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INTRODUCTION

In the wake of early Gödel’s Incompleteness Theorems, a large part of set theory has
revolved around the study of the independence phenomena. The most significant
boost in this field was due to the introduction of the forcing technique. Many inde-
pendence results were found in different areas of mathematics since then, including
among many the continuum hypothesis [32], Borel’s conjecture [34], Kaplansky’s
conjecture [14], Whitehead problem [38], strong Fubini theorem [18], and the exis-
tence of outer automorphisms of the Calkin algebra [15].

A dual approach in set theory is to search for new axioms of mathematics in order
to control the independence phenomena. These new axioms need to be justified, so
that their mathematical properties interact with philosophical guidelines. An axiom
candidate can be judged both from its premises, that is, whether the statement can
be argued to be a “natural” extension of the accepted axioms of ZFC, and from
its consequences, that is, whether the statement is able to entail a large number of
desired properties in mathematics.

In this thesis we follow this approach, considering axioms in two of the most
important families: forcing axioms (Chapters 3, 4) and large cardinals (Chapter 5),
considering their effectiveness both on the premises and consequences side. While
these chapters follow mostly independent paths, all of them fit in the same quest
for natural and powerful axioms for mathematics, and are strongly dependent on
the iterated forcing technique covered in Chapter 2. Basic notation and background
topics are dealt with in Chapter 1.

In all the chapters of this thesis we shall focus on the boolean valued models
approach to forcing. A partial order and its boolean completion can produce exactly
the same consistency results, however:

• in a specific consistency proof the forcing notion we have in mind in order to
obtain the desired result is given by a partial order and passing to its boolean
completion may obscure our intuition on the nature of the problem and the
combinatorial properties we wish our partial order to have;

• when the problem aims to find general properties of forcings which are shared
by a wide class of partial orders, we believe that focusing on complete boolean
algebras gives a more efficient way to handle the problem. In fact, the rich
algebraic theory of complete boolean algebras can greatly simplify our calcu-
lations.
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0 Introduction

Since the focus of the thesis is on the general correlations between forcing, large
cardinals, and forcing axioms, rather than on specific applications of the forcing
method to prove the consistency of a given mathematical statement, we are naturally
led to analyze forcing through an approach based on boolean valued models.

Iterated forcing is a procedure that describes transfinite applications of the forc-
ing method, with a special attention to limit stages, and is one of the main tools for
proving the consistency of forcing axioms. In Chapter 2 we give a detailed account
of iterated forcing through boolean algebras, inspired by the algebraic approach of
Donder and Fuchs [19], thus providing a solid background on which the rest of the
thesis is built. All the material in this chapter is joint work with Matteo Viale and
Silvia Steila.

Even though all the results in this chapter come from a well established part
of the current development of set theory, the proofs are novel and (according to
us) simpler and more elegant, due to a systematic presentation of the whole theory
of iterated forcing in terms of algebraic constructions. In Chapter 3 we introduce
the notion of weakly iterable forcing class and prove the preservation theorems for
semiproper and stationary set preserving iterations (for the latter result, we assume
the existence of class many supercompact cardinals). We believe there will be no
problem in rearranging these techniques in order to cover also the cases of proper
or ccc iterations.

Forcing axioms are set-theoretic principles that arise directly from the technique
of forcing. It is a matter of fact that forcing is one of the most powerful tools to
produce consistency results in set theory: forcing axioms turn it into a powerful
instrument to prove theorems. This is done by showing that a statement φ follows
from an extension T of ZFC if and only if T proves that φ is consistent by means
of a certain type of forcing. These types of results are known in the literature as
generic absoluteness results and have the general form of a completeness theorem
for some T ⊇ ZFC with respect to the semantic given by boolean valued models
and first order calculus. More precisely generic absoluteness theorems fit within the
following general framework:

Assume T is an extension of ZFC, Θ is a family of first order formulas
in the language of set theory and Γ is a certain class of forcing notions
definable in T . Then the following are equivalent for a φ ∈ Θ and S ⊇ T :

1. S proves φ.

2. S proves that there exists a forcing B ∈ Γ such that B forces φ and
T jointly.

3. S proves that B forces φ for all forcings B ∈ Γ such that B forces T .

We say that a structure M definable in a theory T is generically invariant with
respect to forcings in Γ and parameters in X ⊂M when the above situation occurs
with Θ being the first order theory of M with parameters in X. A brief overview of
the main known generic absoluteness results is the following:
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• Shoenfield’s absoluteness theorem is a generic absoluteness result for Θ the
family of Σ1

2-properties with real parameters, Γ the class of all forcings, T =
ZFC.

• The pioneering “modern” generic absoluteness results are Woodin’s proofs of
the invariance under set forcings of the first order theory of L(ONω) with real
parameters in ZFC +class many Woodin cardinals which are limit of Woodin
cardinals [33, Thm. 3.1.2] and of the invariance under set forcings of the
family of Σ2

1-properties with real parameters in the theory ZFC + CH +class
many measurable Woodin cardinals [33, Thm. 3.2.1].

Further results pin down the exact large cardinal strength of the assertion that
L(R) is generically invariant with respect to certain classes of forcings (among
others see [37]).

• The bounded forcing axiom BFA(Γ) is equivalent to the statement that generic
absoluteness holds for T = ZFC and Θ the class of Σ1-formulas with parame-
ters in P(ω1), as shown in [6].

• Recently, Hamkins and Johnstone [23] introduced the resurrection axioms
RA(Γ) and Viale [42] showed that these axioms produce generic absoluteness
for Θ the Σ2-theory with parameters of Hc, T = ZFC + RA(Γ), Γ any of the
standard classes of forcings closed under two step iterations.

• Viale introduced the forcing axiom MM+++ (a natural strenghtening of MM)
and proved that L(ONω1) with parameters in P (ω1) is generically invariant
with respect to SSP forcings for

T = ZFC + MM+++ +there are class many superhuge cardinals.

Motivated by the latter results as well as by the work of Tsaprounis [40], in
Chapter 4 we introduce over the theory MK (i.e. the Morse-Kelley set theory with
sets and classes) a new natural class of forcing axioms: the iterated resurrection
axioms RAα(Γ) of increasing strength as α runs through the ordinals, with Γ a
definable class of forcing notions. All the material in this chapter is joint work with
Matteo Viale. We remark that for most classes Γ, RA1(Γ) is substantially equal
to ¬CH plus the resurrection axiom RA(Γ) recently introduced by Hamkins and
Johnstone in [23].

We are able to prove over MK the consistency relative to large cardinal axioms
of the axioms RAα(Γ) for any class of forcing notions Γ which is weakly iterable. The
latter is a property of classes of forcing notions which we introduce in Definition 3.3.3,
and which holds for most standard classes such as locally ccc, Axiom-A, proper,
semiproper, stationary set preserving (this latter class is weakly iterable only in the
presence of sufficiently strong large cardinal axioms).

From the axioms RAα(Γ) with α ≥ ω we are able to prove the following generic
absoluteness result over the theory MK.

Theorem. Let V be a model of MK, Γ be a definable class of forcing notions, γ be
the largest cardinal preserved by forcings in Γ. Assume RAω(Γ) holds and B ∈ Γ

forces RAω(Γ). Then HV
2γ ≺ HV B

2γ .
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0 Introduction

This is a generic absoluteness result for T = MK + RAω(Γ) and Θ the first order
theory of H2γ with parameters. We also prove that RAα(Γ) fits naturally within
the hierarchy of the previously known results, that is, MM+++ ⇒ RAα(SSP) and
RAα(Γ)⇒ RA(Γ) for any Γ and for all α > 0. Furthermore, the consistency strength
of the axioms RAα(Γ) is below that of a Mahlo cardinal for all relevant Γ and for
all α except for Γ = SSP, in which case our upper bound is below a stationary limit
of supercompact cardinals.

We remark that the present result cannot be formulated in ZFC alone since the
iterated resurrection axioms RAα(Γ) are second-order statements. However, it is
possible that some theory strictly weaker than MK (e.g., NBG together with a truth
predicate) would suffice to carry out the arguments at hand. Notice that RAn(Γ) can
also be formulated by an equivalent first-order sentence for all n < ω, and RAω(Γ)
can be formulated as the corresponding first-order axiom schema {RAn(Γ) : n < ω}
if needed.

Altogether these results show the effectiveness of the axioms RAω(Γ) both on
the premises side (low consistency strength, natural generalization of well-known
axioms) and on the consequences side (generic invariance of H2γ ). However, the
axioms RAω(Γ) are pairwise incompatible for different choices of Γ thus making it
difficult to support the adoption of a specific RAω(Γ) as a natural axiom for set
theory. Towards this aim, we remark the following two special cases.

• If we focus on forcing classes preserving ω1, there is a unique largest class (the
class of stationary set preserving posets SSP) which contains all the possible
classes Γ for which the axiom RAω(Γ) is consistent. Thus RAω(SSP) gives the
strongest form of generic absoluteness which can be instantiated by means of
the iterated resurrection axioms for forcing classes preserving ω1.

