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ABSTRACT

This thesis is divided in three parts. In the first one we follow the exposition of

forcing via boolean ultrapowers; in the second one we discuss the classification

of forcing extensions by means of first-order properties; in the last one we at-

tempt to define an inner model with the κ-approximation property (Definition

2.2), that could be related to the topic of inner models for large cardinals.

In the first chapter we start with some general algebraic notions (Section

1.1, 1.2 and 1.3), introducing the concepts of κ-complete boolean algebra (Defi-

nition 1.33) and free boolean algebra (Definition 1.35), together with some basic

results (Theorems 1.37 and 1.41). A brief exposition of forcing with boolean-

valued models follows (Sections from 1.4 to 1.7), together with some more recent

results (Section 1.6, Theorem 1.57) about boolean ultrapowers. In the last part

of the chapter (Section 1.8), we briefly relate what we presented to the classical

exposition of forcing with posets.

In the second chapter, after an introduction (Section 2.1) to some first-order

properties that an inner model M may have with respect to V , we use these

properties to prove the following three theorems:

Theorem (Laver, 2.16). If V is a forcing extension of M , then M is a definable

class in V with parameters in M .

Theorem (Bukovsky, 2.31). Let M ⊂ V be models of ZFC. Then V is a generic

extension of M by a κ-cc forcing iff M globally κ-covers V (Definition 2.5).

Theorem (Friedman, 2.34). Let M ⊂ V be models of ZFC. Then V is a generic

extension of M by a forcing of size at most κ iff M globally κ+-covers and κ-

decomposes (Definition 2.3) V .

In the last part of the chapter (Section 2.5), we use these results to obtain a

first-order formulation of the Ground Axiom, in a similar way to the one found

in [6, Reitz].
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In the last chapter we first discuss the properties of sets κ-approximated in

M (Section 3.1), proving that the class AM of such sets is closed for all Gödel

operations except for the couple, and thus satisfies all axioms of ZFC except for

the existence of couples, the power set axiom, and a weakened version of com-

prehension (i.e., comprehension for formulas of the kind φM , Theorem 3.6). We

shall then use these results to prove that, assumingP M
κ (λ) stationary inP V

κ (λ)
for some λ, the class:

M
κ
=
⋃
¦

ΠR [X ] : R ∈AM well-founded relation R ⊂X 2
©

withΠR transitive collapse of R in V , is closed for all Gödel operations (Theorem

3.13). We have found a difficulty in the fact that the class M
κ

might not be almost

universal, thus not a model of ZFC. With the additional assumption that M
κ

is

almost universal, we obtain (Theorem 3.18) that M
κ

is the minimal transitive

class M ⊂V such that:

1. M ⊂M ,

2. M � ZFC,

3. M κ-approximates V .

We assume that the reader knows the basic results about first-order logic and set

theory. Reference texts for these topics are [5, Chapters 1-4], [1, Chapters 1, 3].
To read Chapter 2 one need to know the topics exposed in Chapter 1. To read

Chapter 3 it is enough to read Section 2.1.
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INTRODUZIONE

Questa tesi è divisa in tre parti: nella prima parte si seguirà una presentazio-

ne del forcing tramite modelli a valori booleani e delle ultrapotenze booleane,

nella seconda si discuterà della classificazione di estensioni di forcing mediante

proprietà del primo ordine, mentre nell’ultima parte si cercherà di costruire un

modello interno con la proprietà di κ-approssimazione (Definizione 2.2), mo-

dello che potrebbe essere utile nell’ambito della ricerca di modelli interni per

grandi cardinali.

Nel primo capitolo, dopo aver introdotto alcune nozioni algebriche generali

(Sezione 1.1, 1.2 e 1.3), tra cui i concetti di algebra di boole κ-completa (Defini-

zione 1.33) e di algebra di boole libera (Definizione 1.35) e alcuni risultati di base

(esistenza e unicità, Teoremi 1.37 e 1.41), si passerà a una breve esposizione del

forcing tramite i modelli a valori booleani (Sezioni da 1.4 a 1.7). Durante questa

trattazione si presenteranno alcuni risultati più recenti (Sezione 1.6 e Teorema

1.57) sulle ultrapotenze booleane non generiche. Nell’ultima parte del capitolo

(Sezione 1.8), si farà un accenno alla presentazione classica del forcing tramite

posets.

Nel secondo capitolo, dopo aver introdotto (Sezione 2.1) alcune proprietà

del primo ordine che un modello interno M può avere nei confronti del modello

esterno V , le si utilizzeranno per dimostrare i seguenti tre risultati:

Teorema (Laver, 2.16). Se V è una estensione di forcing di M , allora M è una

classe definibile in V con parametri in M .

Teorema (Bukovsky, 2.31). Dati M ⊂ V modelli di ZFC, V è una estensione ge-

nerica di M mediante un forcing κ-cc se e solo se M κ-ricopre globalmente V

(Definizione 2.5).

Teorema (Friedman, 2.34). Dati M ⊂V modelli di ZFC, V è una estensione gene-

rica di M mediante un forcing di taglia massimo κ se e solo se M κ-decompone

(Definizione 2.3) e κ+-ricopre globalmente V .
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L’ultimo risultato (Friedman) è una recente generalizzazione del precedente

teorema di Bukovsky. Il primo è un risultato recente, cha il merito di aver dato

avvio allo studio dei ground model e alla cosiddetta set-theoretic geology: nell’ul-

tima parte (Sezione 2.5) si tratterà brevemente l’argomento dei ground model,

esponendo una definizione simile a quella proposta originalmente in [6, Reitz].
Nell’ultimo capitolo si studieranno dapprima le proprietà degli insiemi

κ-approssimati in M (Sezione 3.1), dimostrando che la classeAM di questi in-

siemi è chiusa per tutte le operazioni di Gödel eccetto la coppia, e che soddisfa

quindi tutti gli assiomi di ZFC eccetto per coppia, insieme potenza, e una versione

più debole dell’assioma di comprensione (i.e., comprensione per formule relati-

vizzate in M , Teorema 3.6). Successivamente si utilizzeranno questi risultati per

dimostrare che, assumendo cheP M
κ (λ) sia stazionario inP V

κ (λ) per qualche λ,

la classe:

M
κ
=
⋃
¦

ΠR [X ] : R ∈AM relazione ben fondata R ⊂X 2
©

,

dove ΠR è la mappa di collasso transitivo di R in V , è chiusa per operazioni di

Gödel (Teorema 3.13). È stata poi individuata una difficoltà nel fatto che la clas-

se M
κ

potrebbe non essere quasi universale, e quindi non essere un modello di

ZFC. Con l’assunzione addizionale che M
κ

sia quasi universale, si otterrà tutta-

via (Teorema 3.18) che M
κ

è caratterizzabile come la minima classe transitiva

M ⊂V tale che:

1. M ⊂M ,

2. M � ZFC,

3. M κ-approssima V .

Lo scopo di questa tesi è duplice. Per quanto riguarda la prima parte, lo sco-

po è esporre in maniera più chiara e completa alcuni risultati molto interessanti

ma ancora poco noti sulla definibilità al primo ordine di proprietà di estensioni

di forcing. Per quanto riguarda la seconda parte, lo scopo è studiare nuovi modi

per costruire modelli interni che potrebbero essere utili nell’ambito della teoria

dei grandi cardinali.

Assumiamo che il lettore conosca le basi della logica del primo ordine e della

teoria degli insiemi, testi di riferimento in cui si può trovare questo materiale

sono rispettivamente [5, Capitoli 1-4] e [1, Capitoli 1 e 3].
Per leggere il Capitolo 2 è necessario conoscere gli argomenti trattati nel Ca-

pitolo 1, mentre per leggere il Capitolo 3 è sufficiente la sola Sezione 2.1, senza i

teoremi sulle estensioni di forcing.
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NOTATIONS AND CONVENTIONS

α,β , . . . and i , j , . . . will be used for ordinals;

κ,λ,θ will be used for cardinals;

A, B , . . . will be used for sets;

M , N , V will be used for sets or classes that are models of ZFC;

p ,q , . . . will be used for conditions in P;

Q , R , . . . will be used for sets of conditions in P;

φ,ψ, . . . will be used for formulas;

Φ,Ψ will be used for sets of formulas;

⇒,⇔ will be used as logical relations in the metatheory;

→,↔ will be used as operations in boolean algebras (or formulas);

4 is the symmetrical difference x4y =
�

x ∧¬y
�

∨
�

¬x ∧ y
�

f −1(A) is the set of preimages f −1(A) = {x : f (x ) = A};
f [A], f −1[A] is the set of images f [A] = { f (x ) : x ∈ A} (resp. with f −1);

ran(A) is the range of a function;

dom(A) is the domain of a function or a structure (the dom operator will be

implied when clear from the context );

Pκ(X ) is the set of al subsets of X of size <κ;

int, cl are the closure and interior topological operations;

pred(x , R) are the predecessors of x in the transitive closure of the

order relation R ;
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Mα is the stage α of the cumulative hierarchy in M ;

H (κ) is the class of all sets hereditarily of cardinality <κ;

φM is the interpretation ofφ in the model M ;

Ȧ is a P-name for A;

Ǎ where A ∈M is the standard P-name for A in M ;

M [A] is the ZFC model generated by M and A;

MP is the class of all P-names in M ;
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CHAPTER 1

PRELIMINARIES

In this chapter we shall briefly show some basic results on posets, boolean al-

gebras, and forcing extensions. The main results are Theorem 1.41 on boolean

algebras, Theorems 1.44, 1.48, 1.55, 1.71 on forcing extensions, and Theorems

1.57, 1.67 on boolean ultrapowers.

1.1 Posets

The theory of posets and boolean algebras (Section 1.2) has played a major role

in set theory in the last decades, allowing the development of the method of

forcing. We shall now expose the basic definitions and properties about posets

that will be useful later on.

Definition 1.1. A poset (partially ordered set) is a set P together with a binary

relation ≤ on Pwhich is transitive, reflexive and antisymmetric.

We are also interested in some special subsets of posets with certain proper-

ties, as the following.

Definition 1.2. A subset A ⊂P is a chain if and only if is totally ordered in P.

Definition 1.3. Given a ,b ∈P, we say that a and b are incompatible, in formulas

a ⊥b , if and only if:

a ⊥b ⇔ ¬∃c : c ≤ a ∧ c ≤b

Similarly, we say that a ,b are compatible, in formulas a ‖b , iff ¬ (a ⊥b ).

1



1 Preliminaries 1.1 Posets

Definition 1.4. A subset A ⊂ P is an antichain if and only if every two element in

A are incompatible: ∀a ,b ∈ A : a =b ∨a ⊥b .

Definition 1.5. An antichain A ⊂ P is maximal if and only if no subset B ⊂ P,

B ⊃ A is an antichain.

Definition 1.6. An antichain A ⊂ P refines an antichain B ⊂ P if and only if for

every a ∈ A there exists a b ∈ B such that b < a .

Definition 1.7. A set D ⊂P is dense in P iff for every p ∈P exists d ∈D with d ≤ p ,

i.e. D is dense in the order topology.

There is a close connection between the definitions of dense sets and an-

tichains, as shown in the following result.

Theorem 1.8. Every dense set D ⊂ P contains a maximal antichain A ⊂D. Con-

versely, the downward closure of every maximal antichain is dense.

Proof. Given D ⊂ P, by Zorn’s Lemma let A ⊂ D be a maximal antichain with

respect to D. This same antichain must be maximal also in P: any x ⊥ A would

have an y < x in D, which would be y ⊥ A, contradicting maximality of A in D.

Conversely, given A ⊂ P maximal antichain, let D =
�

p ∈P : ∃a ∈ A p ≤ a
	

.

Every p ∈Pmust be p ‖ a for some a ∈ A by maximality of A, hence has a rp with

rp ≤ p , rp ≤ a ⇒ rp ∈D. Thus D is dense.

We shall now define the most common properties of posets, that we will

need later on.

Definition 1.9. A poset P is separative iff for all p ∈ P, there exist q , r ∈ P with

q ≤ p , r ≤ p , q ⊥ r .

Separativity is often used as a “non triviality” property, since for most pur-

poses any set of non-separable elements can be collapsed into a single element.

Proposition 1.10. Let P be a poset. There exists a separative posetQ and a map-

ping h of P ontoQ such that:

x ≤ y ⇒ h(x )≤ h(y )
x ⊥ y ⇔ h(x )⊥ h(y )

Proof. Q is the quotient of P under the equivalence relation:

x ∼ y ⇔∀z ∈P
�

z ⊥ x ↔ z ⊥ y
�

with ordering given by:

[x ]≺
�

y
�

⇔ (∀z ≤ x )z ‖ y

2



1 Preliminaries 1.1 Posets

Definition 1.11. A poset P is κ-closed if and only if every decreasing chain



pα :α<λ
�

with λ<κ is bounded by some element of P.

Definition 1.12. A poset P is κ-cc (satisfies the κ-chain condition) if and only if

every antichain has size <κ.

Definition 1.13. A poset P is κ-distributive if and only if every family F of < κ

dense sets in P has dense intersection
⋂

F .

The last two properties for a fixed κ excludes each other, as we can see in the

following proposition.

Proposition 1.14. A κ-cc separative poset P is not κ+-distributive.

Proof. Assume that P is instead κ+-distributive. Let D0 be dense in P, and de-

fine by transfinite induction two sequences A i , Di : for every i ≤ κ, let A i be a

maximal antichain in Di , Di+1 =
�

p ∈P : ∃q ∈ A i p <q
	

and Dα =
⋂

i<αDi for α

limit ordinal. The limit step for i ≤ κ is allowed by κ+-distributivity. Define

F =
�

f ⊂ (κ×P) : f is a function ∧ f (i )∈ A i ∧ (i < j → f (i )> f (j ))
	

Since P is separative, there is an injection of 2κ inF : for every i successor, there

are at least 2 choiches for the value of f (i ) given f |i . So |F | ≥ 2κ.

For every p ∈ Aκ, define f p ∈ F as the unique function such that f p (i ) > p

for every i <κ. This defines a map h : Aκ→F , h(p ) = f p .

This map is surjective, otherwise let g /∈ h[Aκ]. Since Aκ is a maximal an-

tichain, for all i < κ let p i ∈ Aκ be the only one such that g (i ) ‖ p i (in fact

g (i ) > p i , since Aκ is below A i ). Since |Aκ| < κ, there must be a q ∈ Aκ such

that the set
�

i <κ : p i =q
	

has size κ. This set must be unbounded in κ, so for

every i < κ, there is a j > i such that g (i ) > g (j ) > p j = q , so h(q ) = g against

the hypothesis.

Then |F | ≤ |Aκ|<κ, which contradicts |F | ≥ 2κ. Hence the assumption that

P is κ+-distributive must be false.

The following definitions are a crucial step in classical development of forc-

ing: although we will not follow that approach, they will still be needed later

on.

Definition 1.15. A set I ⊂ P is an ideal in P iff (a ∈ I ∧ b < a ) → b ∈ I and

a ,b ∈ I →∃c ∈ I : (a ≤ c ∧b ≤ c ).

Definition 1.16. A set F ⊂ P is a filter in P iff ( f ∈ F ∧ f < g ) → g ∈ F and

f , g ∈ F →∃h ∈ F : (h ≤ f ∧h ≤ g ).

3



1 Preliminaries 1.2 Boolean Algebras

Definition 1.17. An ideal I is principal iff I = Ip =
�

q ∈P : q < p
	

for some p ∈P.

Similarly, a filter F is principal iff F = Fp =
�

q ∈P : p <q
	

for some p ∈P.

We shall mostly be interested in non-principal ideals, and sometimes in

much stronger non-triviality properties, as the following.

Definition 1.18. Let M be a transitive model of ZFC and P∈M be a poset. A filter

G ⊂P is M -generic for P if and only if it intersects every dense set D ∈M .

Equivalently, a filter G is M -generic if it intersects every maximal antichain.

The same definition can be stated also for non-canonical models (M , E ).

Definition 1.19. Let (M , E ) be a model of ZFC and P ∈ M be such that M �
P is a poset. A filter G ⊂ P is M -generic for P if and only if (G ∩D)M 6= ; for ev-

ery D ⊂P in M such that M �D is dense .

If P is a separative poset, M -generic filters cannot be found in M itself.

Theorem 1.20. If P ∈ M is a separative poset, then no filter G ⊂ P in M is M -

generic.

Proof. Since P ∈ M is a separative poset, if G is a filter in P then DG = P \G

is trivially dense and G ∩DG = ;. Then if G ∈ M , also DG ∈ M hence G is not

M -generic.

