restated in the following equivalent way.

Lemma 6.5. SRP(X) holds iff for every projectively stationary S C [X]® there exists
a continuous increasing function f : w; — S with| Jran(f) 2 w;.

Proof. First, suppose that SRP(X) holds and let S C [X]® be a projectively sta-
tionary set. Let Z D w; be such that S strongly reflects on Z. Fix an enumeration
(zg: a<wy)of Z,andlet Z, = {Zﬁ 1B < a}. Theset C1 ={Z,: a < wi}isaclub
on [Z]“ (by a similar argument to the one for w; club in Lemma. Since S
strongly reflects on Z, SN Cy, = {Z,: Z, € S} contains a club C,. Thus, the in-
creasing enumeration of C; is a continuous increasing function f: w; — S with
(Jran(f)=Z 2 w;, as required.

Conversely, suppose there exists a function f : w; — S as above, and define
Z =Jran(f). Then SN[Z]® contains ran(f) that is a club on [Z]® by the same
argument as above. O

Notice that the requirement ran(f) 2 w,; prevents f to be eventually con-
stant. To prove that SRP is a consequence of MM, we shall define a poset Ps
that forces a projectively stationary set S to strongly reflect on some Z 2 w;, and
argue that this poset is s.s.p. for any S.

Definition 6.6. Given S a projectively stationary set, Ps is the poset of all the
continuous increasing functions f: a+1 — S with a@ < w; ordered by reverse
inclusion.

Lemma 6.7. The following sets are open dense in Ps for a < wi, a €| JS:

Dq
Eq

{fePs: aedom(f)}
{fe]P’s: anran(f)}

Proof. For the first part, given any f €Ps, f: f+1— S define g € D, below f to
be constant after §, i.e. g(y) = f(B) foreveryy € a+1\ B, g(r) = f(y) otherwise.

12
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For the second part, given any f € Ps, f: B+ 1 — S let A be any set in
the intersection of S with the club Crgya; = {Y S X: f(B)ufa} S Y} Then
g=fU(B+1,A)€ E, extends f and isin E,. O

Lemma 6.8. Ps is an s.s.p. poset.

Proof. Let T C w; be a stationary set, and C be a Ps-name for a club. Given any
p ePs,weneedto findag < p, 6 € T such thatgl-é € C.

Let M be a countable elementary submodel of H(0) such that p,S, T,C € M
and M OUS €S, MNw; =0 €T (such an M exists by Lemma and lifting). Fix
an enumeration (A, : n < w) of the Ps-dense sets in M, and define a sequence
pn such that po = p, pn+1 € A, and pp+1 < pu. Then p,, = Un<w pn is a func-
tion from 6 to S, since p,, is below all D, as in Lemma forae MNw;=29.
Furthermore, | Jp,[6] = M NS, since p,, is below all E, as in Lemma [6.7| for
a€MnlJS. Then g = p,U(6, M N[ JS) is continuous, hence g € Ps. Moreover,
g6 € C: given any generic filter G containing g, G is generic also for M hence
MI[G]Evalg(C) club on w;, but M[G]Nw; =6 so valg(C)N§ is unbounded and
& evalg(C). This holds forany G> g hencegl-6€C, 6 € T. O

Theorem 6.9 (Todorcevic). MM = SRP.

Proof. Let S be a projectively stationary set, and Ps be defined as in Lemmal6.8]
For every a < w1, Dg, E, are open dense sets by Lemma|6.7] From Lemma 6.8
we know that Ps is s.s.p., so using MM we get a filter G meeting all D, E, for
@ < w;. Define g = JG: w; — S, then g is a continuous increasing function
with  Jran(g) 2 w; hence by Lemma SRP holds. O

The strong reflection principle has a number of interesting consequences.
The most known is the following result on cardinal arithmetic.

Theorem 6.10. Assume SRP(x) with k regular cardinal. Then k®1 =k® =K.