• If we consider the forcing classes <ωα-closed for α ∈ ON, the corresponding
resurrection axioms are all pairwise compatible. In fact, from a Mahlo cardi-
nal is possible to obtain the consistency of MK + GCH + RAω(<κ-closed) for
all cardinals κ simultaneously. This gives a very strong and uniform generic
absoluteness result, that is, given any forcing B we have that H2κ = HB

2κ where
κ is such that B is <κ-closed.

We remark that the case Γ = <ωα-closed pushes the limits on which generic
absoluteness can be obtained above the usual threshold 2ω whenever α > 0. Even
though the class of <ωα-closed forcing is narrow and (some notion of) ωα-proper
forcing would be preferable, our result highlights a strong connection of the theory of
iterations with generic absoluteness. In fact, it shows that a preservation theorem for
a forcing class Γ translates in a corresponding axiom yielding a generic absoluteness
result for the same class Γ.

Compared to the generic absoluteness result obtained in [43], the present results
for Γ = SSP are weaker since they regard the structure H2ω1 instead of L(ONω1). On
the other hand, the consistency of RAα(Γ) is obtained from (in most cases much)
weaker large cardinal hypothesis and the results are more general since they also
apply to interesting choices of Γ 6= SP, SSP. Moreover the arguments we employ
to prove the consistency of RAα(Γ) are considerably simpler than the arguments
developed in [43].
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Finally, a byproduct of our results is that the theory T = MK + RAω(all) is
consistent relative to the existence of a Mahlo cardinal and makes the theory of pro-
jective sets of reals generically invariant with respect to any forcing which preserves
T . Notice that T is consistent with the failure of projective determinacy. This shows
that the request of generic absoluteness for the projective sets of reals (with respect
to forcings preserving T ) is much weaker than Woodin’s generic absoluteness for all
sets of reals in L(R) with respect to T = ZFC +large cardinals.

Large cardinals can be regarded as natural strenghtenings of the accepted princi-
ple of generation of new sets such as the powerset axiom and the replacement axiom.
Furthermore, they are extremely useful in set theory: on the one hand they provide
a fine scale to measure the consistency strength of a rich variety of combinatorial
principles, on the other hand they also solve important questions within set theory.
However, such cardinals are rarely used in common mathematics outside of set the-
ory: for example, large parts of number theory and analysis can be formalized within
Hc, and even if new subjects can push this limit beyond that point, it is uncommon
for structures of inaccessible or larger size to be employed outside of set theory.

Generic large cardinal axioms try to address this point, and postulate the ex-
istence of elementary embeddings j : V → M with M ⊆ V [G] a transitive class
definable in a generic extension V [G] of V . Contrary to the classical case one can
consistently have generic large cardinal properties at cardinals as small as ω1. Thus,
generic large cardinal axioms are fit to produce consequences on small objects, and
might be able to settle questions arising in domains of mathematics other than set
theory, scoring both on the premises and consequences side. A detailed presentation
of this approach can be found in [16].

Due to the class nature of the elementary embeddings involved in the definitions
of large cardinals (both classical and generic), a key issue concerns the possibility
to define (or derive) such embeddings from set-sized objects. The first natural
candidates are ideals, although it turns out that they are not able to represent
various relevant large cardinal properties. For this reason many extensions of the
concept have been proposed, the most important of which are extenders (see among
many [9, 29, 31]) and normal towers (see for example [11, 33, 43, 44]).

In Chapter 5 we introduce the notion of C-system of filters (see Section 5.1).
This concept is inspired by the well-known definitions of extenders and towers of
normal ideals, generalizes both of them, and provides a common framework in which
the standard properties of extenders and towers used to define classical or generic
large cardinals can be expressed in an elegant and concise way. Using the new
framework given by C-system of filters we easily generalize to the setting of generic
large cardinals well-known results about extenders and towers, providing shorter
and modular proofs of several well-known facts regarding classical and generic large
cardinals. Furthermore, we are able to examine closely the relationship between
extenders and towers, and investigate when they are equivalent or not, both in the
standard case and in the generic one (see Section 5.1.5). All the material in this
chapter is joint work with Silvia Steila.

The second part of this chapter investigates some natural questions regarding
generic large cardinals. In particular, we first examine the difference between having
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0 Introduction

a generic large cardinal property ideally or generically, and study when a generic
C-system of ultrafilters is able to reproduce a given large cardinal property. Then
we focus on ideally large cardinals, and study how the large cardinal properties are
captured by the combinatorial structure of the C-system of filters used to induce
the embedding. In particular, we are able to characterize strongness-like properties
via the notion of antichain splitting, and closure-like properties via the notion of
antichain guessing (a generalization of the well-known concept of presaturation for
normal towers). Finally, we investigate to what extent it is possible to collapse a
generic large cardinal while preserving its properties.

We remark that the main original contribution of this chapter is to streamline the
essential features common to a variety of arguments involving a notion of normality.
Thus we shall assume that all results in this chapter without an explicit attribution
are adaptations of well-known facts to the setting of C-systems of filters.
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Notation

As in common set-theoretic use, trcl(x), rank(x) denote respectively the transitive
closure and the rank of a given set x. We denote by Vα the sets x such that
rank(x) < α and by Hκ the sets x such that |trcl(x)| < κ. We use P(x), [x]κ, [x]<κ

to denote the powerset, the set of subsets of size κ and the ones of size less than κ.
The notation f : A → B is improperly used to denote partial functions in A × B,
AB to denote the collection of all such (partial) functions, and f [A] to denote the
pointwise image of A through f . We denote by id : V → V the identity map on
V . We use sat for sequence concatenation and sax where x is not a sequence as a
shorthand to sa〈x〉. We use s C t to denote that t = s�(|s| − 1). CH denote the
continuum hypothesis and c the continuum itself. We prefer the notation ωα instead
of ℵα for cardinals.

Let L2 be the language of set theory with two sorts of variables, one for sets and
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one for classes. We will work with models of set theory with sets and classes and with
theories in the language L2 extending the Gödel-Bernays system NBG and in most
cases also the Morse-Kelley system MK (see [32, Sec. II.10] for the axioms of NBG
and [1] for MK). We will identify a model N = 〈set(N), class(N)〉 of NBG with its
underlying collection of classes class(N): e.g. if κ is inaccessible and N = 〈Vκ, Vκ+1〉,
we shall just denote N by Vκ+1. We recall that from the underlying collection
class(N) we can reconstruct whether x ∈ set(N) via the formula ∃y ∈ class(N) x ∈ y.

We will use M ≺n N to denote that (M,∈) is a Σn-elementary substructure
of (N,∈). Given an elementary embedding j : V → M , we use crit(j) to denote
the critical point of j. We denote by SkHM (X) the Skolem Hull of the set X in
the structure M , and by M [X] be the smallest model of ZFC containing M and X
(even if X is not generic for any forcing). We say that I ⊆ P(X) is an ideal on X
whenever it is closed under unions and subsets, and feel free to confuse an ideal with
its dual filter when clear from the context. We denote the collection of I-positive
sets by I+ = P(X) \ I.

We follow Jech’s approach [27] to forcing via boolean valued models. The letters
B, C, D, . . . are used for set sized complete boolean algebras, and 0, 1 denote their
minimal and maximal element. We use V B for the boolean valued model obtained
from V and B, ẋ for the elements (names) of V B, x̌ for the canonical name for a set
x ∈ V in the boolean valued model V B, JφKB for the truth value of the formula φ.
We shall sometimes confuse B-names with their defining properties. For example,
given a collection of B-names {ẋα : α < γ}, we confuse {ẋα : α < γ} with a B-name
ẋ such that for all ẏ ∈ V B, Jẏ ∈ ẋKB = J∃α < γ̌ ẏ = ẋαKB. When we believe this
convention may be ambiguous we shall be explicitly more careful.

We use Coll(κ,<λ) for the Lévy collapse that generically adds a surjective func-
tion from κ to any γ < λ, Add(κ, λ) for the <κ-closed poset that generically adds λ
many subsets to κ. We prefer the notation “X has the <κ-property” for all proper-
ties that are defined in terms of ∀γ < κ φ(γ,X) for some formula φ. In all such cases
we shall explicitly avoid the notation “κ-property” and use <κ+-property instead.
In general we shall feel free to confuse a partial order P with its boolean completion
RO(P) and a boolean algebra B with the partial order B+ given by its positive ele-
ments. When we believe that this convention may generate misunderstandings we
shall be explicitly more careful.