The previous theorem raises metamathematical problems regarding the ex-

istence of generic filters, which for example do not exist if M = V . To overcome

this issues we will focus on the boolean-valued model approach to forcing, in

which generic filters are not explicitly needed.

1.2 Boolean Algebras

Boolean Algebras are a special kind of posets that generalize the concept of truth

value, from the classical two-valued notion to a many-valued notion. Our refer-

ence text for the results on boolean algebras is [4].

Definition 1.21. A lattice is a poset in which any two elements a ,b have a unique

supremum a∨b (least upper bound, called their join) and infimum a∧b (greatest

lower bound, called their meet).

Definition 1.22. A distributive lattice is a lattice in which the operations of join

and meet distribute over each other.

Definition 1.23. A bounded lattice is a lattice with a least element (called 0) and

a greatest element (called 1).

4



1 Preliminaries 1.2 Boolean Algebras

Definition 1.24. A complemented lattice is a bounded lattice in which every ele-

ment a has a complement, i.e. an element b satisfying a ∨b = 1 and a ∧b = 0.

Definition 1.25. A boolean algebra is a complemented distributive lattice.

A standard example of boolean algebra is the regular open algebra of a topo-

logical space X .

Definition 1.26. Let X be a topological space. The regular open algebra of X is

RO(X ) = {a ⊂X : a = int cl(a )} ordered by set-theoretical inclusion.

All the definitions we stated about poset in section 1.1 can be extended to

boolean algebras, by considering the corresponding poset PB = B \ {0}. For

example, two elements of a boolean algebra are incompatible if a ∧b = 0.

This process can be applied also to the ideal and filter definitions. However,

to gain a little more insight into what this definition really mean for boolean

algebras, we first need to mention the similar concept of boolean ring.

Definition 1.27. A boolean ring is an algebraic ring that consists only of idem-

potent elements, i.e. elements such that x 2 = x .

Remark 1.1. There is a bijection between boolean rings and boolean algebras,

given by x · y = x ∧ y , x + y = x4y , x ∨ y = x + y +x · y .

Definition 1.28. A set I ⊂B is an ideal inB if and only if it is closed for ∨ in I ,

and arbitrary ∧:
a ∈ I ,b ∈ I ⇒ a ∨b ∈ I

a ∈ I ,b ∈B ⇒ a ∧b ∈ I

Equivalently, I is an ideal of the boolean ring corresponding toB (or an ideal

of the algebraic structure (B ,∨,∧), which however is not a ring).

Definition 1.29. If I is an ideal ofB , the quotientB/I is the quotient ofB with

respect to the equivalence relation defined by a =I b ⇔ a4b ∈ I .

The quotient is always well-defined, since correspond to algebraic quotient

in the boolean ring interpretation.

Definition 1.30. A set F ⊂B is an filter inB if and only if it is closed for ∧ in F ,

and arbitrary ∨:
a ∈ F,b ∈ F ⇒ a ∧b ∈ F

a ∈ F,b ∈B ⇒ a ∨b ∈ F

Thus F is the dual of an ideal (hence an ideal of the algebraic structure

(B ,∧,∨)). We stress that this last definitions are all equivalent with those in sec-

tion 1.1 applied to PB =B \{0}.

Definition 1.31. A set U ⊂B is an ultrafilter inB if and only if U is a filter and

∀p ∈B : p ∈U ∨¬p ∈U

5



1 Preliminaries1.3 Infinite Operations and Free Constructions on Boolean Algebras

1.3 Infinite Operations and Free Constructions on

Boolean Algebras

The operations of join and meet can be extended to arbitrary subsets of a

boolean algebra.

Definition 1.32. LetB be a boolean algebra. For A ⊂ B ,
∨

A (
∧

A) is the least

upper bound (the greatest lower bound) of A in the partial order 〈B ,≤〉, if it exists.

In the most general case, the meet (resp. join) of a set A does not need to

exist; we are interested in the boolean algebras in which it does.

Definition 1.33. A boolean algebraB is complete (κ-complete) if both
∨

A,
∧

A

exist for every A ⊂B (for every A ⊂B with |A |<κ).

Let Cκ, C∞ denote the classes ofκ-complete (respectively complete) boolean

algebras. We define the notion of completeness for homomorphisms of boolean

algebras:

Definition 1.34. An homomorphism h of boolean algebras is complete (κ-com-

plete) if h(
∨

A) =
∨

h[A], h(
∧

A) =
∧

h[A] for every A ⊂B (for every A ⊂B with

|A |<κ) for which
∨

A,
∧

A exist.

Naively, a boolean algebraB should be free over X if and only if X is a set of

algebraically independent generators inB . This intuition can be made precise

by means of the following definition.

Definition 1.35. A free boolean algebra over X is a pair 〈e ,B〉, withB boolean

algebra and e : X →B , such that for every map f : X →B ′ into a boolean algebra

B ′ there is a unique morphism g :B→B ′ satisfying g ◦ e = f .

Definition 1.36. A free κ-complete boolean algebra over X is a pair 〈e ,B〉, with

B κ-complete boolean algebra and e : X →B , such that for every map f : X →B ′

into a κ-complete boolean algebra B ′ there is a unique κ-complete morphism

g :B→B ′ satisfying g ◦ e = f .

Theorem 1.37. If 〈e1,B1〉, 〈e2,B2〉 are free (free κ-complete) boolean algebras

over X1, X2, and |X1|= |X2|, thenB1 is isomorphic toB2.

Proof. Let f : X1 → X2 be a bijection from X1 onto X2. Since B1 is free over

X1 let φ1 :B1 →B2 be the unique morphism such that φ1 ◦ e1 = e2 ◦ f . Since

also B2 is free over X2, let φ2 : B2 → B1 be the unique morphism such that

φ2 ◦ e2 = e1 ◦ f −1.

The composition φ2 ◦ φ1 : B1 → B1 is a morphism of B1 with

φ2 ◦φ1 ◦ e1 = e1; by freeness of B1 such a morphism is unique, hence φ2 ◦φ1

6



1 Preliminaries1.3 Infinite Operations and Free Constructions on Boolean Algebras

must be the identity onB1. Similarly, φ1 ◦φ2 must be the identity onB2. Then

φ1,φ2 are inverses of each other, henceB is isomorphic toB ′.

Since all free boolean algebras over X are isomorphic, we can choose Fr(X )
to be any of them. Similarly, we can define Frκ(X ) as the unique, up to isomor-

phisms, free κ-complete boolean algebra over X .

We now aim to show that Fr(X ) and Frκ(X ) exists for every set X .

Definition 1.38. Letκ be an infinite cardinal,B a boolean algebra, A ⊂B . Then:

〈A〉 =
⋂
�

B : A ⊂ B ⊂B ∧ B a subalgebra ofB
	

〈A〉κ-cm =
⋂
�

B : A ⊂ B ⊂B ∧ B a κ-complete subalgebra ofB
	

〈A〉cm =
⋂
�

B : A ⊂ B ⊂B ∧ B a complete subalgebra ofB
	

is the subalgebra (resp. κ-complete subalgebra, complete subalgebra) generated

by A inB .

Proposition 1.39. LetB be a κ-complete boolean algebra, κ regular, A ⊂ B . If

B is κ-completely generated by A (i.e.B = 〈A〉κ-cm), then |B| ≤ (|A |+ω)<κ.

Proof. Define by induction subsets A i ofB for i ≤ κ: let

A0 = A ∪{0,1}
A i+1 = A i ∪{¬a : a ∈ A i }∪

¦
∨

B : B ∈Pκ(A)
©

Aα =
⋃

i<αA i

It is easily checked by induction on i ≤ κ that Aκ ⊂ 〈A〉κ-cm. Moreover, by regu-

larity of κ we have that Aκ is a κ-complete subalgebra ofB (it is trivially closed

under ¬ and
∨

, hence under
∧

), so 〈A〉κ-cm ⊂ Aκ, thus 〈A〉κ-cm = Aκ.

An easy induction on i ≤ κ shows that |Aκ| ≤ (|A | +ω)<κ, hence |B| =
�

�〈A〉κ-cm
�

�= |Aκ| ≤ (|A |+ω)<κ.

Corollary 1.40. If Frκ(X ) exists, then |Frκ(X )|= |X |<κ.

Proof. Let 〈e ,B〉= Frκ(X ),B ′ = 〈X 〉κ-cm inB . SinceB ′ ⊂B andB is free over

X , the map e can be extended to a κ-complete morphism f :B→B ′. Then the

identity map I B of B and f are both endomorphisms ofB that extend e . So it

must be that f = I B henceB =B ′ and by Property 1.39, |B|= |B ′| ≤ |X |<κ.

We now prove that |B| ≥ |X |<κ. Otherwise, there should be two different

x , y ∈ Pκ(X ) such that
∧

e [x ] =
∧

e [y ]. Suppose without loss of generality that

y * x . Then the map e ′ : X → 2 defined by e ′[x ] = {1}, e ′[y \x ] = {0}, cannot be

extended to a morphismφ fromB to 2 since

1 =
∧

e ′[x ] =
∧

φ[e [x ]] =φ(
∧

e [x ]) =
= φ(

∧

e [y ]) =
∧

φ[e [y ]] =
∧

e ′[y ]≤
∧

e ′[y \x ] = 0

7
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that implies 1≤ 0, a contradiction.

Theorem 1.41. Frκ(X ) exists for any set X and regular κ.

Proof. Let λ = |X |, and suppose λ ≥ ω, otherwise Frκ(X ) = Fr(X ) is the finite

boolean algebra with 22|X | elements. LetF be the family of κ-complete boolean

algebras whose domain is contained in λ<κ generated by an image of X :

F =
�

〈h, B〉 : B ∈Cκ ∧dom(B )⊂λ<κ ∧h : X → B ∧ 〈h[X ]〉κ-cm = B
	

If we enumerateF = {〈h i , Bi 〉 : i <θ }, let B ′ =
∏

i<θ Bi , and set h ′ : X → B ′ such

that h ′(x ) = 〈h i (x ) : i <θ 〉.
Consider in the boolean algebra B ′ the subalgebraB = 〈h ′[X ]〉κ-cm. We show

that 〈h ′,B〉 is a free κ-complete boolean algebra over X .

Given C a κ-complete boolean algebra, k : X → C , let C ′ = 〈k [X ]〉κ-cm. By

Property 1.39 |C ′| ≤λ<κ, so there must be a bijection φ : C ′ → C ′′ ⊂ λ<κ, then



φ ◦k ,C ′′
�

= 〈h i , Bi 〉 ∈ F for some i < θ . Let πi : B ′→ Bi be the canonical pro-

jection onto Bi , such that πi ◦h ′ = h i . Thenφ−1 ◦πi is a κ-complete homomor-

phism fromB to C satisfyingφ−1 ◦πi ◦h ′ =φ−1 ◦h i = k (since h i =φ ◦k ).

Remark 1.2. With abuse of notation, the set X can be identified with its image

e [X ], hence regarding a boolean algebraB free over X as a superset of X .

1.4 Boolean-Valued Models

In this section, we shall briefly expose a generalization of first-order models with

boolean algebras, important for its wide applications in consistency proofs. Our

reference text for statements in the next few sections is [2, 14].
Boolean-valued models can be defined for any signatureσ (even if we will be

interested only in models of set theory with canonical signature) and complete

boolean algebraB . Such a model will consist of a setM of names, together with

an interpretation f :M n →M for every n-ary function symbol f ∈ σ, and an

interpretation R : M n → B for every n-ary relation symbol R ∈ σ (including

equality) satisfying some axioms we will see later.

The interpretation function induce an assignment of a truth value
�

φ
�

∈B
to every closed formulaφ, by means of:

1. ¹R(t1, . . . , tn )º=R(t1, . . . , tn )

2.
�

¬φ
�

=¬
�

φ
�

3.
�

φ ∨ψ
�

=
�

φ
�

∨
�

ψ
�

8



1 Preliminaries 1.4 Boolean-Valued Models

4.
�

∃xφ(x )
�

=
∨

t∈M
�

φ(t )
�

As previously stated, the interpretation function is required to satisfy the fol-

lowing axioms.

1. ¹s = sº= 1

2. ¹s = t º= ¹t = sº

3. ¹s = t º∧ ¹t = u º≤ ¹s = u º

4.
�

~s = ~t
�

∧ ¹R(~s )º≤
�

R(~t )
�

5.
�

~s = ~t
�

∧
�

u = f (~s )
�

≤
�

u = f (~t )
�

Axioms 1-3 are a generalization of equality axioms to boolean-valued mod-

els, axioms 4-5 are substitution axioms with R relation symbol and f function

symbol inσ.

Note how the notion of a boolean-valued model generalizes the notion of a

model, and the boolean value generalizes the satisfaction predicate �. IfB = 2,

then a boolean-valued model is just a (two-valued) model; considering M / ≡
where t ≡ s ⇔ ¹t = sº= 1.

In most cases, boolean-valued models can be used almost like models, by

replacing the notion of truth with the notion of validity.

Definition 1.42. A formula φ is valid inM if
�

φ
�

= 1. A theory T is valid inM
if for everyφ ∈ T ,φ is valid.

Theorem 1.43. If a formula φ is provable from T and T is valid inM , then φ is

valid inM .

Proof. We have to check validity of logical axioms and rules of inference for first-

order logic. We shall use the deductive system reported in [5].
The propositional axiom (¬A ∨A) hold since ¹¬A ∨Aº=¬¹Aº∨¹Aº= 1. The

other propositional rules need similar trivial verifications.

Expansion Rule (A ` B ∨A): ¹Aº= 1⇒ ¹B ∨Aº= ¹Bº∨1= 1.

Contraction Rule (A ∨A ` A): ¹A ∨Aº= 1⇒ ¹Aº= ¹Aº∨ ¹Aº= ¹A ∨Aº= 1.

Association Rule (A ∨ (B ∨C ) ` (A ∨ B )∨C ): if ¹A ∨ (B ∨C )º = 1, we have

¹(A ∨ B )∨Cº= ¹Aº∨ ¹Bº∨ ¹Cº= ¹A ∨ (B ∨C )º= 1.

Cut Rule (A ∨ B ,¬A ∨C ` B ∨C ): the hypothesis ¹A ∨ Bº = 1, ¹¬A ∨Cº = 1 im-

plies that B ≥¬A, C ≥ A hence ¹B ∨Cº≥ ¹¬A ∨Aº= 1.

9



1 Preliminaries 1.4 Boolean-Valued Models

The first-order axioms and rules can now be similarly verified.

Substitution Axiom (A(a )→∃x A(x )): ¹∃x A(x )º=
∨

t∈M ¹A(t )º≥ A(a ).

Identity Axiom (x = x ): is axiom 1 of boolean valued models.

Equality Axioms (~x = ~y → f (~x ) = f (~y ), ~x = ~y →R(~x )→R(~y )): are axioms 4-5 of

boolean valued models.

∃-Introduction Rule (∀x (A(x )→ B ) ` (∃x A(x ))→ B): if ¹∀x (A(x )→ B )º = 1,

then ¹(∃x A(x ))→ Bº = ¹(∀x¬A(x ))∨ Bº =
�
∧

t∈M ¹¬A(t )º
�

∨ ¹Bº =
∧

t∈M (¹¬A(t )º∨ ¹Bº) = ¹∀x (¬A(x )∨ B )º= ¹∀x (A(x )→ B )º= 1.

The last result is crucial, because allows us to use boolean-valued models

instead of models for consistency proofs.

Corollary 1.44. If T is valid inM and
�

φ
�

> 0, thenφ is consistent with T .

Proof. If φ where not consistent with T , ¬φ would be provable from T hence

valid inM ; then
�

φ
�

=¬
�

¬φ
�

=¬1= 0, a contradiction.

A relevant property of boolean-valued models is the following.

Definition 1.45. A boolean-valued model M is full if it satisfies the fullness

lemma, i.e., for every formulaφ with parameters inM ,

∃t ∈M :
�

∃x φ(x )
�

=
�

φ(t )
�

Boolean-valued models with this property can be transformed into two-

valued models, by means of the following construction.

Definition 1.46. LetM be a boolean-valued model, and U ⊂B be an ultrafilter.

Then ≡U is a two-valued relation onM defined by:

t1 ≡U t2 ⇔ ¹t1 = t2º∈U

Definition 1.47. Let M be a boolean-valued model and U ⊂ B an ultrafilter.

ThenMU is the two-valued model with supportM /≡U , functions and relations

fU , RU induced by the canonical projection πU :M →M /≡U . More precisely,

fU (t 1
U , . . . , t n

U ) = πU
�

f (t 1, . . . , t n )
�

RU (t 1
U , . . . , t n

U ) ⇔ R(t 1, . . . , t n )∈U

where t 1, . . . , t n are any representatives for the equivalence classes t 1
U , . . . , t n

U .