Proof. Let(E,: a <k)beapartition of {a €k : cf(a) = w} into stationary sets by
Ulam Theorem Similarly, let (D, : @ < w;) be a partition of w; \ {0} into sta-
tionary sets such that min D, > a. To accomplish this, from (B, : @ < w;) parti-
tion of w; into stationary sets define A, = B\ a+1, Ag =(w1 \ {0})\U0<a<w1 Ag).
Given f: w; —k, define Sy = {XE [k]“: Va XNw; €D, < sup(X) e Ef(a)}.

Lemma 6.10.1. Sy is projectively stationary for any f.

Proof of Lemma. Let A C w; be stationary, and Cg be the club corresponding to
the function g : k< — x. We shall define an X € Sy N C; N(A T k) that testifies
the projective stationarity of Sy. Let h: A\ {0} — w; be defined by h(a) = 8

13
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iff @ € Dg. Since min(Dg) > f3, h is a regressive function on the stationary set
A\ {0}. By Fodor’s Lemma[2.9|let y be such that f~! [{y}] = AN Dy is stationary.

Let (M, : a <) be a continuous strictly increasing sequence of elementary
substructures of H(8) (for some large 8) of size less than x, such that g € M,
Mg e Mgy, a C Mgti. Since Mg Nk is an ordinal in club many a < x, by restrict-
ing to a subsequence we can assume that M, Nk is an ordinal for all a < k.

Then C; = {MyNk: a <k} is a club subset of x, so there isa 6 € E¢;)N Cy,
hence a structure M such that Mz Nk =6 € Ef(). Since 6 is in Ey(y), cf(6) = w
and we can define an increasing sequence (0; : i < w) convergingto 6.

Let (Ny : a < w)) be defined by letting N, € C¢ be the closure under g of
the set {0;: i <w}Ua. Since this set is a subset of M and g is in M (that is
closed under g), for all a the set N, is a subset of M: hence sup(Ny)=M: Nk =
0 € Efq). Furthermore, the set C; = {a¢ <w;: NyNwi=aj} is a club: closed
by continuity of the sequence, and unbounded since given ay we can define
ai+1 =sup(Ng; Nws) so that a, =sup;,, a; € Co.

Thus, there exists a § in the intersection of C, with the stationary set AN D, .
The corresponding Ng will be such that NgNw; = € An Dy, and Ng € Cg,
sup(Ng) =6 € Ef(y). So Np is in Sy, completing the proof of Lemma[6.10.1, O

Claim 6.10.2. Given f,g : w1 — K, if there exists hy : wy — Sy, hg : w1 — S¢
continuous increasing functions such thatUran(h 2w, Uran(h g) 2 w1 and
sup (U ran(hf)) =sup (Uran(hg)), then f=g.

Proof of Claim. Note that by Lemma functions hy, hg satistying all but the
last condition exist. Let C; = {a <wy: hf(a)Nwy =hgla)Nw; = a} be a club.

Define 6% = sup (hf(a)), 0 =SUpy<,, 0%. Givenany a € D: N C, (for some
&), there exists a § > a with 8 € D; N C; (for some ¢ # &), so by definition of S¢
we have that 5? € Ef(o), 5? € Efand 5? #* 5? (since EfsyNE ;) =0). Then, the
sequence (5;‘5 . a < w)) is continuously increasing and not eventually constant,
so the limit 6 has cofinality w; and the sequence (0 ? ta<wi)isclubono.

The same argument holds for (0 g a< w1), 6 =SUP,,, O % (by hypothesis)

and C, = {a <wi: 5? = 5?} N C, is a club: closed by continuity, unbounded
since given any @y < w; we can define az;4+; = min{/a’ eC: 5? > 5;”}, and
Uojyo = min{/a’ eC: 6§ > 6?2’“}, so that a,, =sup,_,, @; isin C.