When convenient we also use the generic filters approach to forcing. The letters
G, H will be used for generic filters over V , ĠB denotes the canonical name for the
generic filter for B, valG(ẋ) the valuation map on names by the generic filter G, V [G]
the generic extension of V by G. Let φ be a formula in L2. We shall write V B |= φ
to denote that φ holds in all generic extensions V [G] with G generic for B. We shall
also write HB

2γ ≺ HC
2γ (and similarly H2γ ≺ HB

2γ ) to denote that for all G V -generic

for B and H V [G]-generic for C, H
V [G]
2γ ≺ HV [G][H]

2γ .
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0 Introduction

ordinals α, β, ξ, ζ, η

cardinals γ, κ, λ, δ, µ, θ

formulae φ, ψ, ϕ

strategies σ,Σ

forcing classes Γ

domains in C a, b, c, d, e

other functions f, g, h

immersions of boolean algebras i

elementary embeddings j

factor maps k

finite ordinals m,n

forcing conditions p, q, r

sequences, threads in iteration systems s, t

ultrapower functions u, v

set elements x, y, z, w

subsets A,B,C,D,E

filters and ideals F, I

generic filters G,H,K

transitive models M,N

stationary sets S, T

open sets U

other sets X,Y, Z,W

families of sets A,B, C,D
iteration systems F
games G
systems of ultrafilters S, E , T
boolean algebras B,C,D
forcing posets P,Q,R
systems of filters S,E,T

Table 1: Summary of the naming conventions used throughout this thesis.

x



CHAPTER 1

BACKGROUNDS

In this chapter we present some unrelated topics that constitute the basis on which
the remainder of the thesis is built. A reader acquainted with the following topics
can safely skip this chapter or parts of it, although we recommend to browse through
the content in order to fix the notation and conventions used.

Section 1.1 introduces the topic of second-order elementarity and determinacy
of clopen class games. Section 1.2 reviews the main theory of generalized stationary
sets. Section 1.3 gives a compact presentation of forcing via boolean valued models.

1.1 Second-order elementarity and class games

Let T be a theory in the language L2 extending NBG that provably holds in Vδ+1

with δ inaccessible. Let ∆1
1(T ) denote the formulae in L2 with set parameters that

are provably equivalent modulo T both to a Σ1
1 formula (i. e. a formula with

one existential class quantifier and set parameters) and to a Π1
1 formula (with one

universal class quantifier and set parameters). Let N , M with set(N) ⊆ set(M) be
models of T . We will write N ≺∆1

1(T ) M to denote that all ∆1
1(T ) formulae with

set parameters in N holding in N also hold in M (and viceversa). We will write
N ≡∆1

1(T ) M for N ≺∆1
1(T ) M when set(N) = set(M).

The ∆1
1(T ) formulae are interesting for their absolute behavior with respect to

models of T with the same sets.

Proposition 1.1.1. Let N ⊆ M be models of a theory T extending NBG with the
same sets. Then N ≡∆1

1(T ) M .

Proof. Let X = set(N) = set(M), and φ = ∃C ψ1(C, ~p) = ∀C ψ2(C, ~p) be a ∆1
1(T )

formula, with ~p ∈ X. Then,

N |= φ ⇒ ∃C ∈ N 〈X,C〉 |= ψ1(C, ~p)
⇒ ∃C ∈M 〈X,C〉 |= ψ1(C, ~p)⇒

M |= φ ⇒ ∀C ∈M 〈X,C〉 |= ψ2(C, ~p)
⇒ ∀C ∈ N 〈X,C〉 |= ψ2(C, ~p)⇒ N |= φ

1



1 Backgrounds

concluding the proof.

Corollary 1.1.2. Let T be a theory extending NBG that provably holds in Vδ+1 with
δ inaccessible. Let N,M be models of T with set (N) = set (M) = Vδ, δ inaccessible.
Then N ≡∆1

1(T ) M .

Proof. Since δ is inaccessible, Vδ+1 is a model of T containing both N , M hence by
Lemma 1.1.1 N ≡∆1

1(T ) Vδ+1 ≡∆1
1(T ) M .

Corollary 1.1.2 tells us that for any inaccessible δ the truth value of a ∆1
1(T )-

formula does not depend on the choice of the particular T -model whose family of
sets is Vδ. Thus we will focus only on NBG-models of the kind Vδ+1.

In the remainder of this thesis we will need to prove that certain statements about
class games are ∆1

1(T ) for a suitable theory T . In order to provide a definition of
such a theory we need to introduce clopen games on class trees. Our reference text
for the basic notions and properties of games is [30, Sec. 20.A].

We shall consider well-founded trees T as collections of finite sequences ordered
by inclusion and closed under initial segments, such that there exists no infinite chain
(totally ordered subset) in T . Given s, t ∈ T , let s C t denote that t = s�(|s| − 1) (s
is obtained extending t with one more element).

The clopen game on the well-founded tree T is a two-player game GT defined as
follows: Player I starts with some s0 ∈ T of length 1, then each player has to play
a sn+1 C sn. The last player who can move wins the game. A winning strategy σ
for Player I in GT is a subtree σ ⊆ T such that for all s ∈ σ of even length |s| there
is exactly one t ∈ σ with t C s, and for every s ∈ σ of odd length, every t C s is in
σ. A winning strategy for Player II is defined interchanging odd with even in the
above statement. A game GT is determined if either one of the two players has a
winning strategy.

We recall that there is correspondence between games GT on a well-founded tree
T and games on a pruned tree (as defined in [30]) whose winning condition is a
clopen set. This justifies our terminology.

In the following we will be interested in the theory T = NBG + AD(∆0
1), where

AD(∆0
1) is the following axiom of determinacy for clopen class games:

Definition 1.1.3 (AD(∆0
1)). GT is determined for any well-founded class tree T .

Games GT on well-founded set trees T ⊆ Vδ are determined in ZFC (see [30, Thm.
20.1]) and the corresponding strategies σ ⊆ T are elements of Vδ+1. Thus the theory
NBG + AD(∆0

1) holds in any Vδ+1 with δ inaccessible, and we can apply the results
of this section to this theory. Moreover, a finer upper bound for NBG + AD(∆0

1) is
given by the next proposition (we thank Alessandro Andretta for pointing this fact
to us).

Proposition 1.1.4. The Morse-Kelley theory MK (with the axiom of global choice)
implies AD(∆0

1).

Proof. Since the recursion theorem on well-founded class trees holds in MK (see [1,
Prop. 2]), we can follow the classical ZFC proof of determinacy for clopen games
GT on well-founded set trees T .

2



1.2 Generalized stationarity

For any s ∈ T the next moving player is I if |s| mod 2 = 0 and II otherwise.
Define recursively a (class) map w : T → 2 so that w(s) = |s| mod 2 iff there exists
a t C s such that w(t) = |s| mod 2. Intuitively, we can think of the map w as
assigning (coherently) to every position s in GT a “supposedly winning” player w(s)
(I if |s| mod 2 = 0 and II otherwise).

Then we can use the map w and the axiom of global choice to define a winning
strategy σ for Player I if w(∅) = 0, and for Player II if w(∅) = 1. Precisely, define
Tw = {s ∈ T : w(s) = w(∅)} and s+ = minl {t ∈ Tw : t C s} where l is a well-
order on V . Then,

σ =
{
s ∈ Tw : ∀m < |s| (m mod 2 = w(∅))→

(
s�(m+ 1) = (s�m)+

)}
is the desired strategy.

In the remainder of this thesis we shall focus on extensions of the theory T =
NBG + AD(∆0

1) and use ∆1
1 as a shorthand for ∆1

1(NBG + AD(∆0
1)). We remark

that this theory is a natural strengthening of ZFC, since it asserts second order
properties that are true for natural models of ZFC (models of the kind Vδ with δ
inaccessible). Moreover, the theory has a reasonable consistency strength since it
holds in all NBG models of the form Vδ+1 with δ inaccessible and follows from MK.

It is not clear to us at the moment (and not relevant for the purpose of this
thesis) whether the theory NBG + AD(∆0

1) is preserved by set forcing. Since we
know that this is true for MK (see [1, Thm. 23]), the most convenient theory to
present and apply the results of this section is MK. In the remainder of this thesis
we shall feel free to implicitly assume MK when needed, while pointing out some
passages where AD(∆0

1) is essentially used.

1.2 Generalized stationarity

We now recall the main definitions and properties of generalized stationary sets.
Full references on this subject can be found in [27], [33, Chp. 2], [44].

Definition 1.2.1. Let X be an uncountable set. A set C is a club on P(X) iff there
is a function fC : [X]<ω → X such that C is the set of elements of P(X) closed
under fC , i.e.

C =
{
Y ∈ P(X) : [fC [Y ]]<ω ⊆ Y

}
A set S is stationary on P(X) iff it intersects every club on P(X).

The reference to the support set X for clubs or stationary sets may be omitted,
since every set S can be club or stationary only on

⋃
S. Examples of stationary sets

are {X}, P(X)\{X} and [X]κ for any κ ≤ |X| (the latter following the proof of the
well-known downwards Löwhenheim-Skolem Theorem). Notice that every element
of a club C must contain fC(∅), a fixed element of X.

Given any first-order structure M , from the set M we can define a Skolem
function fM : [M ]<ω → M (i.e., a function coding solutions for all existential first-
order formulas over M). Then the set C of all elementary submodels of M contains
a club (the one corresponding to fM ). Henceforth, every set S stationary on X must
contain an elementary submodel of any first-order structure on X.
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Definition 1.2.2. The club filter on X is

CFX = {C ⊂ P(X) : C contains a club} ,

and its dual ideal is

NSX = {A ⊂ P(X) : A not stationary} ,

the non-stationary ideal on X.