10
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The fact that fU , RU are well-defined is easily checked using axioms 4-5 of

boolean-valued models. From now on, we will use the notation xU to mean

πU (x ) for any x ∈M . Notice that the equivalence classes inMU might be quite

large, e.g. whenM is a model of set theory these classes can not be sets. How-

ever, this technical problem can be circumvented by means of the well-known

Scott’s Trick (i.e. by choosing as representatives of the equivalence classes only

the elements with minimal rank).

When the boolean-valued modelM is full, there is a close connection be-

tweenM andMU , explained by the following Theorem 1.48 (generalization of

Łoś Theorem for generic boolean-valued models).

Theorem 1.48 (Łoś). Let M be full, U ultrafilter on B . For any formula

φ(x1, . . . ,xn ),

MU �φ([x1] , . . . , [xn ]) ⇔
�

φ(x1, . . . ,xn )
�

∈U

Proof. If φ is atomic, the thesis is true by definition. If φ is a negation or a con-

junction, it follows from the basic properties of ultrafilters and truth value.

Let now φ be ∃xψ(x ). Let a ∈M be such that
�

ψ(a )
�

=
�

∃xψ(x )
�

by full-

ness; then
�

∃xψ(x )
�

∈U ⇒ ∃a
�

ψ(a )
�

∈U ⇒MU �ψ(a ) ⇒MU � ∃xψ(x ).
Also,MU � ∃xψ(x )⇒ ∃a

�

ψ(a )
�

∈U ⇒
∨

a∈M
�

ψ(a )
�

=
�

∃xψ(x )
�

∈U .

1.5 The Model VB

We are now interested in defining a boolean-valued model of ZFC with canonical

signature σ = (=,∈). In particular, we are interested in a canonical construc-

tion of a boolean-valued model of ZFC starting from a model M and a complete

boolean algebraB .

Throughout this paper, we shall also use additional symbols for definable

classes when convenient. Although, this symbols can be eliminated then is suf-

ficient to study the caseσ= (=,∈).

Definition 1.49. For M a model of ZFC andB ∈M a complete boolean algebra,

we define:

MB
0 = ;

MB
α+1 =

¦

τ∈M : τ⊂MB
α ×B ∧τ is a partial function

©

MB
α =

⋃

β<αMB
β for α limit

MB =
⋃

α∈ON MB
α

We call the elements of MB B-names.

11
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Definition 1.50. Given τ∈MB , define the rank of τ as:

rank(τ) =min
¦

α∈ON : τ∈MB
α+1

©

Definition 1.51. Given x ∈M , define the canonicalB-name x̌ recursively by:

x̌ =
�


y̌ ,1
�

: y ∈ x
	

Theorem 1.52. MB is a boolean-valued model of set theory, where:

¹τ1 ∈τ2º =
∨

〈σ,p〉∈τ2

�

¹τ1 =σº∧p
�

¹τ1 ⊆τ2º =
∧

〈σ,p〉∈τ1

�

¬p ∨ ¹σ ∈τ2º
�

¹τ1 =τ2º = ¹τ1 ⊆τ2º∧ ¹τ2 ⊆τ1º

Proof. We need to check axioms 1-4, since we don’t have any function symbols

(axiom 5).

For axiom 1, it suffices to show that ¹τ⊆τº= 1. By induction on the rank of

B-names we have that ¹; ⊆ ;º= 1 and:

¹τ⊆τº =
∧

〈σ1,p1〉∈τ¬p1 ∨ ¹σ1 ∈τº

=
∧

〈σ1,p1〉∈τ
h

¬p1 ∨
∨

〈σ2,p2〉∈τ
�

¹σ2 =σ1º∧p2
�

i

≥
∧

〈σ1,p1〉∈τ
�

¬p1 ∨
�

¹σ1 =σ1º∧p1
��

=
∧

〈σ1,p1〉∈τ
�

¬p1 ∨p1
�

= 1

Axiom 2 holds trivially since the formula for computing the boolean value

for equality is symmetrical.

Axiom 3 and 4 can be similarly shown to hold by simultaneous induction on

the rank ofB-names. A complete proof can be found in [2, Lemma 14.16].

From now on, V will be a model of ZFC with canonical signature (=,∈), B
a complete boolean algebra in V , and we will concern only about the boolean-

valued model VB .

Lemma 1.53 (Mixing). If A ⊂B is an antichain, 〈τa : a ∈ A〉 are names in VB ,

there exists a name τ such that

∀a ∈ A ¹τ=τaº≥ a

Proof. Let τ=
⋃

a∈A

�


σ, p ∧a
�

:



σ, p
�

∈τa
	

, then τ witnesses the truth of the

property above.

Lemma 1.54 (Fullness). VB is full.

12
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Proof. Given φ formula with parameters in M , let A be a maximal antichain

below
��

φ(t )
�

: t ∈VB
	

. For all a ∈ A, let τa ∈ VB be such that
�

φ(τa )
�

≥ a .

By Mixing Lemma 1.53, let τ be such that for all a ∈ A, ¹τ=τaº≥ a .

Then
�

φ(τ)
�

≥ ¹τ=τaº∧
�

φ(τa )
�

≥ a for all a ∈ A, hence
�

φ(τ)
�

≥
∨

A.

Thus, by maximality of A, we have
�

φ(τ)
�

=
�

∃x φ(x )
�

.

From this well-known lemmas, one may prove the following main result.

Theorem 1.55. For every axiomφ in ZFC,
�

φ
�

= 1.

Proof. We need to verify nine axioms. Complete proofs for the following results

can be found in [2, Theorem 14.24].

Extensionality: Ifφ is extensionality, for any x , y :

�

φ(x , y )
�

=
�

∀z
�

z ∈ x ↔ z ∈ y
�

→ x = y
�

= ¬
�

∀z
�

z ∈ x ↔ z ∈ y
��

∨
�

x = y
�

= ¬
∧

z∈VB
�

z ∈ x ↔ z ∈ y
�

∨
�

x = y
�

We have that:

∧

z∈VB
�

z ∈ x → z ∈ y
�

=
∧

z∈VB
�

¬z ∈ x ∨ z ∈ y
�

≤
∧

〈z ,p〉∈x ¬¹z ∈ xº∨
�

z ∈ y
�

≤
∧

〈z ,p〉∈x ¬p ∨
�

z ∈ y
�

=
�

x ⊆ y
�

The third passage follows from



z , p
�

∈ x ⇒ ¹z ∈ xº≥ p . Then,

�

φ(x , y )
�

= ¬
∧

z∈VB
�

z ∈ x ↔ z ∈ y
�

∨
�

x = y
�

≥ ¬
��

x ⊆ y
�

∧
�

y ⊆ x
��

∨
�

x = y
�

= ¬
�

x = y
�

∨
�

x = y
�

= 1

Pairing: Given x , y ∈ VB , z =
�

〈x ,1〉 ,



y ,1
�	

∈ VB is a witness for the pairing

axiom.

Separation: Given x ∈ VB and a formula with parameters φ(z ), y =
�


z , p ∧
�

φ(z )
��

:



z , p
�

∈ x
	

∈VB is a witness for the separation axiom.

Union: Given x ∈ VB , y = dom
�
⋃

dom(x )
�

× {1} is a witness for the union

axiom, in the weak form.

Power Set: Given x ∈ VB , y =
�

z ∈VB : z : dom(x )→B
	

×{1} is a witness for

the power set axiom, in the weak form.

Infinity: ω̌ is a witness for the axiom of infinity.
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Replacement: It suffices to verify the Collection Principle, hence that for every

x ∈VB there is an y ∈VB such that:

�

∀u ∈ x
�

∃vφ(u , v )→∃v ∈ yφ(u , v )
��

= 1

Here we let y =
⋃
�

yu : u ∈ dom(x )
	

×{1}, where yu is a set such that:

∨

v∈VB

�

φ(u , v )
�

=
∨

v∈yu

�

φ(u , v )
�

Foundation: Suppose by contradiction that there exists an x ∈VB , such that:

�

∃u (u ∈ x )∧
�

∀y ∈ x
��

∃z ∈ y
�

z ∈ x
�

=b > 0

Let y ∈ VB be of least rank such that
�

y ∈ x
�

∧b > 0. Since
�

y ∈ x
�

∧b ≤
��

∃z ∈ y
�

z ∈ x
�

, there is a z ∈ dom(y ) such that ¹z ∈ xº∧
�

y ∈ x
�

∧b > 0,

which contradicts the minimality of the rank of y .

Choice: Given x ∈VB , let f =
¦




y , y̌
�

VB : y ∈ dom(x )
©

×{1}. Since

f [x ]⊂ ˇdom(x ) =
�


y̌ ,1
�

: y ∈ dom(x )
	

define ≺ on x as
�

y ≺ z
�

=
�

f (y ) Ř f (z )
�

, where R is any well-order of

dom(x ) in V . Then
�

x is well-ordered by ≺
�

= 1.

As a consequence of Corollary 1.44, we can now prove that for any formula

φ, whenever we can find a complete boolean algebraB such that
�

φ
�

> 0 in

VB , the formula φ is consistent with ZFC. However, we are also interested in

actually defining a two-valued ZFC model in whichφ is true.

Corollary 1.56. For any ultrafilter U ⊂B , VBU is a model of ZFC.

Proof. VB is full by Theorem 1.54. Then, this result is an easy application of Łoś

Theorem 1.48 and Theorem 1.55.

If U is any ultrafilter such that
�

φ
�

∈U , from Łoś Theorem 1.48
�

φ
�

∈U

implies that VBU � φ, thus VBU is the required two-valued model. However, in

most cases VBU will not be well-founded, hence not isomorphic to any transitive

model of ZFC in V .

Theorem 1.57. VBU is well-founded if and only if U isω1-closed.

Proof. First, suppose that U is not ω1-closed. Let 〈u i : i ∈ω〉 be a decreasing

chain in U with
∧

i∈ωu i = uω /∈U . For every n ∈ω, let An =
¦¬

ǐ , u n+i

¶

: i ∈ω
©

.
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Notice that ¹An ⊆ωº = 1,
�

An ⊆ ǐ
�

= ¬u n+i+1,
�

An ⊇ ǐ
�

= u n+i . Then

〈πU (An ) : n ∈ω〉 is an ill-founded chain:

¹An+1 ∈ Anº =
∨

i∈ω

��

An+1 = ǐ
�

∧u n+i

�

=
∨

i∈ω

��

An+1 ⊆ ǐ
�

∧
�

ǐ ⊆ An+1

�

∧u n+i

�

=
∨

i∈ω (¬u n+1+i ∧u n+i ∧u n+i )
=

∨

i∈ω (u n+i ∧¬u n+i+1)
=

∨

i∈ω
∨

j<i

�

u n+j ∧¬u n+j+1

�

=
∨

i∈ω (u n ∧¬u n+i ) = u n ∧¬
∧

i∈ωu n+i = u n ∧¬uω ∈U

The equality between the last two rows is easily proved by induction using the

fact that [u n ∧¬u n+i ]∨ [u n+i ∧¬u n+i+1] = u n ∧¬u n+i+1.

Finally, suppose that U is ω1-closed but VBU is ill-founded. Let

〈πU (An ) : n ∈ω〉 be an infinite decreasing chain in VBU , i.e. ¹An+1 ∈ Anº ∈U for

every n ∈ω. Let u =
∧

n∈ω ¹An+1 ∈ Anº, we have that u ∈U since U isω1-closed,

hence u > 0.

From Theorem 1.55, we know that ¹foundation axiomº = 1, hence

¹A is well-foundedº = 1 for any set A ∈ VB for which
�

A 6= ;̌
�

= 1, in particu-

lar for A = {〈A i ,1〉 : i ∈ω}.

¹A is ill-foundedº =
��

∀y ∈ A
��

∃z ∈ y
�

z ∈ A
�

=
∧

y∈VB
�

y ∈ A
�

→
��

∃z ∈ y
�

z ∈ A
�

=
∧

y∈VB ,i<ω¬
�

y = A i
�

∨
��

∃z ∈ y
�

z ∈ A
�

≥
∧

y∈VB ,i<ω¬
�

y = A i
�

∨ ¹(∃z ∈ A i )z ∈ Aº

≥
∧

y∈VB ,i<ω¬
�

y = A i
�

∨ ¹A i+1 ∈ A i ∧A i+1 ∈ Aº

=
∧

y∈VB ,i<ω¬
�

y = A i
�

∨ ¹A i+1 ∈ A i º

≥
∧

y∈VB ,i<ω

�

¬
�

y = A i
�

∨u
�

≥ u

Then ¹A is well-foundedº≤¬u < 1, a contradiction.

1.6 Boolean Ultrapowers

The results in the next few sections and Theorem 1.57 are based on a talk held by

J. D. Hamkins at the Young Set Theory Workshop in Bonn, 2011, where he pre-

sented some of the material that will appear in [9], which at the present moment

is still in preparation.

In this section we shall investigate the relationship between the boolean-

valued model VB and the original two-valued model V . We can introduce in

VB a “name for V ” (which might be thought as a new defined symbol in the

language), and an elementary map j : V → V̌ , that in some cases will induce an

15
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isomorphism (in a sense that will be made precise later).

Definition 1.58. Let V̌ be a new relation symbol defined by:

�

τ∈ V̌
�

=
∨

x∈V

¹τ= x̌º

Note that V̌ is not simply the class {x̌ : x ∈V } (as e.g. contains every mix-

ing of a sequence x1, . . . ,xn by an antichain), and that V̌ is a boolean-valued

subclass of VB , in the sense that there are τ ∈ VB with 0 <
�

τ∈ V̌
�

< 1.

The symbol V̌ can be represented by its characteristic function χV̌ : VB →B ,

χV̌ (x ) =
�

x ∈ V̌
�

.

Theorem 1.59. For every sets x1, . . . ,xn in V and formulaφ, the following holds:

V �φ(x1, . . . ,xn ) ⇔
�

φV̌ (x̌1, . . . , x̌n )
�

= 1

Proof. We shall prove this fact by induction on the complexity of the formula

φ. Note that the inductive hypothesis applied to both φ and ¬φ implies that
�

φV̌
�

∈ {0,1}, fact that will be needed later.

If φ is atomic, it follows directly from the definition of canonical B-name

(by easy induction on the rank ofB-names and extensionality).

The verification for φ = ¬ψ is trivial, whence if φ =ψ1 ∧ψ2 it follows from

the fact that:
�

ψ1 ∧ψ2
�

= 1⇔
�

ψ1
�

= 1∧
�

ψ2
�

= 1

Ifφ is ∃xψ(x ), we have that:

V � ∃xψ(x ) ⇒ (∃x ∈V )V �ψ(x )
⇒ (∃x ∈V )

�

ψV̌ (x̌ )
�

= 1
⇒

��

∃x ∈ V̌
�

ψV̌ (x )
�

= 1

and the converse also holds by fullness of VB :

��

∃x ∈ V̌
�

ψV̌ (x )
�

= 1 ⇒ ∃x ∈VB
�

x ∈ V̌ ∧ψV̌ (x )
�

= 1
⇒

∨

y∈V

�

ψV̌ (y̌ )
�

= 1
⇒

�

∃y ∈V
�

�

ψV̌ (y̌ )
�

= 1⇒V � ∃xψ(x )

Corollary 1.60. If V̌ is defined as above, the following holds:

�

V̌ is a transitive inner model of ZFC with all ordinals
�

= 1

16
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Proof. Since V � φ for every φ axiom of ZFC, from Theorem 1.59 we already

know that V̌ is an inner model of ZFC. Furthermore,

�

V̌ is transitive
�

=
��

∀x ∈ V̌
�

�

∀y ∈ x
�

y ∈ V̌
�

=
∧

x ,y∈VB
�

x ∈ V̌ →
�

y ∈ x → y ∈ V̌
��

=
∧

x ,y∈VB ,z∈V

�

x = ž →
�

y ∈ x → y ∈ V̌
��

≥
∧

x ,y∈VB ,z∈V

�

x = ž →
�

y ∈ ž → y ∈ V̌
��

=
∧

x ,y∈VB ,z∈V,w∈z ¬¹x = žº∨
�

y = w̌ → y ∈ V̌
�

≥
∧

x ,y∈VB ,z∈V,w∈z ¬¹x = žº∨
�

y = w̌ → w̌ ∈ V̌
�

=
∧

x ,y∈VB ,z∈V,w∈z ¬¹x = žº∨
�

y = w̌ → 1
�

= 1

The inequalities used are derived from the converse of the substitution axiom

for boolean-valued models (axiom 4).