Suppose by contradiction that f # g, and let  be such that f(8) # g(8), and
y € CanDg. Then f(y)Nwi =y € Dg, f(y) €Sy implies that 5; € Ef(p). The same

argument for g implies that 52 € Eg(p), but 5; = 52 and Ef(p) is disjoint from
Eg(p), a contradiction. O

Proof of Theorem[6.10, Define amap 7: 1k — « to be 7t(f) = 6 for § least such
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that o =sup (U ran(h f)) for some continuous increasing i : w; — Sy. By Claim
7 is well-defined and injective so || > |“1x| hence k“! = k. O

Corollary 6.11. MM = 2% =281 =X,

Proof. Since MM implies MA,,,, we know that 2% > X,. But MM also implies
SRP(w3), then 2% < Ng" =X,. Similarly, 2% < Ngl =N, hence 2% =X,. O

Remark 6.12. The purpose of cardinal arithmetic is to determine the value of
A¥. Assuming MM we can determine the result at least for k < X, with x reg-
ular: in this case, A¥ = max(A,¥X,). Unfortunately, the consequences of MM in
cardinal arithmetic for regular cardinals stop there (for example, the value of
Ngz can be changed by forcing). However, MM implies the singular cardinal hy-
pothesis SCH. Our proof actually shows that assuming SRP A¥ = At + 2% for all
A >k >cf(A).

The following corollary gives us an interesting example of projectively sta-
tionary set.

Corollary 6.13. Let S be a stationary set on k restricted to cofinality w. Then
E(S)={X [x]“: sup(X) € S} is projectively stationary.

Proof. The proof mimics the one of Lemma Let A, Cq, (My: a<k), C’/
be defined as in the lemma above. Since C’ is a club, we can finda 6 € SN C/,
hence a structure M¢ such that M Nk =6 € Sso thatcf(6)=w. Let (6;: i < w),
(Ng: @< w1), C” be defined as in Lemmal6.10.1] Recall that for all & the set N,
is a subset of Mz in Cy such that sup(N,)=M:Nk =0 €S (i.e., N, € E(S)). Since
C” is club, let 8 be in C”NS: the corresponding Ng isin E(S)NCgN(ATk). O

The last consequence of SRP that we shall examine is the following Theorem
about the structure of NS, .

Definition 6.14. An ideal I on x is saturated iff 2 (x)/I is a k*-c.c. poset.
Theorem 6.15. SRP(wz) = NS, saturated.

Proof. SRP(w>) implies that a);” = wy hence also |2 (w1)| = 291 = w,, so that
NS, is necessarily w3-cc. Assume by contradiction that NS,,, is not saturated,
then there exists a maximal antichain .o/ = (A4 : @ < w2) in 2 (w1)/ NSy, . Define
S={Xe[w]?: 36 € X XNw; € As}. We claim that S is projectively stationary.
Given any stationary T C w, and g : w5 — w, with corresponding club Cyg,
we need to find an X € SN Cy (to prove the stationarity) such that XNw; € T (to
prove the projective stationarity). By maximality of ./, let @ < w» be such that T
is compatible with A, (i.e., TN A, is stationary). Let (Mg : 8 < w1) be a continu-
ous strictly increasing sequence of countable elementary substructures of H(w3;)
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such that .¢/, T,a, g € My and 8 € Mg;. Then C = {/3 <wi:MpnNw; =/3} isa
club: closed by continuity of (Mg : 8 < w1), unbounded since for any f in
wy if Biy1 = sup(Mpg; N wy), then Mg, Nwy = P, for B, = sup;_, Bi. Let & be
in TNA,;NC, then M; € Cq since g € M. Furthermore, M: N w; € S since
M:Nw, =& €A,NT (this proves also the projectivity) and a € M. This com-
pletes the proof that S is projectively stationary.

Since S is projectively stationary on w, and SRP(w>) holds, thereis a Z 2 w;
of size w; such that SN[Z]® is club. Let B be in w,\Z, and define T =8N (Aﬁ TZ)
stationary set on Z. Let g: T — Z be defined by g(X) = 6 for a 6 as in the
definition of S (i.e., such that XNw; € As and 6 € X). The function g is regressive
on the stationary set T, then by Fodor’s Lemma there exists a fixed y € Z
(hence y # B) such that T/ = g~! [y] is a stationary subset of T. Since T’ =
{Xe [Z]°:yeX AN XNwi €A, ﬁAﬂ}, T’ | w is a stationary subset of A, NAg,
contradicting that ./ is an antichain. O
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