If |X| = |Y |, then P(X) and P(Y ) are isomorphic and so are CFX and CFY
(or NSX and NSY ). Thus we can suppose X ∈ ON or X ⊇ α for some α ∈ ON if
needed.

Lemma 1.2.3. CFX is a σ-complete filter on P(X), and the stationary sets are
exactly the CFX-positive sets.

Proof. CFX is closed under supersets by definition. Given a family of clubs Ci,
i < ω, let fi be the function corresponding to the club Ci. Let π : ω → ω2 be a
surjection, with components π1 and π2, such that π2(n) ≤ n. Define g : X<ω → X
to be g(s) = fπ1(|s|)(s�π2(|s|)). It is easy to verify that Cg =

⋂
i<ω Ci.

The above result is optimal, that is, CFX is never <ω2-complete unlike its well-
known counterpart on cardinals. Let A ⊆ X be such that |A| = ω1, and Cx be the
club corresponding to fx : [X]<ω → {x}. Then C =

⋂
x∈ACx = {B ⊆ X : B ⊇ A}

is disjoint from the stationary set [X]ω, hence is not a club.

Definition 1.2.4. Given a family {Sx ⊆ P(X) : x ∈ X}, the diagonal union of the
family is ∇x∈XSx = {A ∈ P(X) : ∃x ∈ A A ∈ Sx}, and the diagonal intersection of
the family is ∆x∈XSx = {A ∈ P(X) : ∀x ∈ A A ∈ Sx}.

Lemma 1.2.5 (Fodor). CFX is closed under diagonal intersection and NSX is
closed under diagonal union.

Proof. Given a family 〈Cx : x ∈ X〉 of clubs, with corresponding functions fx, let
g(xas) = fx(s). It is easy to verify that Cg = ∆x∈XCx.

Notice that (∆x∈XSx)c = ∇x∈XScx, where Ac denotes P(X) \ A. It follows that
NSX is closed under diagonal union.

The above property is often applied by means of the equivalence in Lemma 1.2.7.

Definition 1.2.6. Let I ⊆ P(X) be an ideal. We say that I (or equivalently its dual
filter) is normal if for any S ∈ I+ and for any choice function f : S → X (i.e. such
that f(A) ∈ A for any A ∈ S) there exists x ∈ X such that {A ∈ S : f(A) = x} ∈
I+. We say that I (or equivalently its dual filter) is fine if for any x ∈ X the set
{A ⊆ X : x /∈ A} is in I.

Notice that the set Cx = {A ⊆ X : x ∈ A} is the club given by the constant
function fx : P(X)→ {x}, thus {A ⊆ X : x /∈ A} is non stationary.

Lemma 1.2.7. Let I ⊆ P(X) be an ideal. Then the following are equivalent:

4



1.2 Generalized stationarity

1. I is closed under diagonal unions;

2. I is normal.

Proof. 1⇒ 2. Assume by contradiction that f : S → X is a choice function on
S ∈ I+ such that f−1 [{x}] = Sx ∈ I for every x ∈ X. Let T = ∇x∈XSx
which is also in I since I is closed under diagonal unions. Notice that for
every A ∈ S, A ∈ Sf(A) and f(A) ∈ A hence A ∈ T . Thus, S ⊆ T ∈ I+, a
contradiction.

2⇒ 1. Assume by contradiction that {Sx : x ∈ X} ⊆ I is such that T = ∇x∈XSx
is in I+. Define

f : T → X

A 7→ xA

where xA ∈ A is such that A ∈ SxA . Since I is normal, there exists an x such
that f−1 [{x}] ∈ I+. Since f−1 [{x}] ⊆ Sx ∈ I, we have a contradiction.

We are now able to prove that NSX is the smallest normal fine ideal on X.

Lemma 1.2.8. Let I ⊆ P(X) be a normal and fine ideal, F be its dual filter. Then:

1. I is ω-fine, that is, for every A ∈ [X]ω, {B ∈ P(X) : B ⊇ A} ∈ F ;

2. I is σ-closed;

3. I is ω-normal, that is, for any function f : S → [X]<ω such that S ∈
I+ and f(A) ∈ [A]<ω for all A ∈ S, there exists an s ∈ [X]<ω such that
{A ∈ S : f(A) = s} ∈ I+;

4. I ⊇ NSX .

Proof. 1. Let A = {xn : n ∈ ω}, S = {B ∈ P(X) : B + A} and assume by con-
tradiction that S ∈ I+. Let T = S ∩ Cx0 be in I+. Define

f : T → X

B 7→ xn,

where n is such that {x0, . . . , xn} ⊆ B and xn+1 /∈ B. Since f is a choice
function and I is normal, let xm be such that f−1[{xm}] ∈ I+. Since I is fine,
f−1[{xm}] ∩ Cxm+1 = ∅ ∈ I+, a contradiction.

2. Let A = {xn : n ∈ ω} be a subset of X, {Sn : n ∈ ω} ⊆ F . Define

Tx =

{
Sn ∩ Cx if x = xn;

Cx otherwise.

Since I is normal, T = ∆x∈XTx is in F . Since I is ω-fine, T ′ = T ∩
{B ⊆ X : A ⊆ B} is in F and T ′ ⊆

⋂
n<ω Sn.

5
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3. Let f : S → [X]<ω be such that ∀A ∈ S, f(A) ∈ [A]<ω. Define Sn =
{A ∈ S : |f(A)| = n}. Since S ∈ I+ and I is σ-closed there exists n such that
Sn ∈ I+. Let Tm be defined by induction on m ≤ n as in the following. Put
T0 = Sn. Given Tm for m < n, define hm as

fm : Tm → X

A 7→ f(A)(m).

Since I is normal, let xm be such that Tm+1 = f−1
m [{xm}] ∈ I+. Then Tn is

in I+ and f(A) = (x0, . . . , xn−1) = t for all A ∈ Tn, witnessing ω-normality.

4. Assume by contradiction that S ∈ I+ and S ∩Cf = ∅ for some f : X<ω → X,
that is, for any A ∈ S there exists tA ∈ A<ω such that f(tA) /∈ A. Define

g : S → [X]<ω

A 7→ tA

By ω-normality there exists t ∈ X<ω such that T = g−1[{t}] ∈ I+. Since
T ⊆ {A ∈ S : f(t) /∈ A}, T ∩ Cf(t) = ∅ ∈ I+, a contradiction.

The generalized notion of club and stationary set is closely related to the well-
known one defined for subsets of cardinals.

Lemma 1.2.9. C ⊆ ω1 is a club in the classical sense if and only if C ∪ {ω1} is
a club in the generalized sense. Thus, S ⊆ ω1 is stationary in the classical sense if
and only if it is stationary in the generalized sense.

Proof. Let C ⊆ ω1+1 be a club in the generalized sense. Then C is closed: given any
α = supαi with f [αi]

<ω ⊆ αi, f [α]<ω =
⋃
i f [αi]

<ω ⊆
⋃
i αi = α. Furthermore, C is

unbounded: given any β0 < ω1, define a sequence βi by taking βi+1 = sup f [βi]
<ω.

Then βω = supβi ∈ C.

Let now C ⊆ ω1 be a club in the classical sense. Let C = {xα : α < ω1} be
an enumeration of the club. For every α < ω1, let {yαi : i < ω} ⊆ xα be a cofinal
sequence in xα (possibly constant), and {zαi : i < ω} ⊆ α be an enumeration of α.
Define fC : [X]<ω → X as

fC(s) =


yαn if s = (xα)n with α > 0;

zαn if s = xa0 (α)n;

x0 otherwise.

The sequence zαi forces all closure points of fC to be ordinals, while the sequence yαi
forces the ordinal closure points of fC being in C.

Lemma 1.2.10. If κ is a cardinal with cofinality at least ω1, C ⊆ κ contains a club
in the classical sense if and only if C ∪ {κ} contains the ordinals of a club in the
generalized sense. Thus S ⊆ κ is stationary in the classical sense if and only if it is
stationary in the generalized sense.
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1.2 Generalized stationarity

Proof. If C is a club in the generalized sense, then C∩κ is closed and unbounded by
the same reasoning of Lemma 1.2.9. Let now C be a club in the classical sense, and
define f : κ<ω → κ to be f(s) = min {α ∈ C : sup s < α}. Then Cf ∩ κ is exactly
the set of ordinals in C ∪ {κ} that are limits within C.

Notice that if S is stationary in the generalized sense on ω1, then S ∩ ω1 is
stationary (since ω1 + 1 is a club by Lemma 1.2.9), while this is not true for κ > ω1.
In this case, P(κ) \ (κ + 1) is a stationary set: given any function f , the closure
under f of {ω1} is countable, hence not an ordinal.

The non-stationary ideals NSX forms a coherent system varying X ∈ V , as
shown in the following.