We still have to check that for every x in VB :

�

x is an ordinal → x ∈ V̌
�

= 1

A complete proof of this fact can be found in [2, Lemma 14.23].

The last results suggests us that V̌ is an inner model of VB that behaves

almost like V , so that the map j : V → V̌ defined by j (x ) = x̌ should be an

elementary-like embedding. Since we have no definition for what an elemen-

tary embedding from a two-valued model to a boolean-valued model should

be, we shall now consider the quotient VBU instead, in Definition 1.47.

Corollary 1.61. Let V̌U =
¦

πU (x ) :
�

x ∈ V̌
�

∈U
©

and jU : V → V̌U be the map

defined by jU = j ◦πU (i.e., jU (x ) = x̌U ). Then jU is an elementary embedding.

Proof. By Theorem 1.59 and 1.48:

V �φ(x1, . . . ,xn ) ⇒
�

φV̌ (x̌1, . . . , x̌n )
�

= 1∈U

⇒ VBU �φV̌U ([x̌1]U , . . . , [x̌n ]U )
⇒ V̌U �φ(jU (x1), . . . , jU (xn ))

The reverse implication follows from takingφ′ =¬φ.

The class V̌U is called the boolean ultrapower of V with the ultrafilter U . We

shall later see that when the ultrafilter U is V -generic, jU is in fact an isomor-

phism (i.e., V̌U is a trivial ultrapower); however, in the most general case jU will

not be an isomorphism: e.g. when U is notω1-closed (see Theorem 1.57).

The name “boolean ultrapower” is justified, as we shall see in the next few

theorems, by its close relationship with the classical model ultrapower, the two

concepts being coincident when the boolean algebraB is an algebra of sets.
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Theorem 1.62. LetB be a boolean algebra, A ⊂B a maximal antichain, U ul-

trafilter onB , UA =
¦

X ∈P (A) :
∨

X ∈U
©

ultrafilter on P (A). Then there exists

an elementary map kA for which the following diagram commutes:

V V̌U

V A/UA

jU

kAjUA

Proof. First, notice that UA is indeed an ultrafilter: it is trivially closed by su-

persets, since B ⊆ C ⇒
∨

B ≤
∨

C , and is also closed by intersections since
∨

B ∧
∨

C =
∨

b∈B , c∈C (b ∧ c ) that equals to
∨

(B ∩C ) for B ,C ⊂ A antichain.

Let kA : V A/UA → V̌U be such that kA (
�

f
�

UA
) =
�

τ f

�

U
where τ f is the mixing

of the values ˇf (a ) along the antichain A, as in Lemma 1.53. We first need to prove

that kA is well-defined. Let f , g in V A be such that
�

f
�

UA
=
�

g
�

UA
, and I ∈UA be

such that f �I= g �I . Then, by substitution,

�

τ f =τg

�

≥
∨

a∈A

��

ˇf (a ) = ˇg (a )
�

∧
�

τ f = ˇf (a )
�

∧
�

τg = ˇg (a )
��

≥
∨

a∈A

��

ˇf (a ) = ˇg (a )
�

∧a ∧a
�

≥
∨

a∈I 1∧a =
∨

I ∈U

Furthermore, the diagram commutes since
�

τjUA (x ) = x̌
�

≥
∨

(¹x̌ = x̌º∧a ) =
∨

A = 1. We still need to check that kA is elementary. By substitution, Theorem

1.59 and Łoś Theorem 1.48,

V A/UA �φ(
�

f
�

UA
) ⇒

�

a ∈ A : V �φ
�

f (a )
�	

∈UA

⇒
∨
�

a ∈ A : V �φ
�

f (a )
�	

∈U

⇒
∨
¦

a ∈ A :
�

φV̌
�

ˇf (a )
��

= 1
©

= p ∈U

⇒
�

φV̌ (τ f )
�

≥
∨

a∈A

��

φV̌
�

ˇf (a )
��

∧a
�

≥ p ∈U

⇒ V̌U �φ(
�

τ f

�

U
)

The reverse implication follows from takingφ′ =¬φ.

Theorem 1.63. LetB be a boolean algebra, A ⊂B a maximal antichain, B ⊂B
a maximal antichain that refines A, U ultrafilter on B , UA , UB ultrafilter on

P (A), P (B ) defined as above. Then there exists an elementary map kA,B for

18



1 Preliminaries 1.6 Boolean Ultrapowers

which the following diagram commutes:

V V̌U

V A/UA

V B/UB

jUB

kA,B k B

jUA

jU

kA

Proof. Let kA,B : V A/UA → V B/UB be defined by kA,B (
�

f
�

UA
) =
�

f ↓ B
�

UB
, where

�

f ↓ B
�

(b ) = f (a ) where a is the unique element of Awith a ≥ b . We first need

to prove that kA,B is well-defined. Let f , g in V A be such that
�

f
�

UA
=
�

g
�

UA
,

and I ∈ UA be such that f �I= g �I . Then kA,B ( f ) coincides with kA,B (g ) on

I ↓ B = J = {b ∈ B : ∃a ∈ I a ≥b}. Since
∨

(B \ J ) ≤
∨

(A \ I ) /∈U , we have that
∨

J ∈U hence
�

f
�

UB
=
�

g
�

UB
.

The next step is to check that the diagram commutes. From Theorem 1.62,

we only need to verify that kA,B ◦ jUA = jUB and k B ◦kA,B = kA . The first verifica-

tion is trivial since kA,B maps constant functions to constant functions. We now

check the second equality.

�

τkA,B ( f ) =τ f

�

≥
∨

a∈A

��

τkA,B ( f ) = ˇf (a )
�

∧
�

τ f = ˇf (a )
��

≥
∨

a∈A

�

∨

b∈(a↓B )

�

τkA,B ( f ) = ˇ( f ↓ B )(b )
�

∧a
�

≥
∨

a∈A

�

∨

b∈(a↓B )b ∧a
�

=
∨

a∈A (a ∧a ) =
∨

A = 1∈U

We still need to show that kA,B is elementary:

V A/UA �φ(
�

f
�

UA
) ⇔

�

a ∈ A : V �φ
�

f (a )
�	

= I ∈UA

⇔ (I ↓ B )∈UB

⇔
�

b ∈ B : V �φ
�

kA,B ( f )(b )
�	

∈UB

⇔ V B/UB �φ
�

�

kA,B ( f )
�

UB

�

This completes the proof.

Definition 1.64. A directed set D is a poset such that for every two elements a ,b

in D, there exists an upper bound c ∈D, a ≤ c , b ≤ c .

Definition 1.65. A directed system of algebraic structures S =



Xa , i a ,b
�

over D,

is a collection of algebraic structures Xa and homomorphisms between structures

i a ,b : Xa → Xb for a ,b ∈ D, a ≤ b , such that i a ,c = i b ,c ◦ i a ,b for every a ,b , c ∈ D

with a ≤b ≤ c .

Definition 1.66. The direct limit lim−→S of a directed system S =



Xa , i a ,b
�

is the

unique up to isomorphisms algebraic structure X such that there exist maps i a :
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Xa → X with i a = i b ◦ i a ,b for all a ,b ∈ D, a ≤ b , and for every other algebraic

structure Y with analogous maps ja : Xa → Y there exists a map j : X → Y such

that ja = j ◦ i a .

Theorem 1.67. LetB be a boolean algebra, U ultrafilter onB . Then the boolean

ultrapower V̌U is precisely the limit of the directed system



V A/UA , kA,B
�

with

A, B ⊂ B antichains, where A ≤ B if A refines B and the homomorphisms kA,B

are defined as in Theorem 1.63.

Proof. From Theorem 1.62 we can define maps kA such that kA = kA ◦kA,B . Let

now X be a structure with maps i A : V A/UA →X such that i A = i B ◦kA,B , we want

to define a map i : V̌U →X such that i A = i ◦kA .

Let τ be such that [τ]U ∈ V̌U . Observe that A = {¹τ= x̌º : x ∈V }, is an an-

tichain such that
∨

A =
�

τ∈ V̌
�

∈ U . Let fτ : A → V be such that fτ(a ) = xa

where xa is the unique set such that ¹τ= x̌aº ≥ a for a ∈ A, and xa = ; other-

wise. Then,

�

kA ( fτ) =τ
�

≥
∨

a∈A

��

τ= ˇfτ(a )
�

∧
�

kA ( fτ) = ˇfτ(a )
��

≥
∨

a∈A (¹τ= x̌aº∧a )≥
∨

a∈A (a ∧a ) =
∨

A ∈U

For every [τ]U ∈ V̌U , let i ([τ]U ) = i A (
�

fτ
�

U ), so that i A = i ◦ kA by definition.

Furthermore, i is elementary since for every φ([τ1]U , . . . , [τn ]U ) we can pick an

antichain A such thatτm ∈ kA [V A/UA ] for every m , and restricted to kA [V A/UA ],
i = i A ◦k−1

A .

Corollary 1.68. IfB =P (A) is an algebra of sets, U ultrafilter onB , A is a max-

imal antichain of atoms that is minimal in the order defined above, then V̌U is

isomorphic to V A/UA .

1.7 Generic Extensions

We have proved in Theorem 1.20 that V -generic ultrafilters (see Definition 1.18)

cannot exist for non-trivial algebrasB . However, in some sense we can define

in the model VB a canonical name for a V -generic ultrafilter.

Theorem 1.69. Let Ġ =
�


p̌ , p
�

: p ∈B
	

, then
�

Ġ is a V̌ -generic ultrafilter
�

= 1.

Proof. First, notice that
�

p̌ ∈ Ġ
�

=
∨

q∈B
��

p̌ = q̌
�

∧q
�

= p .

We prove that
�

Ġ is an ultrafilter
�

= 1. For every p ≤q inB ,

�

p̌ ∈ Ġ → q̌ ∈ Ġ
�

=¬
�

p̌ ∈ Ġ
�

∨
�

q̌ ∈ Ġ
�

=¬p ∨q ≥¬q ∨q = 1

�

p̌ ∈ Ġ ∧ q̌ ∈ Ġ → ˇ�

p ∧q
�

∈ Ġ
�

=¬
�

p̌ ∈ Ġ ∧ q̌ ∈ Ġ
�

∨(p∧q ) =¬(p∧q )∨(p∧q ) = 1

20



1 Preliminaries 1.7 Generic Extensions

�

p̌ ∈ Ġ ∨ ¬̌p ∈ Ġ
�

=
�

p̌ ∈ Ġ
�

∨
�

¬̌p ∈ Ġ
�

= p ∨¬p = 1

Furthermore, if D is a dense subset ofB in V ,

�

∃b ∈ Ġ ∩ Ď
�

=
∨

b∈D

�

b̌ ∈ Ġ
�

=
∨

b∈D

b = 1

since every dense set contains a maximal antichain, and every maximal an-

tichain in a complete boolean algebra is a partition of 1. This completes the

verification that Ġ is a V̌ -generic ultrafilter.

Notice that in VBU we have that ĠU ⊂ B̌U and p̌U ∈ ĠU ⇔ p ∈U . Although,

ĠU is globally different from ǓU when U is non-principal, since:

�

Ġ = Ǔ
�

=
�

Ġ ⊂ Ǔ
�

∧
�

Ǔ ⊂ Ġ
�

=
∧

p∈B

�

¬p ∨
�

p̌ ∈ Ǔ
��

∧
∧

p∈U

�

p̌ ∈ Ġ
�

=
∧

p∈B\U ¬p ∧
∧

p∈U p

=
∧

p∈U p =
∧

U = 0

Definition 1.70. Let M be a transitive model of ZFC and G ⊂M . Then M [G ] is the

least transitive model of ZFC containing both M and G .

If G is an M -generic ultrafilter for some boolean algebraB complete in M ,

we will say that M [G ] is a generic extension of M .

Theorem 1.71. For every ultrafilter U ⊂B , ĠU is V̌U -generic for B̌U and

VBU � V̌U [ĠU ] =VBU

Proof. From Łoś Theorem 1.48 and previous Theorem 1.69, we have that
�

Ġ is a V̌ -generic ultrafilter
�

= 1⇒VBU � ĠU is a V̌U -generic ultrafilter.

We already know that VBU is a model of ZFC that contains V̌U and ĠU , and

from Corollary 1.60 and Łoś Theorem 1.48 we have that:

�

V̌ is a transitive inner model of ZFC with all ordinals
�

= 1⇒
VBU � V̌U is a transitive inner model of ZFC with all ordinals

We still have to check that VBU is minimum, i.e. whenever M contains V̌U and

ĠU , M must contain all VBU . By induction on the rank of τ, we can show that
�

τ= val(τ̌,Ġ )
�

= 1, where the function val is defined by recursion as:

val(τ,G ) =
�

val(σ,G ) :



σ, p
�

∈τ∧p ∈G
	

The proof of this fact is left as an exercise for the reader.
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Now, let M be a class definable model of ZFC that contains V̌U and ĠU , and

let τU be any set in VBU . Then, M contains both τ̌U ∈ V̌U and ĠU hence contains

σU = val(τ̌U ,ĠU ), but
�

τ= val(τ̌,Ġ )
�

= 1⇒ τU = val(τ̌U ,ĠU ) hence τU =σU ∈
M and M =VBU .

Theorem 1.72. U is V -generic if and only if jU is an isomorphism.

Proof. If U is V -generic, let τU ∈ V̌U . Then q =
�

τ∈ V̌
�

=
∨

x∈V ¹τ= x̌º∈U , and

D = {¹τ= x̌º : x ∈V } is a maximal antichain below q . If p ∈ D ∩U , there is an

x ∈V such that ¹τ= x̌º= p ∈U , thus jU (x ) =τU and jU is onto.

Vice versa, suppose jU is onto, and let A ⊂ B be a maximal antichain. By

mixing, let τ be such that ¹τ= ǎº≥ a for every a ∈ A. So
�

τ∈ V̌
�

=
∨

A = 1, let

x ∈ V be such that jU (x ) = τU . Then ¹x̌ =τº ∈U ⇒ ¹x̌ =τº= x ∈U , U meets A

hence is V -generic.

If U is not V -generic, jU will not be an isomorphism. We shall show that

there is close relationship between the size of dense sets missed by U and the

size of the initial segment of V preserved by jU .

Definition 1.73. Let j be an elementary embedding, the critical point of j is:

cp(j ) =min
�

κ∈ON : j (κ) 6= j [κ]
	

Theorem 1.74. If U is not V -generic,

cp(jU ) =min{|A | : A maximal antichain ∧A ∩U = ;}

Proof. Suppose A = {aα : α<κ} maximal antichain with A ∩ U = ;, β̇ =
{〈α̌, aα〉 : α<κ} so that

�

β̇ = α̌
�

= aα. Then
�

β̇ ∈ κ̌
�

=
∨

α<κ

�

β̇ = α̌
�

=
∨

A =
1, while

�

β̇ = α̌
�

= aα /∈U for all α. Thus β̇U ∈ jU (κ)\ jU [κ] hence jU (κ) 6= jU [κ].
Conversely, suppose that β̇U ∈ jU (κ) \ jU [κ], and let A =

¦�

β̇ = α̌
�

: α<κ
©

.

This is an antichain of size κ such that
∨

A ∈ U , and A ∩U = ; otherwise β̇U

would be in jU [κ]. Hence A ′ = A ∪
¦

¬
�
∨

A
�©

is a maximal antichain of size κ

with A ′ ∩U = ;.

Proposition 1.75. U is κ-complete if and only if U ∩A 6= ; for every A maximal

antichain with |A |<κ.

Proof. First, suppose by contradiction that U is κ-complete but there exists an

A with |A | < κ and U ∩ A = ;. Then {¬a : a ∈ A} ⊆ U hence 0 = ¬1 = ¬
∨

A =
∧

{¬a : a ∈ A} ∈U , a contradiction.

Conversely, suppose by contradiction that U meets every maximal antichain

of size less than κ and is λ-complete but not λ+-complete for some λ < κ. Let

22



1 Preliminaries 1.8 Forcing Relation and Posets

B = {x i : i <λ} ⊂U with
∧

B = b /∈U . Then yi = ¬b ∧
∧

j<i x j is a decreasing

chain in U with infimum 0. Let
¬

y ′i : i <λ′
¶

, λ′ <λ be a strictly decreasing sub-

sequence of



yi : i <λ
�

. Then z i = y ′i ∧ ¬y ′i+1 is an antichain disjoint from U ,

with
∨

i<λ′ z i =
∨

i<λ

∨

j<i y ′j ∧¬y ′j+1

=
∨

i<λ′ y
′
0 ∧¬y ′i

= y ′0 ∧¬
∧

i<λ′ y
′
i =¬b ∧¬0=¬b ∈U

Hence A = {z i : i <λ′}∪ {b} is a maximal antichain of size λ′ <κwith A ∩U = ;,
a contradiction.