Lemma 1.2.11 (Lifting and Projection). Let X ⊆ Y be uncountable sets. If S is
stationary on P(X), then S ↑ Y = {B ⊆ Y : B ∩X ∈ S} is stationary. If S is
stationary on P(Y ), then S ↓ X = {B ∩X : B ∈ S} is stationary.

Proof. For the first part, given any function f : [X]<ω → X, extend it in any way
to a function g : [Y ]<ω → Y . Since S is stationary, there exists a B ∈ S closed
under g, hence B ∩X ∈ S ↓ X is closed under f .

For the second part, fix an element x ∈ X. Given any function f : [Y ]<ω → Y ,
replace it with a function g : [Y ]<ω → Y such that for any A ⊂ Y , g [[A]<ω]
contains A∪{x} and is closed under f . To achieve this, fix a surjection π : ω → ω2

(with projections π1 and π2) such that π2(n) ≤ n for all n, and an enumeration
〈tni : i < ω〉 of all first-order terms with n variables, function symbols fi for i ≤ n
(that represent an i-ary application of f) and a constant x. The function g can now

be defined as g(s) = t
π2(|s|)
π1(|s|)(s�π2(|s|)). Finally, let h : [X]<ω → X be defined by

h(s) = g(s) if g(s) ∈ X, and h(s) = x otherwise. Since S is stationary, there exists
a B ∈ S with h [[B]<ω] ⊆ B, but h [[B]<ω] = g [[B]<ω] ∩ X (since x is always in
g [[B]<ω]) and g [[B]<ω] ⊃ B, so actually h [[B]<ω] = g [[B]<ω] ∩X = B ∈ S. Then,
g [[B]<ω] ∈ S ↑ Y and g [[B]<ω] is closed under f (by definition of g).

Following the same proof, a similar result holds for clubs. If Cf is club on P(X),
then Cf ↑ Y = Cg where g = f ∪ id � (Y \X). If Cf is club on P(Y ) such that⋂
Cf intersects X in x, and g, h are defined as in the second part of Theorem 1.2.11,

Cf ↓ X = Ch is club. If
⋂
Cf is disjoint from X, Cf ↓ X is not a club, but is still

true that it contains a club (namely,
(
Cf ∩ C{x}

)
↓ X for any x ∈ X).

Theorem 1.2.12 (Ulam). Let κ be an infinite cardinal. Then for every stationary
set S ⊆ κ+, there exists a partition of S into κ+ many disjoint stationary sets.

Proof. For every β ∈ [κ, κ+), fix a bijection πβ : κ→ β. For ξ < κ, α < κ+, define

Aξα = {β < κ+ : πβ(ξ) = α} (notice that β > α when α ∈ ran(πβ)). These sets can
be fit in a (κ× κ+)-matrix, called Ulam Matrix, where two sets in the same row or

column are always disjoint. Moreover, every row is a partition of
⋃
α<κ+ A

ξ
α = κ+,

and every column is a partition of
⋃
ξ<κA

ξ
α = κ+ \ (α+ 1).

Let S be a stationary subset of κ+. For every α < κ+, define fα : S \(α+1)→ κ

by fα(β) = ξ if β ∈ Aξα. Since κ+ \ (α + 1) is a club, every fα is regressive on
a stationary set, then by Fodor’s Lemma 1.2.5 there exists a ξα < κ such that
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f−1
α [{ξα}] = Aξαα ∩ S is stationary. Define g : κ+ → κ by g(α) = ξα, g is regressive

on the stationary set κ+ \ κ, again by Fodor’s Lemma 1.2.5 let ξ∗ < κ be such that
g−1 [{ξ∗}] = T is stationary. Then, the row ξ∗ of the Ulam Matrix intersects S in a

stationary set for stationary many columns T . So S can be partitioned into S ∩Aξ
∗
α

for α ∈ T \ {min(T )}, and S \
⋃
α∈T\{min(T )}A

ξ∗
α .

In the proof of Theorem 1.2.12 we actually proved something more: the existence
of a Ulam Matrix, i.e. a κ × κ+-matrix such that every stationary set S ⊆ κ+ is
compatible (i.e., has stationary intersection) with stationary many elements of a
certain row.

Stationary sets are to be intended as large sets. Moreover, they cannot be too
small even in literal sense.

Lemma 1.2.13. Let S ⊆ P(X) \ {X} be such that |S| < |X|. Then S is non-
stationary.

Proof. Let S = S1∪S2, S1 = {Y ∈ S : |Y | < |S|}, S2 = {Y ∈ S : |Y | ≥ |S|}. Since
|
⋃
S1| ≤ |S| · |S| = |S| < |X|, S1 is non-stationary. We now prove that S2 is

non-stationary as well.

Fix an enumeration S2 = {Yα : α < γ} with γ = |S2| < |X|. For all α < γ,
define recursively xα ∈ X \ Yα, yα ∈ Yα \ {yβ : β < α}. Such xα exists since
{X} /∈ S, and such yα exists since |Yα| ≥ |S| = γ > α. Let f : [X]<ω → X be
such that f({yα}) = xα, f(s) = x0 otherwise. Thus Cf ∩ S2 = ∅, hence S2 is
non-stationary.

As previously mentioned, [X]κ and [X]<κ for any κ ≤ |X| are the prototypical
examples of stationary sets. This encourages to consider the notion of club and
stationary set relative to them.

Definition 1.2.14. Let X be an uncountable set, κ ≤ |X| be a cardinal. A set C
is a club on [X]κ (resp. [X]<κ) iff there is a function fC : X<ω → X such that C
is the set of elements of [X]κ (resp. [X]<κ) closed under fC , i.e.

C =
{
Y ∈ [X]κ : fC [Y ]<ω ⊆ Y

}
A set S is stationary on [X]κ (respectively [X]<κ) iff it intersects every club on [X]κ

(respectively [X]<κ).

As in the general case, the club sets on [X]κ (resp. [X]<κ) form a normal σ-
complete filter on [X]κ (resp. [X]<κ). We can also state a restricted version of
Lemma 1.2.11 to this setting.

Lemma 1.2.15 (Lifting and Projection II). Let X ⊆ Y be uncountable sets, κ ≤ |X|
be a cardinal. If C contains a club on [Y ]κ (resp. [Y ]<κ), then C ↓ [X]κ = (C ↓ X)∩
[X]κ (resp. C ↓ [X]<κ) contains a club on [X]κ (resp. [X]<κ). If C contains a club
on [X]<κ, then C ↑ [Y ]<κ = (C ↑ Y ) ∩ [Y ]<κ contains a club on [Y ]<κ.

If S is stationary on [Y ]<κ, then S ↓ [X]<κ is stationary on [X]<κ. If S is
stationary on [X]κ (resp. [X]<κ), then S ↑ [Y ]κ is stationary on [Y ]κ (resp. with
[Y ]<κ).
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The latter lemma is optimal, that is, the lifting [X]κ ↑ [Y ]κ may not be a club
on [Y ]κ if |X| < |Y |. For example, such a set is not a club if |Y | is a Completely
Jónsson cardinal (see [33]) since in this case its complement [Y ]κ \ ([X]κ ↑ [Y ]κ) =
[X]<κ ↑ [Y ]κ is stationary.

1.3 Forcing and boolean valued models

We now give a brief account of forcing via boolean valued models. Our presentation
is self-contained but extremely compact, more details on the material of this section
can be found in [2, 8, 26, 27, 32].

Recall that P is a poset iff it is a set equipped with a partial order ≤P. Given
p, q ∈ P, we say that p ‖ q (p is compatible with q) iff there exists an r ≤ p, r ≤ q;
and p ⊥ q (p is incompatible with q) otherwise.

A subset D ⊆ P is dense iff for every p ∈ P there is a q ∈ D, q ≤ p and is open
iff for every p ∈ D, any q ∈ P such that q ≤ p is in D. We say that a subset A ⊆ P is
an antichain iff p ⊥ q for all p, q ∈ A and that it is a chain iff it is totally ordered by
≤P. An antichain A ⊆ P is maximal iff every p ∈ P is compatible with some q ∈ A.

We say that P is a suborder of Q if P ⊆ Q and the inclusion map of P into Q is
preserving the order and the incompatibility relation. Furthermore, P is a complete
suborder of Q if any maximal antichain in 〈P,≤P〉 remains such in 〈Q,≤Q〉.

Recall that a poset P is a lattice iff every p, q ∈ P have a least upper bound
p ∨ q and a greater lower bound p ∧ q, and that B is a boolean algebra iff it is a
complemented distributive lattice. A boolean algebra B is complete iff every subset
A ⊂ B has a unique supremum ∨A in B.

Definition 1.3.1. Let P be a poset, p be in P. Then

P�p = {q ∈ P : q ≤ p},

is the restriction of P below p. If P = B is a boolean algebra, we define

ip : B −→ B�p
q 7−→ q ∧ p

the restriction map from B to B�p.

We call forcing notion a poset (or complete boolean algebra) used for forcing,
and conditions the elements of a forcing notion. Throughout the remainder of this
section, let M be a transitive model of ZFC and B be a complete boolean algebra
in M .

Definition 1.3.2. The class MB of B-names in M is

MB = {ẋ ∈M : ẋ : MB → B is a partial function1}.

We let for the atomic formulas x ∈ y, x ⊆ y, x = y:

1This definition is a shorthand for a recursive definition by rank. We remark that in certain
cases (for example in the definition of the name β̇ in the proof of Lemma 3.4.8) it will be convenient
to allow a name ẏ to be a relation (as in Kunen’s [32, Def. 2.5]); given a B-name ẏ according to
Kunen’s definition, the corresponding intended name fẏ according to the above definition is given
by fẏ(fċ) =

∨
{b : 〈ċ, b〉 ∈ ẏ}.

9



1 Backgrounds

• Jẋ0 ∈ ẋ1KB =
∨
{Jẏ = ẋ0KB ∧ ẋ0(ẏ) : ẏ ∈ dom(ẋ1)},

• Jẋ0 ⊆ ẋ1KB =
∧
{¬ẋ0(ẏ) ∨ Jẏ ∈ ẋ0KB : ẏ ∈ dom(ẋ0)},

• Jẋ0 = ẋ1KB = Jẋ0 ⊆ ẋ1KB ∧ Jẋ1 ⊆ ẋ0KB.

and for general formulas φ(x0, . . . , xn):

• J¬φKB = ¬ JφKB,

• Jφ ∧ ψKB = JφKB ∧ JψKB,

• Jφ ∨ ψKB = JφKB ∨ JψKB,

• J∃xφ(x, ẋ1, . . . , ẋn)KB =
∨{

Jφ(ẏ, ẋ1, . . . , ẋn)KB : ẏ ∈MB}.

MB together with the interpretation of formulas J. . .KB given above forms a
boolean valued model of set theory. When clear from the context, we shall omit the
index B from J. . .K. We also use p 
B φ to denote that p ≤ JφKB.

Definition 1.3.3. Given x ∈M , we define the canonical B-name x̌ for x recursively
by:

x̌ = {〈y̌,1〉 : y ∈ x} ,
and expand the language with an additional symbol M̌ for a boolean-valued subclass
of MB defined by: q

ẋ ∈ M̌
y
B =

∨
{Jẋ = y̌KB : y ∈M} .

Finally, we denote as ĠB ∈MB the canonical name for a M -generic filter for B, i.e.
ĠB = {〈p̌, p〉 : p ∈ B}.

Lemma 1.3.4 (Mixing). Let A ⊆ B be an antichain in M and {ẋp : p ∈ A} be
a family of B-names2 indexed by A in M . Then there exists ẏ ∈ MB such that
Jẏ = ẋpKB ≥ p for all p ∈ A.

Proof. The property is witnessed by ẏ =
⋃
p∈A {〈ż, q ∧ p〉 : 〈ż, q〉 ∈ ẋp}.

Lemma 1.3.5 (Fullness). For all formula φ(x, x1, . . . , xn) and ẋ1, . . . , ẋn ∈ MB,
there exists a ẏ ∈MB such that

J∃xφ(x, ẋ1, . . . ẋn)KB = Jφ(ẏ, ẋ1, . . . ẋn)KB .

Proof. First notice that for any ẏ ∈MB,

J∃xφ(x, ẋ1, . . . ẋn)KB ≥ Jφ(ẏ, ẋ1, . . . ẋn)KB .

Set B =
{
Jφ(ẏ, ẋ1, . . . ẋn)KB : ẏ ∈MB}, and let B′ be its downward closure. Since

q = J∃xφ(x, ẋ1, . . . ẋn)KB =
∨
B, we can find an antichain A ⊆ B′ in M which is

maximal below q. For all p ∈ A, let ẋp be such that Jφ(ẋp, ẋ1, . . . ẋn)KB ≥ p, ẏ be
obtained from {ẋp : p ∈ A} by mixing as in Lemma 1.3.4. Then

Jφ(ẏ, ẋ1, . . . ẋn)KB ≥ Jẏ = ẋpK ∧ Jφ(ẋp, ẋ1, . . . ẋn)KB ≥ p ∧ p = p

for all p ∈ A, hence Jφ(ẏ, ẋ1, . . . ẋn)KB ≥
∨
A = q = J∃xφ(x, ẋ1, . . . ẋn)KB.

2Contrary to the convention used throughout this thesis, here we use the notation {ẋp : p ∈ A}
to denote a family of B-names rather than a single B-name for the whole collection.
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1.3 Forcing and boolean valued models

Definition 1.3.6. Let G be any ultrafilter on B. For ẋ, ẏ ∈MB we let

• [ẋ]G = [ẏ]G iff Jẋ = ẏKB ∈ G,

• [ẋ]G ∈ [ẏ]G iff Jẋ ∈ ẏKB ∈ G,

• MB/G =
{

[ẋ]G : ẋ ∈MB}.

Theorem 1.3.7 ( Loś, [27, Lemma 14.14, Thm. 14.24]). Let G be any ultrafilter on
B. Then

1. 〈MB/G,∈G〉 is a model of ZFC,

2. 〈MB/G,∈G〉 models φ([ẋ1]G, . . . , [ẋn]G) iff Jφ(ẋ1, . . . , ẋn)KB ∈ G.

Even though the above theorem holds for any ultrafilter G, MB/G is commonly
considered for M -generic filters G.

Definition 1.3.8. We say that G is an M -generic filter for B if it is an ultrafilter
and for every D ∈M dense subset of B, G ∩D ∩M is not empty.

We remark that the above definition can be applied as stated even to non-
transitive models M ⊆ V of ZFC (with the natural ∈-relation). However, for the
remainder of this section we shall still assume that M is transitive.

Definition 1.3.9. Let G be an M -generic filter for B. For any ẋ ∈MB we let

valG(ẋ) = {valG(ẏ) : ∃p ∈ G 〈ẏ, p〉 ∈ ẋ}

and M [G] =
{

valG(ẋ) : ẋ ∈MB}.

Theorem 1.3.10 (Cohen’s Forcing, [27, Thm. 14.6]). Let G be an M -generic filter
for B. Then:

1. valG[M̌ ] = M , that is,
{

valG(ẋ) :
q
ẋ ∈ M̌

y
B ∈ G

}
= M .

2. M [G] is isomorphic to MB/G via the map which sends valG(ẋ) to [ẋ]G.

3. M [G] |= φ (valG(ẋ1), . . . , valG(ẋn)) iff Jφ(ẋ1, . . . , ẋn)KB ∈ G.

4. p 
B φ(ẋ1, . . . , ẋn) iff M [G] |= φ (valG(ẋ1), . . . , valG(ẋn)) for all M -generic
filters G for B such that p ∈ G.

5. M [G] is the smallest transitive model of ZFC including M and containing G.

Proposition 1.3.11. Let G be an M -generic ultrafilter for B. Then
∧
A ∈ G for

any A ⊂ G which belongs to M .

Proof. Suppose instead that
∧
A /∈ G and w.l.o.g.

∧
A = 0, and define

D = {p ∈ B : ∃q ∈ A p ∧ q = 0} .

Since D is a dense subset of B in M , there exists a p ∈ G ∩D. Let q ∈ A be such
that p ∧ q = 0. Then p, q ∈ G hence G is not a filter, a contradiction.
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CHAPTER 2

ITERATION SYSTEMS

This chapter present a compact and self contained development of the theory of
iterated forcing. We shall pursue the approach to iterated forcing devised by Donder
and Fuchs in [19], thus we shall present iterated forcing by means of directed system
of complete and injective homomorphisms of complete boolean algebras. The results
of this chapter will constitute the basis on which the remainder of this thesis is built.
All the material in this chapter is joint work with Matteo Viale and Silvia Steila
(see [45]).

In Section 2.1 we introduce regular homomorphisms between complete boolean
algebras (i.e. injective complete homomorphisms) and their associated retractions.
In Section 2.2 we present iterated forcing in the setting of complete boolean algebras,
together with the definition of revised countable support iterations. In the final part
of the section we study basic properties of complete iteration systems, in particular
we set up sufficient conditions to establish when the direct limit of an iteration system
of length λ is <λ-cc (this corresponds to the well known result of Baumgartner on
direct limits of <λ-cc forcings), and when lim−→F and lim←−F do overlap for a given
iteration system F . In Section 2.3 we introduce the definition of two-step iteration
following Jech’s approach [27], and present the main properties of generic quotients
for iteration systems.

2.1 Embeddings and retractions

We now introduce the notions of complete homomorphism and regular embedding
and their basic properties.

Definition 2.1.1. Let B, C be complete boolean algebras, i : B→ C is a complete
homomorphism iff it is an homomorphism that preserves arbitrary suprema. We say
that i is a regular embedding iff it is an injective complete homomorphism of boolean
algebras.