1.8 Forcing Relation and Posets

In the last sections we have examined generic extensions for a model V of ZFC

andB a boolean algebra. In this section we will briefly analyse the construction

of a generic extension of a model M for an arbitrary poset P, as in the classical

approach to forcing. Our reference text for the results in this section is [1, VII].
If P is not a boolean algebra, it is not yet possible to define the truth value

�

φ
�

P. Although, the truth value ofφ can be analysed via the forcing relation.

Definition 1.76. Given M a transitive model of ZFC, P ∈M a poset and p ∈ P, we

say that p forcesφ(τ1, . . . ,τn )with respect to M , in formulas:

p �M
P φ(τ1, . . . ,τn )

iff for every M -generic filter G ⊂Pwith p ∈G , M [G ]�φ([τ1]G , . . . , [τn ]G ).

The reference to the model M or the poset P in the symbol � can be omitted

when clear from the context.

Theorem 1.77 (Cohen). Let M be a model of ZFC, B ∈ M a boolean algebra,

P=B \0. Then p �M
P φ(τ1, . . . ,τn ) if and only if M � p ≤

�

φ(τ1, . . . ,τn )
�

.

Proof. From Theorems 1.71 and 1.72, we have that MB
G = M̌G [ĠG ] = M [G ].

Then from Łoś Theorem 1.48 we know that M [G ] � φ([τ1]G , . . . , [τn ]G ) if and

only if
�

φ(τ1, . . . ,τn )
�

∈G . So, if p ≤
�

φ(τ1, . . . ,τn )
�

,

p ∈G ⇒
�

φ(τ1, . . . ,τn )
�

∈G

⇒ M [G ]�φ([τ1]G , . . . , [τn ]G )

hence p �P φ(τ1, . . . ,τn ).
Otherwise, if p �

�

φ(τ1, . . . ,τn )
�

, we can find a generic filter G that contains

p ∧¬
�

φ(τ1, . . . ,τn )
�

6= 0, so that p ∈ G but
�

φ(τ1, . . . ,τn )
�

/∈ G . Then M [G ] 2
φ([τ1]G , . . . , [τn ]G ) and p 1P φ(τ1, . . . ,τn ).
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Although Definition 1.76 makes sense only in V when M -generic filters exist,

the forcing relation can always be defined inside of M : i.e., for every formula φ

there is a formula φ′ such that p �M
P φ(τ1, . . . ,τn )⇔M � φ′(p ,τ1, . . . ,τn ), and

the map φ → φ′ is recursive. The forcing relation can be used to define the

quotient MP
G and prove an analogous form of the theorems in the last sections:

complete proofs for this facts can be found in [1, VII], but are not needed in the

following exposition and will not be reported here. Furthermore, every generic

extension with a poset P is equivalent to one with a complete boolean algebra.

Definition 1.78. Let P,Q be posets and i :P→Q. i is a dense embedding iff

1. ∀p1, p2 ∈P
�

p1 ≤ p2→ i (p1)≤ i (p2)
�

2. ∀p1, p2 ∈P
�

p1 ⊥ p2→ i (p1)⊥ i (p2)
�

3. i [P] is dense inQ.

Proposition 1.79. Every poset P can be embedded densely in a complete boolean

algebraB , the completion of P.

Proof. Let Ap , p ∈ P be a basis for the order topology, i.e. Ap =
�

q ∈P : q ≤ p
	

.

LetB = RO(P), i (p ) = int cl(Ap ). It can now be verified thatB is indeed a com-

plete boolean algebra, and i is a dense embedding (see [1, II, Lemma 3.3]).

Theorem 1.80. Suppose i , P, andQ are in M , i : P→Q, and i is a dense embed-

ding. If G is M -generic for P, and H is the filter generated by i [G ] (or conversely,

H is M -generic forQ and G = i−1[H ]), then M [G ] =M [H ].

Proof. A complete proof for this statement can be found in [1, VII, Theorem

7.11].

Corollary 1.81. Every generic extension with a poset P is equivalent to the generic

extension withB the completion of P.

Thus, generic extensions with posets P is not a new tool for consistency

proofs. It is however more convenient in some practical cases to define a poset

P that produces the desired generic extension rather than defining a boolean

algebraB : but this will not be the case in the remainder of this paper.
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CHAPTER 2

CHARACTERIZATION OF

SET-GENERIC EXTENSIONS

Set-generic extensions have been characterized for the first time by the work

of L. Bukovsky [7]. The current presentation will follow a recent work of S. D.

Friedman [10].
We will start with an introduction with some useful tools (Section 2.1), then

present Laver’s Theorem [8] (Section 2.2) and Bukovsky’s Theorem (Section 2.3).

Afterwards, we shall see a recent generalization of Bukovsky’s Theorem by Fried-

man (Section 2.4), and finally use this results to prove that being a ground model

is a first-order definable property (Section 2.5).

Throughout this chapter M and V will be models of ZFC, with M ⊂ V and

ONM =ONV .

2.1 Basic Properties

In this chapter we will use extensively some properties of forcing extensions; the

basic results that we will need have been collected here.

Definition 2.1. Let M be a transitive class in V . A set A is κ-approximated in M

if and only if A ⊂M and for any B ∈M of size <κ, the intersection A ∩ B is in M ,

∀B ∈M : |B |M <κ→ A ∩ B ∈M

Definition 2.2. M κ-approximates V if and only if M contains every set A that is
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2 Characterization of Set-Generic Extensions 2.1 Basic Properties

κ-approximated in M ,

∀A ∈V (∀B ∈M : |B |M <κ→ A ∩ B ∈M )→ A ∈M

Definition 2.3. M κ-decomposes V if and only if any subset of M in V is the

union of at most κmany subsets in M ,

∀A ∈V (A ⊂M )→∃B ⊂M (|B |V ≤ κ∧A =
⋃

B )

Definition 2.4. M κ-covers V if and only if any subset of M in V of size < κ is

covered by such a set in M ,

∀A ∈V (A ⊂M ∧ |A |V <κ)→∃B ∈M (A ⊂ B ∧ |B |M <κ)

Definition 2.5. M globally κ-covers V if and only if for any f :α→M in V there

is a g :α→M in M such that f (i )∈ g (i ) and ∀i :
�

�g (i )
�

�

M
<κ,

∀α∈ON ∀ f ∈V
�

f ⊂ (α×M )∧ f is a function
�

→
∃g ∈M

�

g ⊂ (α×M )∧ g is a function ∧∀i <α ( f (i )∈ g (i )∧
�

�g (i )
�

�<κ)
�

The last definition is a slight strengthening of the previous one.

Proposition 2.6. If M globally κ-covers V then M κ-covers V .

Proof. Let A ⊂M be of size<κ, and let f :α→ A ⊂M , α= |A |V , be a bijection in

V . By global κ-covering let g :α→M be such that f (i )∈ g (i ).
By substitution C =

⋃

ran(g ) is in M and A ⊂ C since for all i , f (i ) ∈ g (i ).
Furthermore α<κ and for all i ,

�

�g (i )
�

�

M
<κ, so |C |M <κ ·κ= κ as required.

Except for κ-covering, all these properties hold monotonically in κ.

Proposition 2.7. If M κ-approximates (risp. κ-decomposes, globally κ-covers) V

and λ>κ, then M λ-approximates (risp. λ-decomposes, globally λ-covers) V .

Proof. Follows trivially from the definitions. Remark that a set λ-approximated

in M is also κ-approximated in M .

All this four properties hold for set-generic extensions, for some κ depend-

ing on the poset P used.

Proposition 2.8. Let V be a P-generic extension of M . If |P|M < κ, then M κ-ap-

proximates V .

Proof. Suppose towards a contradiction that A ∈ V \M , A ⊂M , and every κ-ap-

proximation of A is in M . Let Ȧ any P-name for A. Since A /∈M , for all p ∈ P we
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2 Characterization of Set-Generic Extensions 2.1 Basic Properties

may choose (by definability of �) a set xp ∈M such that p does not decide the

membership of xp in Ȧ, let B =
¦

xp ∈M : p ∈P
©

. Since |B |M < κ and B ∈M by

choice and definability of �, we must have A ∩ B = C ∈ M . Let q ∈ P be such

that q � Ȧ∩ B̌ = Č . For construction q does not decide whether xq ∈ Ȧ, but since

Ȧ ∩ B̌ = Č and xq ∈ B̌ , xq ∈ Ȧ ⇔ xq ∈ Č so q must not decide whether xq ∈ Č .

But 1 decides whether xq ∈ Č , a contradiction.

Proposition 2.9. Let V be a P-generic extension of M . If |P|M ≤ κ, then M κ-de-

composes V .

Proof. Let V = M [G ], where G is P-generic over M . Given A ∈ V , A ⊂ M , fix a

P-name Ȧ and for each p ∈ G let Ap =
¦

x ∈M : p � x̌ ∈ Ȧ
©

, B =
¦

Ap : p ∈G
©

.

Then A =
⋃

B is the desired κ-decomposition.

Proposition 2.10. Let V be a P-generic extension of M . If P is κ-cc, then M glob-

ally κ-covers V , hence κ-covers V (by Proposition 2.6).

Proof. Given f : α→ M in V as in the definition of global κ-covering, let ḟ be

any P-name for f , and

Q =
¦

p ∈P : p � ḟ is a function ∧dom ḟ = α̌∧ ran ḟ ⊂ M̌
©

From f and Q define g :α→M as:

g =
¦

〈i ,x 〉 ∈α×M : y ∈ x ↔∃py ∈Q py � ḟ (ǐ ) = y̌
©

By definability in M of � we have g ∈ M , and f (i ) ∈ g (i ) since there exists a

p � ḟ (ǐ ) = ǎ with a = f (i ).
Finally, for every element x ∈ g (i ) choose a condition px � ḟ (ǐ ) = x̌ ,

and define Qi =
�

px : x ∈ g (i )
	

. The set Qi must be an antichain, since

(q < px )∧ (q < py ) implies q � ( ḟ (ǐ ) = x̌ )∧ ( ḟ (ǐ ) = y̌ ) hence x = y and px = py .

But P is κ-cc so |Qi |M =
�

�g (i )
�

�

M
<κ.

Later in this chapter we will need to write down fist-order sentences, where

class quantification is not allowed. Then it will be useful to lift the properties

above from classes to subsets that satisfy a sufficiently large fragment of ZFC.

Proposition 2.11. If M κ-approximates (risp. κ-decomposes, κ-covers, glob-

ally κ-covers) V , and λ > κ is regular in V , then H (λ)M κ-approximates (risp.

κ-decomposes, κ-covers, globally κ-covers) H (λ)V .

Proof. For κ-approximation, given A ∈ H (λ)V with A ⊂ H (λ)M , A ⊂H (λ)M im-

plies that for any B ′ ∈M with |B ′|M < κ, A ∩ B ′ = A ∩ B ′ ∩H (λ)M = A ∩C with

C = B ′ ∩H (λ)M . We have then |C |M ≤ |B ′|M < κ < λ, C ∈ M , so C ⊂H (λ)M
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2 Characterization of Set-Generic Extensions 2.2 Laver’s Theorem

implies that C ∈H (λ)M , and by κ-approximation in M it must be A ∈ M . But

|A |V <λ⇒ |A |M <λ, A ∈M so A ⊂H (λ)M ⇒ A ∈H (λ)M .

For κ-decomposition, given A ∈ H (λ)V with A ⊂ H (λ)M , let A =
⋃

B ,

|B |V ≤ κ. Since every x ∈ B is x ⊂ A ⊂H (λ)M , x ∈M , |x |V ≤ |A |V < λ⇒ |x |M < λ,

we have x ∈H (λ)M hence B ⊂H (λ)M ; also, |B |V ≤ κ<λ hence B ∈H (λ)V .

For κ-covering, given A ∈ H (λ)V with A ⊂ H (λ)M , |A | < κ, let A ⊂ B ∈M by

κ-covering in M . If C = B ∩H (λ)M , we have |C |M ≤ |B |M < κ < λ and C ∈M so

C ⊂H (λ)M ⇒C ∈H (λ)M .

For global κ-covering, given f ∈ H (λ)V , f : α → H (λ)M , define g ∈ M ,

g :α→M by globally κ-covering in M , and let g ′ be such that

g ′ = g ∩ (α×H (λ)M )

Then g ′ covers f , g ′ ⊂H (λ)M , and α<λ hence
�

�g ′
�

�

M
<λ⇒ g ′ ∈H (λ)M .

The converse also holds, as we will see below.

Proposition 2.12. If there exists λ0 such that for all regular λ> λ0, H (λ)M κ-ap-

proximates (risp. κ-decomposes, κ-covers, globally κ-covers) H (λ)V , then M κ-

approximates (risp. κ-decomposes, κ-covers, globally κ-covers) V .

Proof. For every property, the verification for a set A is trivially achieved by let-

ting λ be such that A ∈H (λ)V .

2.2 Laver’s Theorem

In this section we will prove that if V is a set-generic extension of M , then M is

definable in V with parameters in M (Laver’s Theorem 2.16).

This will be achieved by first showing a well-known basic result (Theorem

2.13), then we’ll make use of a simultaneous covering property to obtain (The-

orem 2.15) that inner models satisfying the κ-covering and κ-approximation

properties are unique fixed the set H (κ+)M .

Theorem 2.13 (ZFC− P). If M , N are inner models of V that share the same sets of

ordinals, then M =N .

Proof. Let A ∈M , we will show that also A ∈N . Let B = trcl({A}) and κ be such

that |B |M ≤ κ, and f ∈M be any 1-1 map f : B→ κ. Define a relation R on κ by:

αRβ⇔α,β ∈ ran( f )∧ f −1(α)∈ f −1(β )

With the bijectionδ : κ×κ→ κ (δ ∈M∩N since it is∆0-definable), we obtain that

δ[R]∈M∩N since is a set of ordinals, thenδ−1[δ[R]] =R ∈M ∩N . The transitive
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2 Characterization of Set-Generic Extensions 2.2 Laver’s Theorem

collapse of a well-founded relation R on κ, ΠR : κ→ H (κ) is ∆1-definable then

ΠR ∈M ∩N , hence ΠR ( f (A)) = A ∈M ∩N .

Lemma 2.14 (ZFC− P). If M , N are inner models of V that κ-cover and κ-approx-

imate V , then for every A ∈ V subset of size <κ of a C ∈M ∩N of arbitrary size is

covered by a set B ∈M ∩N with |B | ≤ κ.

Proof. Given A ∈ V , A ⊂C ∈M ∩N , |A |V < κ, define a κ-chain A = A0 ⊆ A1 ⊆ . . .

of sets such that |A i | < κ, A i ⊂ C , A2j+1 ∈ M , A2j+2 ∈ N . This is possible by

κ-covering for M , N taking each time the intersection with C . Let B =
⋃

i A i ,

|B | ≤ κ. Any κ-approximation of B with a set in M (risp. N ) must lie in M (resp.

N ), because for any |D | < κ the sequence A i ∩D must equal B ∩D from some

index on (by regularity). So by κ-approximation B ∈M , B ∈N .

Theorem 2.15 (ZFC − P). If M , N are inner models of V which κ-cover and

κ-approximate V such that H (κ+)M =H (κ+)N , then M =N .

Proof. We show that any A ∈M is also in N , the converse is specular. By Theo-

rem 2.13, we let A be a set of ordinals without loss of generality.

First, let A ∈M be a set of < κ ordinals. By Lemma 2.14, let B ⊃ A be of size

≤ κ, B ⊂ ON. Let ΠB : trcl B → κ be the transitive collapse of B , ΠB ∈ M ∩N

since B ∈M ∩N and ΠB is ∆1-definable. N , M have the same subsets of κ, so

C =ΠB [A]must be in M ∩N , and Π−1
B [C ] = A then A ∈M ∩N .

Now let A ∈M be a set of ordinals of arbitrary size. By the result above every

B ∈M of size<κ is such that B ∩ON∈M ∩N , so from A ∩B ∈M and |A ∩ B |<κ
follows that A ∩ B ∈M ∩N . Thus, by κ-approximation A ∈N .

From the uniqueness Theorem 2.15, we can now obtain the following.

Theorem 2.16 (Laver). If V is a set-generic extension of M , then M is a definable

inner model of V with parameters in M .

Proof. By Proposition 2.8 and 2.10 M κ-approximates and κ-covers V for κ

greater than |P|M , so by Theorem 2.15 M is the unique such model given

K =H (κ+)M . Let us put down this intuition into a first-order statement.

Notice that:

x ∈M ⇔∃λ : λ is a regular cardinal ∧ x ∈H (λ)M

Then it suffices to give a definition of H (λ)M for λ regular. The sets H (λ)M and

H (λ)V are both models of ZFC−P, and by Proposition 2.11 H (λ)M κ-approximates

and κ-covers H (λ)V . By Theorem 2.15, H (λ)M is then definable as the unique set

that κ-covers and κ-approximates H (λ)V given K =H (κ+)M .
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2 Characterization of Set-Generic Extensions 2.3 Bukovsky’s Theorem

Then x ∈H (λ)M ⇔φ′(x , K ,κ,λ), whereφ′(x , y ,κ,λ) is

�

∃A : x ∈ A ∧ A κ-cover and κ-approximate H (λ)V ∧ H (κ+)A = y
�

Thus M is definable from κ, K as x ∈M ⇔φ(x , K ,κ)where:

φ(x , y , z ) =
�

∃λ : λ is a regular cardinal ∧ φ′(x , y , z ,λ)
�

2.3 Bukovsky’s Theorem

In this section we will characterize κ-cc generic extensions as extensions with

the global κ-cover property. The left-to-right implication is in fact Proposition

2.10, the right-to-left one is Bukovsky’s Theorem 2.31.

This will be achieved by first showing that for any A, M [A] is a κ-cc forcing

extension, and then showing that V itself is of the form M [A] for some carefully

chosen A.

Since we are willing to define a forcing extension M [A], we need a poset in

M in which A could be a generic filter. Let
¬

eκ,Bλ
κ

¶

= Frκ(λ) ∈ M be a free

κ-complete boolean algebra generated by λ in M . Remark that for every κ′ > κ,

we can embedBλ
κ as a subalgebra ofBλ

κ′ by taking the κ-complete morphism f

such that f ◦eκ = eκ′ (sinceBλ
κ′ isκ′-complete henceκ-complete). From now on,

we will then suppose without loss of generality thatBλ
κ ⊂B

λ
κ′ for every κ<κ′.

The boolean algebra Bλ
κ can be identified with the boolean algebra of

propositional logic formulas built from the atomic formulas “α ∈ x ”, α<λ,

where x represents an unknown subset A ⊂ λ, using negation, conjunction and

disjunction for sets of size <κ.

Theorem 2.17. There is a bijection between subsets of λ and κ-complete ultrafil-

ters inBλ
κ .

Proof. Let h : Ultκ(Bλ
κ )→P (λ) be defined by h(U ) = e−1

κ [U ]. We show that h is

a bijection.

For every subset A ⊂ λ let f A : λ → 2 be such that ( f A (i ) = 1)↔ (i ∈ A).
SinceBλ

κ is free over λ, f A can be extended uniquely to a κ-complete morphism

g A :Bλ
κ → 2, g A ◦ eκ = f A . Then UA = g −1

A [1] is a κ-complete ultrafilter, and

h(UA ) = e−1
κ [UA ] = e−1

κ ◦ g −1
A [1] = f −1

A [1] = A

Furthermore, any κ-complete ultrafilter U ′A such that e−1
κ [U

′
A ] = A induces a

κ-complete morphism g ′A : Bλ
κ → 2, g ′A (b ) = 1⇔ b ∈ U ′A , with g ′A ◦ eκ = f A .

Then g ′A = g A (by uniqueness of g A ) hence U ′A =UA .

30



2 Characterization of Set-Generic Extensions 2.3 Bukovsky’s Theorem

Definition 2.18. Given A ⊂ λ in V , let Uκ
A ∈ V be the ultrafilter corresponding to

A in the boolean algebraBλ
κ .

In the propositional logic identification, the ultrafilter Uκ
A is the set of formu-

las true for x = A. Notice that if A /∈M also Uκ
A /∈M .

The setBλ
κ seems to have the expressive power needed to interpret M [A] as

a generic extension for any A ⊂ λ. In fact, this is not the case since for example

it is not κ-cc, fact that will be crucial later in the proof of Theorem 2.31.

To obtain a poset that meets all this requirements we will take an appropriate

ideal IA ofBλ
κ and define PA =Bλ

κ /IA −{0}, by means of the global κ-covering

property.

Definition 2.19. Let f A :P (Bλ
κ )

M →Bλ
κ in V be such that:

∀Φ∈P (Bλ
κ )

M :
�

Φ∩Uκ
A 6= ;

�

→
�

f A (Φ)∈
�

Uκ
A ∩Φ

��

Such an f A must exist: for example, we can take the composition of f ′ such

that f ′(Φ) = Φ∩Uκ
A with any choice functionP (Uκ

A )→Uκ
A . Since f A ∈ V , we can

use the global κ-covering property to define:

Definition 2.20. Let g ′A :P (Bλ
κ )

M →P (Bλ
κ )

M in M such that:

∀Φ∈P (Bλ
κ )

M :
�

�g ′A (Φ)
�

�<κ ∧ f A (Φ)∈ g ′A (Φ)

Let g A (Φ) = g ′A (Φ)∩Φ. We now define the theory TA of the formulas used in

the definition of g A : since g A ∈M , also TA will be in M .

Definition 2.21. Let TA ⊂Bλ
θ , with θ =

�

2|Bλ
κ |
�+
=
�

2λ<κ
�+

, in M such that:

TA =
n�
∨

Φ→
∨

g A (Φ)
�

: Φ⊆Bλ
κ

o

The set TA is included in Uθ
A : if

∨

Φ ∈ Uθ
A , then Φ ∩Uθ

A = Φ ∩Uκ
A 6= ; (by

θ -completeness of Uθ
A ), so f A (Φ)∈Uκ

A and
∨

g A (Φ)∈Uθ
A . Thus

∧

TA 6= 0.

Definition 2.22. Let IA ⊂Bλ
κ in M be such that:

IA =
n

φ ∈Bλ
κ :

∧

(TA ∪
�

φ
	

) = 0 in Bλ
θ

o

The set IA is disjoint from Uκ
A , otherwise if φ ∈ IA ∩Uκ

A , the θ -complete ul-

trafilter Uθ
A would contain 0=

∧

(TA ∪
�

φ
	

), since TA ⊂Uθ
A .

Lemma 2.23. IA is an ideal inBλ
κ .
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Proof. Givenφ,ψ in IA ,
∧

(TA ∪
�

φ ∨ψ
	

) =
∧

(TA ∪
�

φ
	

)∨
∧

(TA ∪
�

ψ
	

) = 0∨0= 0,

hence (φ∨ψ)∈ IA . Givenρ ∈Bλ
κ ,
∧

(TA ∪
�

φ ∧ρ
	

) =
∧

(TA ∪
�

φ
	

)∧ρ = 0∧ρ = 0,

hence (φ ∧ρ)∈ IA . This completes the proof.

Definition 2.24. Let PA =Bλ
κ /IA −{0}.

In the propositional logic identification, the poset PA is the set of TA -

consistent formulas inBλ
κ modulo TA -provability.

Lemma 2.25. PA is κ-cc.

Proof. Let Q be a maximal antichain in PA , and Φ⊂Bλ
κ a set of representatives

of Q , so that Q =
�

[φ]IA :φ ∈Φ
	

. By definition of g A , g A (Φ) ⊆ Φ and
�

�g A (Φ)
�

� < κ:

we will show that g A (Φ) = Φ which implies |Φ| < κ hence |Q | < κ. It suffices to

show that any φ ∈ Φ is IA -compatible with some φ′ ∈ g A (Φ) ⊂ Φ, since Φ being

an antichain implies thatφ ∧φ′ /∈ IA ⇒ [φ ∧φ′]IA 6= 0⇒ [φ]IA = [φ′]IA ⇒φ =φ′.
Every φ ∈ Φ is not in IA , hence there is a lower bound ρ > 0 for TA ∪

�

φ
	

.

Since ρ is nonzero, it must be contained in a θ -complete ultrafilter Uθ
B ⊂ B

λ
θ ,

and ρ ∈Uθ
B implies that TA ⊂Uθ

B andφ ∈Uθ
B .

Since TA ⊂Uθ
B includes

�
∨

Φ→
∨

g A (Φ)
�

, and Uθ
B contains ρ <φ <

∨

Φ, we

must have
∨

g A (Φ) ∈ Uθ
B . Then by θ -completeness some φ′ ∈ g A (Φ) must be

in Uθ
B , so φ ∧φ′ ≥ ρ ∧φ′ = ρ′ ∈Uθ

B and ρ′ > 0. Then ρ′ is a lower bound for

TA ∪
�

φ ∧φ′
	

henceφ ∧φ′ /∈ IA and [φ]IA is compatible with [φ′]IA .

Lemma 2.26. GA =Uκ
A /IA is PA -generic over M .

Proof. Let Φ be a set of representatives of a maximal antichain Q ⊂ PA . Since PA

is κ-cc, |Φ| < κ then let
∨

Φ = ψ ∈ Bλ
κ by κ-completeness. Then [ψ]IA = [1]IA ,

otherwise
�

[¬ψ]IA

	

∪Q would be an antichain extending Q , contradicting maxi-

mality of Q .

Then
∨

Φ=ψ∈ [1]IA ⊂Uκ
A since Uκ

A is disjoint from IA , and someφ ∈Φmust

be in Uκ
A . Hence [φ]IA ∈GA ∩Q and GA is PA -generic over M .

We can now prove the following main lemma of the Bukovsky’s Theorem.

Theorem 2.27. If M globally κ-covers V , and A ∈ V is a subset of λ, then M [A] is

a κ-cc generic extension.

Proof. Define PA and GA as before. M [GA ] is a κ-cc generic extension by Lemma

2.26, so it is enough to show that M [A] =M [GA ].
First we have A ∈M [GA ], since the set A is named by τ=

�


α̌, [α]IA

�

: α<λ
	

,

thus M [A]⊆M [GA ].
Furthermore, GA is constructible from A, PA hence M [A] ⊇ M [GA ], then

M [A] =M [GA ] as required.
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The last result can be extended to any A subset of M , as the following shows.

Lemma 2.28. Any extension M [A] with A ⊂M , is equivalent to a M [B ] =M [A]
where B is a set of ordinals.

Proof. Since A ∈ V , also α =
⋃

{rank(x )+1 : x ∈ A} is a ordinal in V (hence in

M ), and A ⊂C =Vα ∩M =Mα ∈M .

Now, let φ ∈ M be a bijection φ : C → λ = |C |, and fix B = φ[A] in M [A].
Since φ is in M , the class M [A]must contain B as well as M [B ]must contain A,

so M [A] =M [B ]with B set of ordinals.

Lemma 2.29. If M globally κ-covers V , A ⊂M , then M [A] globally κ-covers V .

Proof. Given f : α → M [A], f ∈ V , by Theorem 2.27 and 2.28 M [A] is a κ-cc

generic extension, then for all x ∈M [A] let τx ∈MP be such that x = valA (τx ).
Let f ′ :α→M in V be such that f ′(i ) =τ f (i ).

By global κ-covering in M , let g ′ :α→M that covers f ′, and g ′′ :α→P (MP)
be the intersection of g ′ with α×P (MP) by constructibility of MP.

f is then covered by g : α → M [A] in M [A], defined by g (i ) = valA [g ′′(i )],
hence M [A] globally κ-covers V .

Theorem 2.30. Any nontrivial κ-cc generic extension adds a subset of κ.

Proof. By Lemma 1.14, a κ-cc algebraB is not κ+-distributive. So let Di , i < κ

be dense sets such that
⋂

Di = ;, and define recursively two sequences A i , D ′i :

• D ′0 =D0,

• A i =
¦

p i j ∈P : j <θi <κ
©

maximal antichain in D ′i ,

• D ′i+1 =
¦

p ∈Di+1 : ∃j <θi p < p i j

©

, dense below A i ,

• D ′α =
⋂

i<αD ′i , for α limit.

The construction stops for some θ ≤ κ, when
⋂

i<θ D ′i = ;.
Let ḟ =

nD

ˇ¬

i , p i j

¶

, p i j

E

: i <θ , j <θi

o

, f = [ ḟ ]G . f can not be in M , otherwise

ran( f ) would be a chain inB , and
∧

ran( f ) would be in every D ′α, α< θ , hence

in D ′θ = ;. Then f is a new subset of κ×κ, so given δ : (κ×κ)→ κ, δ[ f ] is a new

subset of κ.

Theorem 2.31 (Bukovsky). If M ⊂V are models of ZFC, where M globallyκ-covers

V , then V is a κ-cc generic extension of M .
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2 Characterization of Set-Generic Extensions 2.4 Forcing Extensions by Size

Proof. Let A =P V (κ). Since M [A] is transitive, it contains all subsets of κ in V .

By Lemma 2.27 and 2.28, every extension M [B ]with B ⊂M is a κ-cc generic

extension. Then M [A] is κ-cc generic and, by Lemma 2.29, globally κ-cover V .

By Theorem 2.27 in M [A] every extension M [A, B ] is also κ-cc generic, then by

Theorem 2.30 must be trivial since it does not add any subset of κ (all such sets

in V are already in M [A]).

Then every B ⊂M , B ∈ V , is also in M [A], hence M [A] and V are models of

ZFC sharing the same sets of ordinals, hence by Theorem 2.13 V =M [A].

2.4 Forcing Extensions by Size

The results in the previous section characterize κ-cc forcing extensions as ex-

tensions with the global κ-covering property. A reasonable question is whether

it should be possible to characterize forcing extensions also by size. The answer

is affirmative, and we will show in this section that size at most κ forcing exten-

sions match with model extensions with both the κ-decomposition and global

κ+-covering property.

The left-to-right implication is in fact Proposition 2.9 and 2.10 (together with

the trivial fact that size at most κ implies κ+-cc), the right-to-left one will be

shown at the end of this section (Theorem 2.34).

Since we have required the globally κ+-cover property, we can use Bukov-

sky’s Theorem 2.31 to take a κ+-cc poset P∈M and a P-generic filter G such that

V =M [G ]. Without loss of generality, we can assume that P is indeed P=B\{0}
with B a complete κ+-cc boolean algebra (the completion of P). However, P
may not have the required limitation of size, so we need to find a smaller poset

to force with. The easier way is to take any dense set D ⊂P, D ∈M of the required

size, since forcing with the sub-order induced on D is equivalent to forcing with

the whole P.

Lemma 2.32. If D ∈ M , D ⊂ P is dense in P, and G is a P-generic filter, then

M [G ] =M [G ∩D].

Proof. Let us show that G ∩D is indeed a D-generic filter, by first proving that

G ∩D is dense in G . So let g ∈ G , and D ′ =
�

p ∈P : p ⊥ g
	

∪
�

p ∈D : p ≤ g
	

.

The set D ′ is dense in M , since if p is compatible with g they have a common

extension q and, by density of D, ∃r q ≥ r ∈D so r ≤ g hence r ∈D ′, r ≤ p . Then

∃s ∈G ∩D ′, and s ∈G ⇒ s ‖ g hence s ∈D ′⇒ s ≤ g , that completes the proof of

density of G ∩D in G .

Moreover, G ∩D is a filter in D, as closure by ≤ is obviously inherited from

G , and given any p ,q ∈G ∩D they must have a common extension q ∈G , and
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2 Characterization of Set-Generic Extensions 2.4 Forcing Extensions by Size

by density of G ∩D, a common extension q ≥ r ∈ G ∩D. The set G ∩D is also

D-generic, since any D ′ dense in D is also dense in P hence intersects G (and

G ∩D since D ′ ⊂D).

Finally, M [G ∩D] ⊂ M [G ] since G , D ∈ M [G ] ⇒ G ∩D ∈M [G ]. Vice versa,

G ∩D, P ∈M [G ∩D] implies that G =
�

g ∈P : ∃q ∈G ∩D q ≤ g
	

is in M [G ∩D]
hence M [G ]⊂M [G ∩D] (the last equality holds since G ∩D is dense in G , and G

is closed by ≤).

The dense set D will be defined by taking the infimum of every element of a

decomposition of G ; so we will first need to prove that this infimum exists in P.

Lemma 2.33. If G isB-generic over M and A ⊂G is in M , then
∧

A > 0.

Proof. Suppose instead that
∧

A = 0, and define

D =
�

p ∈B : ∃q ∈ A p ∧q = 0
	

D is dense in B \ {0}: given r ∈ B \ {0},
∧

A = 0 then ∃b ∈ A with r � b , and

q = (r ∧¬b ) is an extension of r in D (since q∧b = 0), and q 6= 0 since (r ∧¬b ) = 0
would imply r ≤b .