Definition 2.1.2. Let i : B→ C be a complete homomorphism. We define

ker(i) =
∨
{p ∈ B : i(p) = 0}

13



2 Iteration systems

coker(i) = ¬ ker(i)

We can always factor a complete homomorphism i : B → C as the restriction
map from B to B� coker(i) (which we can trivially check to be a complete and
surjective homomorphism) composed with the regular embedding i� coker(i). This
factorization allows to generalize easily many results on regular embeddings to results
on complete homomorphisms.

Definition 2.1.3. Let i : B→ C be a regular embedding, the retraction associated
to i is the map

πi : C → B
p 7→

∧
{q ∈ B : i(q) ≥ p} .

Proposition 2.1.4. Let i : B → C be a regular embedding, p ∈ B, q, r ∈ C be
arbitrary. Then,

1. πi ◦ i(p) = p hence πi is surjective;

2. i ◦ πi(q) ≥ q hence πi maps C+ to B+;

3. πi preserves joins, i.e. πi(
∨
A) =

∨
πi[A] for all A ⊆ C;

4. i(p) =
∨
{q : πi(q) ≤ p}.

5. πi(q ∧ i(p)) = πi(q) ∧ p =
∨
{πi(r) : r ≤ q, πi(r) ≤ p};

6. πi does not preserve neither meets nor complements whenever i is not surjec-
tive, but πi(r ∧ q) ≤ πi(r) ∧ πi(q) and πi(¬q) ≥ ¬πi(q);

Proof. 1. Since i is injective,

πi ◦ i(p) =
∧
{q ∈ B : i(q) ≥ i(p)}) =

∧
{q ∈ B : q ≥ p}) = p,

thus π is surjective.

2. Suppose by contradiction that q > 0, πi(q) = 0. Since

i ◦ πi(q) = i
(∧
{p ∈ B : i(p) ≥ q}

)
=
∧
{i(p) : p ∈ B, i(p) ≥ q}

≥
∧
{r ∈ C : r ≥ q} = q,

we have that 0 = i ◦ π(q) ≥ q > 0, a contradiction.

3. Let A = {qα : α < γ} ⊆ C. Thus for all β < γ,

πi

(∨
{qα : α < γ}

)
=
∧
{p ∈ B : i(p) ≥

∨
{qα : α < γ}}

≥
∧
{p ∈ B : i(p) ≥ qβ} = πi(qβ).

and we obtain the first inequality: πi(
∨
A) ≥

∨
πi[A].

Let p =
∨
πi[A], so that p ≥ πi(qα) for all α < γ. Thus for all β < γ:

i(p) ≥ i ◦ πi(qβ) ≥ qβ.

14



2.1 Embeddings and retractions

In particular i(p) ≥
∨
{qα : α < γ}. By definition, πi is increasing then

p = πi(i(p)) ≥ π
(∨
{qα : α < γ}

)
,

that is, the second inequality
∨
πi[A] ≥ πi(

∨
A) holds.

4. Let q ∈ C be such that πi(q) ≤ p. Since i is order preserving, q ≤ i(πi(q)) ≤
i(p). Thus, ∨

{q : πi(q) ≤ p} ≤ i(p).

In order to prove the other inequality; recall that p = πi(i(p)). So,

i(p) ≤
∨
{q : πi(q) ≤ πi(i(p))} =

∨
{q : πi(q) ≤ p}.

5. For p ∈ B, q ∈ C, the following three equations hold:

πi(q ∧ i(p)) ∨ πi(q ∧ ¬i(p)) = πi(q); (2.1)

(πi(q) ∧ p) ∨ (πi(q) ∧ ¬p) = πi(q); (2.2)

(πi(q) ∧ p) ∧ (πi(q) ∧ ¬p) = 0. (2.3)

Furthermore, by definition of πi we have:

πi(q ∧ i(p)) ≤ πi(q) ∧ p; (2.4)

πi(q ∧ ¬i(p)) = πi(q ∧ i(¬p)) ≤ πi(q) ∧ ¬p. (2.5)

By (2.4), (2.5), and (2.3) we get

πi(q ∧ i(p)) ∧ πi(q ∧ ¬i(p)) = (πi(q) ∧ p) ∧ (πi(q) ∧ ¬p) = 0.

Moreover, by (2.1) and (2.2),

πi(q ∧ i(p)) ∨ πi(q ∧ ¬i(p)) = (πi(q) ∧ p) ∨ (πi(q) ∧ ¬p).

We conclude that

πi(q ∧ i(p)) = πi(q) ∧ p and πi(q ∧ ¬i(p)) = πi(q) ∧ ¬p.

6. Suppose that i : B→ C is not surjective, and pick q ∈ C\i[B]. Then i(πi(q)) 6=
q hence i(πi(q)) > q. Put r = i(πi(q)) ∧ ¬q > 0. Then πi(r) > 0 and

πi(q) ∨ πi(r) = πi(q ∨ r) = πi(i(πi(q))) = πi(q).

thus πi(r)∧πi(q) = πi(r) > 0. Since πi(r∧q) = πi(0) = 0, πi does not preserve
meets. Furthermore, πi preserves joins thus it must be the case that it does
not preserve complements. In addition, for all r, q ∈ C,

πi(r ∧ q) ≤ πi(r ∧ i(πi(q))) = πi(r) ∧ πi(q)

and ¬πi(r) ≤ πi(¬r), since

¬πi(r) ∧ ¬πi(¬r) = ¬(πi(r) ∨ πi(¬r)) = ¬(πi(r ∨ ¬r)) = ¬(πi(1)) = 0.
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2 Iteration systems

Complete homomorphisms and regular embeddings are the boolean algebraic
counterpart of two-step iterations. This will be spelled out in detail in Section 2.3.
We now outline the relation existing between generic extensions by B and C in case
there is a complete homomorphism i : B→ C.

Lemma 2.1.5. Let i : B → C be a regular embedding, D ⊂ B, E ⊂ C be predense
sets. Then i[D] and πi[E] are predense (i.e. predense subsets are mapped into
predense subsets). Moreover πi maps V -generic filters to V -generic filters.

Proof. First, let p ∈ C be arbitrary. Since D is predense, there exists q ∈ D such
that q∧π(p) > 0. Then by Property 2.1.4.(5) also i(q)∧p > 0 hence i[D] is predense.
Furthermore, let p ∈ B be arbitrary. Since E is predense, there exists q ∈ E such
that q ∧ i(p) > 0. Then by Property 2.1.4.(5) also πi(q) ∧ p > 0 hence πi[E] is
predense.

For the last point in the lemma, we first prove that πi[G] is a filter whenever
G is a filter. Let p be in G, and suppose q > πi(p). Then by Property 2.1.4.(2)
also i(q) > i(πi(p)) ≥ p, hence i(q) ∈ G and q ∈ πi[G], proving that πi[G] is
upward closed. Now suppose p, q ∈ G, then by Property 2.1.4.(6) we have that
πi(p)∧ πi(q) ≥ πi(p∧ q) ∈ πi[G] since p∧ q ∈ G. Combined with the fact that πi[G]
is upward closed this concludes the proof that πi[G] is a filter.

Finally, let D be a predense subset of B and assume G is V -generic for C. We
have that i[D] is predense hence i[D]∩G 6= ∅ by V -genericity of G. Fix p ∈ i[D]∩G,
then πi(p) ∈ D ∩ πi[G] concluding the proof.

Lemma 2.1.6. Let i : B→ C be an homomorphism of boolean algebras. Then i is a
complete homomorphism iff for every V -generic filter G for C, i−1[G] is a V -generic
filter for B.

Proof. If i is a complete homomorphism and G is a V -generic filter, then i−1[G] is
trivially a filter. Furthermore, given D dense subset of B, i[D] is predense so there
exists a p ∈ G ∩ i[D], hence i−1(p) ∈ i−1[G] ∩D.

Conversely, suppose by contradiction that there exists an A ⊆ B such that
i(
∨
A) 6=

∨
i[A] (in particular, necessarily i(

∨
A) >

∨
i[A]). Let p = i(

∨
A)\

∨
i[A],

G be a V -generic filter with p ∈ G. Then i−1[G] ∩ A = ∅ hence is not V -generic
below

∨
A ∈ i−1[G], a contradiction.

Later in this chapter we shall use the following lemma to produce local versions
of various results.

Lemma 2.1.7 (Restriction). Let i : B→ C be a regular embedding, q ∈ C, then

iq : B�πi(q) → C�q
p 7→ i(p) ∧ c

is a regular embedding and its associated retraction is πiq = πi�(C�q).

Proof. First suppose that iq(p) = 0, then by Proposition 2.1.4.(5),

0 = πi(iq(p)) = πi(i(p) ∧ q) = p ∧ πi(q) = p
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2.1 Embeddings and retractions

that ensures the regularity of iq. Furthermore for any r ≤ q,

πiq(r) =
∧
{p ≤ πi(q) : i(p) ∧ q ≥ r}

=
∧
{p ≤ πi(q) : i(p) ≥ r} = πi(r),

concluding the proof.