Since D is dense, D ∈M , G ∩D 6= ; then let p ∈G ∩D. Since p ∈ D, there is

a b ∈ A with p ∧b = 0, but b ∈ A ⊂G so G contains two elements b , p that are

incompatible hence it is not a filter, a contradiction.

We can now define a dense set D of size at most κ, and then prove the fol-

lowing Theorem 2.34 (Friedman, [10]).

Theorem 2.34. If M ⊂ V are models of ZFC, where M κ-decomposes and globally

κ+-covers V , then V is a size at most κ generic extension over M .

Proof. As mentioned above, by Theorem 2.31 V is a generic extension with a

κ+-cc boolean algebraB , P=B \{0}. Let us define a dense set D ⊂ P of size at

most κ.

Since M κ-decomposes V , for every G generic exists a κ-decomposition

G =
⋃

i<κ g (i ), then

M [G ] |= ∃x [x ⊂ (κ×M )∧x is a function ∧G =
⋃

i<κ

x (i )]

By definition of �,

1� ∃x [x ⊂ (κ̌× M̌ )∧x is a function ∧Ġ =
⋃

i<κ

x (i )]
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2 Characterization of Set-Generic Extensions 2.5 The Ground Axiom

Then, by fullness lemma, it exists a name ġ such that

1� [ġ ⊂ (κ̌× M̌ )∧ ġ is a function ∧Ġ =
⋃

i<κ

ġ (i )]

For every i <κ, 1� ġ (i )∈ M̌ , so the set

Di =
¦

p : ∃A ∈M p � ġ (i ) = Ǎ
©

of conditions that decide membership in ġ (i ) is dense. Let X i =
¦

p i j : j <λi

©

be a maximal antichain in Di , and let A i j ∈M such that p i j � ġ (i ) = ˇA i j . Since P
is κ+-cc, λi ≤ κ.

Now, for every i < κ, j < λi ≤ κ, p i j � ġ (i ) = ˇA i j ⇒ p i j � ˇA i j ⊂ Ġ ; so by

Lemma 2.33 there must be a condition qi j > 0 such that p i j �
∧

ˇA i j = ˇqi j , hence
∧

A i j =qi j . Let D =
¦

qi j : i , j <κ
©

, |D |= κ ·κ= κ.

Let us show that D is dense: given any r ∈ P, r � ř ∈ Ġ =
⋃

i<κ ġ (i ). So

r � ∃i ř ∈ ġ (i ) and by the fullness lemma there must be a s ≤ r , α < κ such that

s � ř ∈ ġ (α). Since Xα is a maximal antichain, there is a β < κ such that pαβ ‖ s ,

so (s ∧pαβ )� ř ∈ ˇAαβ ⇒ r ∈ Aαβ and so r ≥qαβ ∈D and D is dense.

Since D is dense, D ∈M and |D | ≤ κ, by Lemma 2.32 V =M [G ] =M [G ∩D]
is a size at most κ generic extension over M .

2.5 The Ground Axiom

In the last two sections we have characterized forcing extensions of various kind

with properties of the models, verifiable without need of the poset P or the

generic G . This results, combined with Laver’s Theorem and the basic results

at the beginning of the chapter, can be used to obtain a first-order expression of

“being some kind of a forcing extension of some model M ”.

A remarkable case of this approach is the Ground Axiom.

Ground Axiom. The set-theoretic universe V is not a forcing extension of any in-

ner model M .

The Ground Axiom seems to be second-order hence not a valid axiom for

canonical set theory: we then need to write down a first-order equivalent of

it. Before discussing the first-order transposition of the Ground Axiom, we will

transpose the properties studied in Sections 2.3 and 2.4.

Theorem 2.35. There is a first-order sentence φ1(κ) that holds in V if and only if

V is a κ-cc generic extension of some inner model M .
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2 Characterization of Set-Generic Extensions 2.5 The Ground Axiom

Proof. By Theorem 2.31, we already know that V is a κ-cc generic extension of

some inner model M if and only ifψ(κ) = ∃M : M |= ZFC ∧M globally κ-covers V .

The sentenceψ(κ) is still second-order, so we need some further manipulation.

First, it is obvious thatψ(κ) is equivalent toψ′(κ):

∃λ∃K ∃M : M |= ZFC ∧H (λ+)M = K ∧M globally κ-covers and λ-approximates V

ψ′(κ) is also second-order, and is equivalent toψ(κ) since we can choose for M

the same M as inψ, for λ, K any λ> |P|V , K =H (λ+)M . The advantage ofψ′(κ)
is that it is closer to the first-order sentenceφ1(κ):

∃λ ∃K ∀γ>λ regular ∃W : W |= ZFC− P ∧ H (λ+)W = K

∧W globally κ-covers H (γ)V

∧W λ-approximates H (γ)V

First, we have that ψ′(κ) ⇒ φ1(κ), since for any γ > λ regular we can take

for W the structure H (γ)M with M satisfying ψ′(κ). This way, W |= ZFC − P

and H (λ+)W = K hold trivially, while covering and approximation hold by

Proposition 2.11.

We now prove that φ1(κ) ⇒ ψ′(κ). By the uniqueness Theorem 2.15 (and

the fact that globally κ-cover imply λ-cover by Proposition 2.7 and 2.6), given γ

the model W is unique; let us call it Wγ. Then H (δ)Wγ =Wδ, for δ < γ, since by

Proposition 2.11 both the two sets meet the hypotheses of Theorem 2.15 for λ,

H (δ)V .

Let M =
⋃

Wγ, since the sequence Wγ is coherent. M |= ZFC follows by mov-

ing to a large enough H (γ)M , H (λ+)M = H (λ+)Wγ = K holds trivially, covering

and approximation holds by Proposition 2.12, thus M witnesses the truth of

ψ′(κ).

Theorem 2.36. There is a first-order sentence φ2(κ) that holds in V if and only if

V is a size at most κ generic extension of some inner model M .

Proof. The procedure follows exactly the one of the previous proof. By Theorem

2.34, we already know that V is a size at most κ generic extension of some inner

model M if and only if

ψ(κ) = ∃M : M |= ZFC∧M globally κ+-covers and κ-decomposes V

ψ(κ) is trivially equivalent toψ′(κ):

∃λ∃K ∃M : M |= ZFC ∧ H (λ+)M = K ∧ M globally κ+-covers V

∧M κ-decomposes and λ-approximates V
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2 Characterization of Set-Generic Extensions 2.5 The Ground Axiom

The first-order equivalentφ2(κ)will then be:

∃λ ∃K ∀γ>λ regular ∃W : W |= ZFC− P ∧ H (λ+)W = K

∧W globally κ+-covers H (γ)V

∧W κ-decomposes H (γ)V

∧W λ-approximates H (γ)V

First,ψ′(κ)⇒φ2(κ), since by Proposition 2.11 we can take W =H (γ)M .

We now prove that φ2(κ) ⇒ ψ′(κ). By the uniqueness Theorem 2.15 and

Proposition 2.11, given γ the model W must be unique and the sequence Wγ is

coherent; then let M =
⋃

Wγ. M witnesses the truth of ψ′(κ) by moving each

step to a large enough H (γ)M , and using Proposition 2.12.

Givenφ1(κ) orφ2(κ), we can now write down a first-order equivalent for the

Ground Axiom.

Corollary 2.37. There is a first-order sentence φ3 that holds in V if and only if V

is a not a generic extension of any inner model M .

Proof. Such sentences are:

φ3 =
�

¬∃κ κ regular cardinal ∧φi (κ)
�

with i = 1, 2.
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CHAPTER 3

APPROXIMATED EXTENSIONS

Throughout this chapter we will try to define, given M ⊂ V transitive models of

ZFC with ONM =ONV such that M κ-covers V , another model N of ZFC such that

M ⊂ N ⊂ V that will be the “closure” of M by κ-approximation (i.e., such that

N κ-approximate V ). To verify that a class N is a model of ZFC we will use the

Theorem 3.3 below [2, Theorem 13.9].

Definition 3.1. G i is a Gödel operation if

G1(X , Y ) = {X , Y }
G2(X , Y ) = X ×Y

G3(X , Y ) = ∈ (X , Y ) =
�


x , y
�

∈X ×Y : x ∈ y
	

G4(X , Y ) = X \Y

G5(X , Y ) = X ∩Y

G6(X ) =
⋃

X

G7(X ) = dom(X )
G8(X ) =

�


x , y
�

:



y ,x
�

∈X
	

G9(X ) =
�


x , y , z
�

:



x , z , y
�

∈X
	

G10(X ) =
�


x , y , z
�

:



y , z ,x
�

∈X
	

A class N is closed under Gödel operations if G i (X , Y )∈N whenever X , Y ∈N .

Definition 3.2. A class N is almost universal in V iff for every subset A ⊂N in V

there is a C ∈N superset of A.

Theorem 3.3. A transitive class N is an inner model of ZF if and only if it is almost

universal and closed under Gödel operations.

39



3 Approximated Extensions

Proof. Since Gödel operations are absolute for transitive models, an inner

model is necessarily closed under Gödel operations. If X is a subset of an in-

ner model N , then X ⊂Vα∩N =Nα for some α. Thus the condition is necessary.

Now let N be a transitive almost universal class that is closed under Gödel

operations, and examine the axioms of ZF.

extensionality, foundation, infinity. N is transitive therefore extensional, in-

finity holds sinceω is absolute for transitive models, foundation holds in

any class.

pairing, union. Follow from the fact N is closed under G1, G6.

replacement, power set. Follow from almost universality of N .

comprehension. The axiom of comprehension requires that for every X ∈ N ,

the set Y =
�

u ∈X : φN (u )
	

is in N . Ifφ is a∆0 formula, Y can be obtained

from X by a careful application of Göedel operations: the verification is

lengthy but easy (can be found in [2, Theorem 13.4]).

Otherwise, ifφhas k quantifiers, letφ′(u 1, . . . , u n , Y1, . . . , Yn ) be the∆0 for-

mula obtained by replacing each ∃x (or ∀x ) in φ by ∃x ∈ Yi (or ∀x ∈ Yi )

for i = 1..k . We shall prove, by induction on k , that for every φ(u 1, . . . , u n )
with k quantifiers, for every X ∈N there exists Y1, . . . , Yk ∈N such that:

∀u 1, . . . , u n ∈X : φN (u 1, . . . , u n )⇔φ′(u 1, . . . , u n , Y1, . . . , Yk )

then the existence of Y ∈N will follow from∆0-comprehension.

If k = 0 then φ =φ′. For the induction step, let φ(u ) be ∃v ψ(u , v ) where

ψ has k quantifiers. Thus φ′ is ∃v ∈ Yk+1 ψ′(u , v, Y1, . . . , Yk ). By collection

in V , there exists a set A ∈V such that:

∃v ∈N ψN (u , v )⇔∃v ∈ A v ∈N ∧ψN (u , v )⇔∃v ∈ (A ∩N )ψN (u , v )

Since N is almost universal, take Yk+1 ∈ N such that (A ∩N ) ∪ X ⊂ Yk+1.

The above equivalence then will hold also with Yk+1 in place of A ∩N . By

the induction hypothesis, given Yk+1 ∈ N , there exists Y1, . . . , Yk ∈ N such

that for all u , v ∈ Yk+1:

ψN (u , v )⇔ψ′(u , v, Y1, . . . , Yk )
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3 Approximated Extensions 3.1 Approximated Sets

Since X ⊂ Yk+1, we have for all u ∈X :

φN (u ) ⇔ ∃v ∈N ψN (u , v )
⇔ ∃v ∈ Yk+1 ψN (u , v )
⇔ ∃v ∈ Yk+1 ψ′(u , v, Y1, . . . , Yk )
= φ′(u , Y1, . . . , Yk+1)

This completes the proof.

3.1 Approximated Sets

The intuition suggests us that a model N “closed by κ-approximation” should at

least contain all sets κ-approximated in M .

Definition 3.4. LetAM =
�

X ∈V : X κ-approximated in M
	

.

Clearly AM is M ⊂ AM ⊂ V as required, however it is not a model of ZFC:

AM satisfy all axioms in ZFC except for pairing, power set and comprehension.

This fact reflects on Gödel operations inAM .

Theorem 3.5. The class AM of sets κ-approximated in M is closed under all

Gödel operations except pair.

Proof. Let X , Y be sets in AM , z ∈ M be of size < κ, and C ∈ M be such that

X ∪Y ⊂C . We will examine the operations G2, . . . ,G10 in a convenient order.

2. (X ×Y )∩ z = [(X ∩dom(z ))× (Y ∩ ran(z ))]∩ z ∈M hence G2(X , Y )∈AM .

4. (X \Y )∩ z = (X ∩ z ) \ (Y ∩ z )∈M hence G4(X , Y )∈AM .

5. (X ∩Y )∩ z = (X ∩ z )∩ (Y ∩ z )∈M hence G5(X , Y )∈AM .

3. ∈ (X , Y ) = (X ×Y )∩
�


x , y
�

∈C 2 : x ∈ y
	

hence G3(X , Y ) ∈AM by the pre-

vious point.

7. Let ran(X )∩z = A, by choice in V let B such that X [B ] = A and X restricted

to B is 1-1; so |B | = |A | < κ. Then by κ-covering let B ⊂ B ′ ∈ M with

|B ′|<κ. Now ran(X )∩ z = ran(X ∩ B ′)∩ z ∈M then ran(X )∈AM .

By the same way can be obtained G7(X ) = dom(X )∈AM . Also, f [X ]∈AM

when f , X ∈AM , since f [X ] = ran( f ∩ (X × ran( f ))∈AM .

6.
⋃

X = f [X ]where f =
�


x , y
�

∈C 2 : y ∈ x
	

∈M , hence G6(X ) ∈AM by the

previous point.
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3 Approximated Extensions 3.1 Approximated Sets

8. G8(X ) = f [X ] where f : dom(C )× ran(C )→ ran(C )× dom(C ) is such that

f (〈a ,b 〉) = 〈b , a 〉, hence G8(X ) ∈ AM by the previous point. The other

converses operations G9,G10 are obtained similarly.

Notice thatAM is also closed by finite unions,

(X ∪Y )∩ z = (X ∩ z )∪ (Y ∩ z )∈M hence (X ∪Y )∈AM

This property usually follows from closure under G1 and G6, but AM is not

closed under G1 so this property is in fact independent from the others.

SinceAM is almost closed under Gödel operations, it turns out to satisfy a

restricted form of comprehension, that will be useful later.

Theorem 3.6. Let M be a inner definable class model of ZFC. The class AM of

sets κ-approximated in M satisfies comprehension relativized to M , i.e. for every

A, B1, . . . Bm ∈AM ,φ formula, exists X ∈AM such that

X =
¦

x ∈ A : φM (x , B1, . . . , Bm )
©

Proof. Let us prove that

X =
¦

〈x1, . . . ,xn 〉 ∈ A1× . . .×An : φM (x1, . . . ,xn , B1, . . . , Bm )
©

is inAM , with φ as in the hypothesis, A1, . . . , An , B1, . . . Bm inAM . We will prove

it by induction on the length ofφ, using the previous Theorem 3.5.

Let
⋃

A i ⊂C ∈M . Ifφ is

• x i = x j , x i ∈ x j : thenφ =φM and

X =
�∏

A i

�

∩
¦

〈x1, . . . ,xn 〉 ∈C n : x i = x j (resp. x i ∈ x j )
©

• Bi = x j , Bi ∈ x j : thenφ =φM and

X =
�∏

A i

�

∩
¦

〈x1, . . . ,xn 〉 ∈C n : Bi = x j (resp. Bi ∈ x j )
©

if Bi is in M , X = ; otherwise, since all x i will always vary in M .

• x i ∈ B j : thenφ =φM and X = A1× . . .×A i−1× (A i ∩ B j )×A i+1× . . .×An .

• ¬ψ: then X =
�
∏

A i

�

\
�

〈x1, . . . ,xn 〉 ∈ A1× . . .×An : ψM
	

.

• ψ1 ∧ψ2: then

X =
¦

〈x1, . . . ,xn 〉 ∈ A1× . . .×An : ψM
1

©

∩
¦

〈x1, . . . ,xn 〉 ∈ A1× . . .×An : ψM
2

©
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κ

• ∃xn+1 ψ: by definition, we have

X =
¦

〈x1, . . . ,xn 〉 ∈ A1× . . .×An : (∃xn+1 ∈M )ψM
©

By collection in V , given A1, . . . , An there must be an Y ∈V such that

∃xn+1 (x ∈M ∧ψM ) ⇔ ∃xn+1 ∈ Y (x ∈M ∧ψM )
⇔ ∃xn+1 ∈ (Y ∩M ) ψM

⇔ ∃xn+1 ∈ An+1 ψM

where An+1 ∈M is such that Y ∩M ⊂ An+1, by almost universality of M in

V . Thus we can obtain X as

X = dom1..n (
¦

〈x1, . . . ,xn+1〉 ∈ A1× . . .×An+1 : ψM
©

)

Remark 3.1. This same result could have been proved for any class C closed

under all Gödel operations except pair, such that M ⊂C ⊂P V (M )⊂V .

3.2 ZFC in M
κ

The classAM can not be a candidate for a κ-approximation closure of M , as it

contains only subsets of M . Instead ofAM we will then consider the following.

Definition 3.7. Let M
κ
=
⋃
�

ΠR [X ] : R ∈AM well-founded relation R ⊂X 2
	

,

with ΠR transitive collapse of R in V .

Intuitively, the class M
κ

should contain AM in order to be a κ-approxi-

mation closure of M .

Lemma 3.8. AM ⊂M
κ

.

Proof. Let A be inAM , trcl(A)⊂C ∈M . Then R = (A ×{C }) ∪ ∈ (C ,C ) is inAM

and has transitive collapseΠR : (C ∪{C })→M
κ

withΠR (C ) = A; then A ∈M
κ

.

In order to prove that M
κ

is a model of ZFC, we will assume from now on that

P M
κ (λ) is stationary inP V (λ), for some fixed λ (hence for every λ′, by lifting and

projection lemma).

Lemma 3.9. For every φ formula, with parameters A1, . . . , Am ∈ N that appears

only at the right side of ∈, and x1, . . . ,xn free:

φN (x1, . . . ,xn , A1 ∩N , . . . Am ∩N )↔φN (x1, . . . ,xn , A1, . . . Am )
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Proof. Follows by induction on φ, from the fact that every x i appearing in φN

will always vary in N , hence x i ∈ A j ∩N ↔ x i ∈ A j .

Definition 3.10. Given A well-founded relation, φ formula, let RA,φ be defined

by transfinite recursion on A usingφ as follows:

RA,φ =
¦




x , y
�

∈ dom(A)2 : φ(x , y , A, RA,φ ∩
�

pred(x , A)×pred(y , A)
�

)
©

Theorem 3.11. If A is a well-founded relation in AM , φ is a formula with pa-

rameters only at the right side of ∈, then RA,φ is inAM .

Proof. Let θ be a regular cardinal with A, RA,φ ∈ H (θ )V . Given N ∈ V such that

N �H (θ )V , A, RA,φ ∈N , |N |<κ, we first prove that RA∩N 2,φ =RA,φ ∩N 2.

Suppose by contradiction that



x , y
�

is a minimal pair (with respect to

A-rank) in N 2 with (x RA,φy ) ↔ ¬(x RA∩N 2,φy ). Then:

x RA∩N 2,φy ↔ φN (x , y , A ∩N 2, RA∩N 2,φ ∩
�

pred(x , A ∩N 2)×pred(y , A ∩N 2)
�

)
↔ φN (x , y , A ∩N 2, RA∩N 2,φ ∩

�

pred(x , A)×pred(y , A)
�

∩N 2)

by minimality of



x , y
�

, RA,φ and RA∩N 2,φ coincide below



x , y
�

, then:

x RA∩N 2,φy ↔ φN (x , y , A ∩N 2, RA∩N 2,φ ∩
�

pred(x , A)×pred(y , A)
�

∩N 2)
↔ φN (x , y , A ∩N 2, RA,φ ∩

�

pred(x , A)×pred(y , A)
�

∩N 2)
↔ φN (x , y , A, RA,φ ∩

�

pred(x , A)×pred(y , A)
�

)

The last equivalence followed from Lemma 3.9. Now by N �H (θ )V :

x RA∩N 2,φy ↔ φN (x , y , A, RA,φ ∩
�

pred(x , A)×pred(y , A)
�

)
↔ N �φ(x , y , A, RA,φ ∩

�

pred(x , A)×pred(y , A)
�

)
↔ H (θ )V �φ(x , y , A, RA,φ ∩

�

pred(x , A)×pred(y , A)
�

)
↔ x RA,φy

in contrast with (x RA,φy ) ↔ ¬(x RA∩N 2,φy ). Then RA∩N 2,φ =RA,φ ∩N 2.

Now since P M
κ (λ) is stationary, given z ∈ M , |z | < κ, by lifting let N be as

before with dom(z )∪ ran(z )⊂N , λ∩N ∈M . Then z ⊂N 2, A ⊂λ2, and:

RA,φ ∩ z =RA,φ ∩N 2 ∩ z =RA∩N 2,φ ∩ z =RA∩λ2∩N 2 ∩ z =RA∩(λ∩N )2 ∩ z ∈M

since λ∩N ∈M of size <κ and A ∈AM . Then RA,φ ∈AM , as required.

Corollary 3.12. If R ∈ AM is a well-founded relation R ⊂ X 2 ∈ M , there exists

an extensional well-founded relation R ′ ∈ AM such that R ′ ⊂ X 2, ΠR ′ ⊂ ΠR and

ΠR ′[X ] = ΠR [X ].
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Proof. Without loss of generality, suppose X = λ. Let T be defined by recursion

on R as:

T =
�

〈a ,b 〉 ∈λ2 : [∀a ′ ∈λ 〈a ′, a 〉 ∈R→∃b ′ ∈λ 〈b ′,b 〉 ∈R ∧ 〈a ′,b ′〉 ∈ T ]
∧ [∀b ′ ∈λ 〈b ′,b 〉 ∈R→∃a ′ ∈λ 〈a ′, a 〉 ∈R ∧ 〈a ′,b ′〉 ∈ T ]}

The relation T above is such that 〈a ,b 〉 ∈ T ⇔ ΠR (a ) = ΠR (b ), and by Theorem

3.11 T ∈ AM . From T we can now define a set A ⊂ λ that contains exactly one

preimage for every x ∈ΠR [λ], as

A =
�

i ∈λ : ∀j ∈λ (i < j →



i , j
�

/∈ T )
	

This set is inAM by Theorem 3.6. We can now define R ′ ⊂ A2 as

R ′ =
¦

〈a ,b 〉 ∈ A2 : ∃a ′ ∈λ ∃b ′ ∈λ
�


a ′, a
�

∈ T ∧



b ′,b
�

∈ T ∧



a ′,b ′
�

∈R
�

©

R ′ is inAM by Theorem 3.6, and is therefore an extensional well-founded rela-

tion with ΠR ′[λ] = ΠR [λ].

Lemma 3.13. The class M
κ

is closed under all Gödel operations.

Proof. Without loss of generality, let X , Y be such that X = ΠR (α), Y = ΠS(β ),
where R , S ∈AM are well-founded relations R , S ⊂λ2.

1. Let T be defined by:

T =
�


〈0, i 〉 ,



0, j
��

:



i , j
�

∈R
	

∪
�


〈1, i 〉 ,



1, j
��

:



i , j
�

∈S
	

∪
�

〈0,α〉 ,



1,β
�	

×{〈2, 0〉}

T is inAM by Theorem 3.6, hence G1(X , Y ) =ΠT (〈2, 0〉)∈M
κ

.

2. Let T be defined by:

T =
�


〈0, i 〉 ,



0, j
��

:



i , j
�

∈R
	

∪
�


〈1, i 〉 ,



1, j
��

:



i , j
�

∈S
	

∪{〈〈0, i 〉 , 〈2, i 〉〉 : i <λ}
∪
�


〈0, i 〉 ,



3, i , j
��

: i , j <λ
	

∪
�



1, j
�

,



3, i , j
��

: i , j <λ
	

∪
�


〈2, i 〉 ,



4, i , j
��

: i , j <λ
	

∪
�



3, i , j
�

,



4, i , j
��

: i , j <λ
	

∪
�


4, i , j
�

: 〈i ,α〉 ∈R ∧



j ,β
�

∈S
	

×{〈5, 0〉}

T is inAM by Theorem 3.6, hence G2(X , Y ) =ΠT (〈5, 0〉)∈M
κ

.

3. Let T be defined as in the previous point. Let T ′ ∈AM be extensional with

the same collapse as T by Theorem 3.12, and γ′ be the unique element in
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dom(T ′)with ΠT (γ′) =ΠT (〈5, 0〉).
Let T ′′ be defined by:

T ′′ = T ′∪
�

x ∈ dom(T ′) :



x ,γ′
�

∈ T ′ ∧
�

∃y , z ∈ dom(T ′)φ(x , y , z )
�	

×{〈5, 1〉}

whereφ(x , y , z ) is

φ(x , y , z ) =



y , z
�

∈ T ′ ∧
�

∀w ∈ dom(T ′) 〈w ,x 〉 ∈ T ′→



y , w
�

∈ T ′
�

∧ [∃w ∈ dom(T ′) 〈w ,x 〉 ∈ T ′ ∧ 〈z , w 〉 ∈ T ′]

T ′′ is inAM by Theorem 3.6, hence G3(X , Y ) =ΠT (〈5, 1〉)∈M
κ

.

4. Let T be defined by:

T =
�


〈0, i 〉 ,



0, j
��

:



i , j
�

∈R
	

∪
�


〈1, i 〉 ,



1, j
��

:



i , j
�

∈S
	

Let T ′ ∈AM be extensional with the same collapse as T by Theorem 3.12,

and α′, β ′, be the unique elements in dom(T ′) with ΠT (α′) = ΠT (〈0,α〉),
ΠT (β ′) =ΠT (




1,β
�

).
Let T ′′ be defined by:

T ′′ = T ′ ∪
�

x ∈ (2×λ) : 〈x ,α′〉 ∈ T ′ ∧



x ,β ′
�

/∈ T ′
	

×{〈2, 0〉}

T ′′ is inAM by Theorem 3.6, hence G4(X , Y ) =ΠT ′′ (〈2, 0〉)∈M
κ

.

5. Let T , T ′, α′, β ′ be defined as in the previous point. Let T ′′ be defined by:

T ′′ = T ′ ∪
�

x ∈ (2×λ) : 〈x ,α′〉 ∈ T ′ ∧



x ,β ′
�

∈ T ′
	

×{〈2, 0〉}

T ′′ is inAM by Theorem 3.6, hence G5(X , Y ) =ΠT ′′ (〈2, 0〉)∈M
κ

.

6. Let T be defined by:

T = R ∪ dom (R ∩ (λ×dom (R ∩ (λ×{α}))))×{λ}

T is inAM by Theorem 3.5, hence G6(X ) =ΠT (λ)∈M
κ

.

7. Let R ′ ∈AM be extensional with the same collapse as R by Theorem 3.12,

and α′ be the unique element in dom(R ′)with ΠR (α′) =ΠR (α).
Let T be defined by:

T = R ′ ∪
�

i ∈λ : ∃j ∈λ φ(i , j )
	

×{λ}

Where φ(i , j ) =



j ,α′
�

∈ R ′ ∧∀k ∈ λ (



k , j
�

∈ R ′→ 〈i , k 〉 ∈ R ′). T is inAM
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by Theorem 3.6. If X is a relation, G7(X ) = dom(X ) =ΠT (λ)∈M
κ

.

If X is not a relation, replaceφ in the definition of T with

ψ(i , j ) = φ(i , j ) ∧ ∃=2k ∈λ
�


k , j
�

∈R ′
�

∧ ∃=2h ∈λ
�

∃k ∈λ 〈h, k 〉 ∈R ′ ∧



k , j
�

∈R ′
�

∧ ∃=1h ∈λ ∃=1k ∈λ
�

〈h, k 〉 ∈R ′ ∧



k , j
�

∈R ′
�

Now G7(X ) =ΠT (λ)∈M
κ

.

8. Let R ′, α′ be defined as in the previous point. Let T be defined by:

T =
�


〈0, i 〉 ,



0, j
��

:



i , j
�

∈R ′
	

∪{〈〈0, i 〉 , 〈1, i 〉〉 : i ∈λ}
∪
�


〈0, i 〉 ,



2, j
��

:



i , j
�

∈R ′ ∧∃≥2k ∈λ



k , j
�

∈R ′
	

∪
�


〈1, i 〉 ,



2, j
��

: ∃=1k ∈λ 〈i , k 〉 ∈R ′ ∧



k , j
�

∈R ′
	

∪{〈2, i 〉 : 〈i ,α′〉 ∈R ′}× {〈3, 0〉}

T is inAM by Theorem 3.6. If X is a relation, G8(X ) =ΠT (〈3, 0〉)∈M
κ

.

If X is not a relation, we can also obtain G8(X ) ∈M
κ

in the same way we

did in the previous point.

Finally, the fact that G9(X ), G10(X ) are in M
κ

is a minor variant of the above

proof for G8(X ).

It is not known if the class M
κ

can be almost universal, hence M
κ

might fail

to be a model for ZF. From now on we shall say U (M ) for the sentence “M
κ

is

almost universal”.

Theorem 3.14. Assume M κ-covers V and U (M ), then M
κ � ZFC.

Proof. The class M
κ

is trivially transitive, as a union of transitive sets.

Furthermore, by Lemma 3.13 M
κ

is closed under Gödel operations hence

M
κ � ZF by Theorem 3.3.

Let us verify the axiom of choice in M
κ

. Given A ∈M
κ

, A ∈ΠR [X ], R is inAM

hence in M
κ

by Lemma 3.8, and also ΠR ∈M
κ

since M
κ � ZF. Fix a well-order

(X ,<) in M , and define a corresponding well-order (A,<): given a ,b ∈ A,

a <b ↔min
�

Π−1
R (a )

�

<min
�

Π−1
R (b )

�

This is a well-order on A definable in M
κ

, hence M
κ � ZFC.

3.3 Characterization of M
κ

The model M
κ

satisfies some more properties, inherited from M :
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Proposition 3.15. Assume M κ-covers V and U (M ), then M
κ
κ-covers V .

Proof. Let A ⊂M
κ

, |A |<κ. Let B ∈M
κ

with A ⊂ B and f : B→λ bijection in M
κ

.

f [A] is a subset of M of size <κ so f [A]⊂C ∈M , |C |<κ.

Then A ⊂ f −1[C ]∈M
κ

,
�

� f −1[C ]
�

�<κ.

Proposition 3.16. Assume M κ-covers V , thenP M
κ ON=P M

κ

κ ON.

Proof. First let A be inP M
κ

κ κ, B = trcl({A}). Since A ∈M
κ

, let A ∈ ran(ΠR ).
Since |B | < κ, we have Π−1

R [B ] ⊂ C ∈ M , |C | < κ by κ-covering. Then

R ∩ (C ×C ) is in M , and A ∈ ran(ΠR∩(C×C ))∈M , as required.

Now let A be inP M
κ

κ ON. Byκ-covering let B ∈M be superset of A of size<κ,

and f : B → κ be a 1-1 function in M . f [A] is a subset of κ, then f [A] ∈ P M
κ

κ κ

and f [A]∈M as proved before. Then also A = f −1[ f [A]]∈M .

Furthermore, M
κ

is “closed by κ-approximation”, as required:

Lemma 3.17. Assume M κ-covers V and U (M ), then M
κ
κ-approximates V .

Proof. Let A ∈AM
κ , A ⊂ C ∈M

κ
and f : C → λ bijection in M

κ
. As in Theorem

3.5, B = f [A] ⊂ON is inAM
κ , and then also inAM : in fact, B ∩ z = B ∩ z ∩ON,

B ∩ z ∩ON∈P M
κ

κ ON=P M
κ ON by Lemma 3.16, hence B ∈AM .

By Lemma 3.8, B ∈AM ⊂M
κ

then also A = f −1[B ]∈M
κ

, as required.

In fact, M
κ

can be characterized as the minimum class having such proper-

ties, hence justifying our claim to be a “closure” of M :

Theorem 3.18. Assume M κ-covers V and U (M ), then M
κ

is the smallest transi-

tive class M ⊂V such that:

• M ⊂M ,

• M � ZFC,

• M κ-approximates V .

Proof. From Lemma 3.14 and 3.17 we have that M
κ

meets the last two require-

ments asked for M . From M ⊂AM and Lemma 3.8 M
κ

meets also the first one,

so it suffices to prove that for every such M , M
κ ⊂M .

First prove that AM ⊂ AM . Given A ∈ AM , z ∈ M , |z | < κ, by κ-covering

(z ∩M )⊂C ∈M , so A ∩ z = A ∩M ∩ z = (A ∩C )∩ z ∈M hence A ∈AM .

Now let R be a well-founded relation inAM ⊂AM . Since M κ-approximates

V ,AM =M then R ∈M , ΠR ∈M hence M
κ ⊂M .
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