2.1.1 Embeddings and boolean valued models

Complete homomorphisms of complete boolean algebras induce natural ∆1-elemen-
tary maps between the corresponding boolean valued models.

Proposition 2.1.8. Let i : B → C be a complete homomorphism, and define by
recursion ı̂ : V B → V C as

ı̂(ẋ) = {〈̂ı(ẏ), i(ẋ(ẏ))〉 : ẏ ∈ dom(ẋ)}

Then the map ı̂ is ∆1-elementary, i.e. for every ∆1-formula φ,

i (Jφ(ẋ1, . . . , ẋn)KB) = Jφ(̂ı(ẋ1), . . . , ı̂(ẋn))KC

Proof. We prove the result by induction on the complexity of φ. For atomic formulas
ψ (either x = y or x ∈ y), we proceed by further induction on the rank of ẋ1, ẋ2.

i (Jẋ1 ∈ ẋ2KB) = i
(∨
{ẋ2(ẏ) ∧ Jẋ1 = ẏKB : ẏ ∈ dom(ẋ2)}

)
=
∨
{i (ẋ2(ẏ)) ∧ i (Jẋ1 = ẏKB) : ẏ ∈ dom(ẋ2)}

=
∨
{i (ẋ2(ẏ)) ∧ Ĵı(ẋ1) = ı̂(ẏ)KC : ẏ ∈ dom(ẋ2)}

= Ĵı(ẋ1) ∈ ı̂(ẋ2)KC

i (Jẋ1 ⊆ ẋ2KB) = i
(∧
{ẋ1(ẏ)→ Jẏ ∈ ẋ2KB : ẏ ∈ dom(ẋ1)}

)
=
∧
{i (ẋ1(ẏ))→ i (Jẏ ∈ ẋ2KB) : ẏ ∈ dom(ẋ1)}

=
∧
{i (ẋ1(ẏ))→ Ĵı(ẏ) ∈ ı̂(ẋ2)KC : ẏ ∈ dom(ẋ1)}

= Ĵı(ẋ1) ⊆ ı̂(ẋ2)KC .

We used the inductive hypothesis in the last row of each case. Since Jẋ1 = ẋ2K =
Jẋ1 ⊆ ẋ2K ∧ Jẋ2 ⊆ ẋ1K, the proof for ψ atomic is complete.

For ψ quantifier-free formula the proof is immediate since i is an embedding
hence preserves ∨, ¬. Suppose now that ψ = ∃x ∈ y φ is a ∆0-formula.

i (J∃x ∈ ẋ1φ(x, ẋ1, . . . , ẋn)KB)

=
∨
{i (ẋ1(ẏ)) ∧ i (Jφ(ẏ, ẋ1, . . . , ẋn)KB) : ẏ ∈ dom(ẋ1)}

=
∨
{i(ẋ1(ẏ)) ∧ Jφ (̂ı(ẏ), ı̂(ẋ1), . . . , ı̂(ẋn))KC : ẏ ∈ dom(ẋ1)}

= J∃x ∈ ı̂(ẋ1) φ (x, ı̂(ẋ1), . . . , ı̂(ẋn))KC
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2 Iteration systems

Furthermore, if ψ = ∃x φ is a Σ1-formula, by the fullness lemma there exists a
ẏ ∈ V B such that J∃xφ(x, ẋ1, . . . , ẋn)KB = Jφ(ẏ, ẋ1, . . . , ẋn)KB hence

i (J∃xφ(x, ẋ1, . . . , ẋn)KB) = i (Jφ(ẏ, ẋ1, . . . , ẋn)KB)

= Jφ (̂ı(ẏ), ı̂(ẋ1), . . . , ı̂(ẋn))KC
≤ J∃xφ (x, ı̂(ẋ1), . . . , ı̂(ẋn))KC .

Thus, if φ is a ∆1-formula, either φ and ¬φ are Σ1 hence the above inequality holds
and also

i (Jφ(ẋ1, . . . , ẋn)KB) = ¬i (J¬φ(ẋ1, . . . , ẋn)KB)

≥ ¬ J¬φ (̂ı(ẋ1), . . . , ı̂(ẋn))KC
= Jφ (̂ı(ẋ1), . . . , ı̂(ẋn))KC ,

concluding the proof.

2.2 Iteration systems

In this section we present iteration systems and some of their algebraic properties.
We defer to later sections an analysis of their forcing properties. In order to develop
the theory of iterations, from now on we shall consider only regular embeddings.

Definition 2.2.1. F = {iαβ : Bα → Bβ : α ≤ β < λ} is a complete iteration system
of complete boolean algebras iff for all α ≤ β ≤ ξ < λ:

1. Bα is a complete boolean algebra and iαα is the identity on it;

2. iαβ is a regular embedding with associated retraction παβ;

3. iβξ ◦ iαβ = iαξ.

If ξ < λ, we define F�ξ = {iαβ : α ≤ β < ξ}.

Definition 2.2.2. Let F be a complete iteration system of length λ. Then:

• The inverse limit of the iteration is

lim←−F =

{
s ∈

∏
α<λ

Bα : ∀α∀β > α παβ(s(β)) = s(α)

}

and its elements are called threads.

• The direct limit is

lim−→F =
{
s ∈ lim←−F : ∃α∀β > α s(β) = iαβ(s(α))

}
and its elements are called constant threads. The support of a constant thread
supp(s) is the least α such that iαβ ◦ s(α) = s(β) for all β ≥ α.

• The revised countable support limit is

lim
rcs
F =

{
s ∈ lim←−F : s ∈ lim−→F ∨ ∃α s(α) 
Bα cof(λ̌) = ω̌

}
.
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2.2 Iteration systems

Definition 2.2.3. Let F = {iαβ : α ≤ β < λ} be an iteration system. We say
that F is a <κ-support iteration iff Bα = lim−→F�α whenever cof(α) ≥ κ, and Bα =
lim←−F�α otherwise. We say that F is a revised countable support (RCS) iteration iff
Bα = lim

rcs
F�α for all α < λ.

Every thread in lim←−F is completely determined by its tail, while every thread
in lim−→F is entirely determined by the restriction to its support (and in particular
by s(supp(s))). Notice that lim−→F ⊆ lim

rcs
F ⊆ lim←−F are partial orders with the order

relation given by pointwise comparison of threads. Furthermore, if λ is singular and
f : cof(λ)→ λ is an increasing cofinal map,we have the followings isomorphisms of
partial orders:

lim−→F
∼= lim−→{if(α)f(β) : α ≤ β < cof(λ)};

lim←−F
∼= lim←−{if(α)f(β) : α ≤ β < cof(λ)};

lim
rcs
F ∼= lim

rcs
{if(α)f(β) : α ≤ β < cof(λ)}.

Thus we can always assume without loss of generality that λ is a regular cardinal.
The limits of an iteration system previously defined are closely related with the

elements of the iteration system, as shown by the following definition and remarks.

Definition 2.2.4. Let F = {iαβ : α ≤ β < λ} be an iteration system. For all α < λ,
we define iαλ as

iαλ : Bα → lim−→F
p 7→ 〈πβα(p) : β < α〉a〈iαβ(p) : α ≤ β < λ〉

and παλ as
παλ : lim←−F → Bα

s 7→ s(α)

When it is clear from the context, we will denote iαλ by iα and παλ by πα.

The maps iαλ naturally extend the iteration system to λ, as the following diagram
commutes:

Bα

Bβ

lim−→F

iαβ

iαλ

iβλ

Furthermore, these maps can naturally be seen as regular embeddings of Bα in any
of RO(lim−→F), RO(lim

rcs
F), RO(lim←−F). Moreover by Property 2.1.4.(3) in all three

cases παλ = πiα,λ�P where P = lim−→F , limrcs F , lim←−F .

2.2.1 Boolean algebra operations on iteration system limits

We can now equip the different limits of iteration systems with boolean algebras
operations.

Definition 2.2.5. lim−→F inherits the structure of a boolean algebra with boolean
operations defined as follows:
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2 Iteration systems

• s1∧s2 is the unique thread s whose support β is the maximum of the supports
of s1 and s2 and such that s(β) = s1(β) ∧ s2(β),

• ¬s is the unique thread t whose support β is the support of s and such that
t(β) = ¬s(β).

Definition 2.2.6. Let A be any subset of lim←−F . We define the pointwise supremum
of A as ∨̃

A = 〈
∨
{s(α) : s ∈ A} : α < λ〉.

The previous definition makes sense since by Proposition 2.1.4.(3)
∨̃
A is a thread.

It must be noted that if A is an infinite subset of lim←−F ,
∨̃
A might not be the least

upper bound of A in RO(lim←−F). A sufficient condition on A for this to happen is
given by Lemma 2.2.8 below.

If s ∈ lim←−F and t ∈ lim−→F we can check that s ∧ t, defined as the thread where
eventually all coordinates α are the pointwise meet of s(α) and t(α), is the infimum
of s and t in lim←−F . There can be nonetheless two distinct incompatible threads
s, t ∈ lim←−F such that s(α) ∧ t(α) > 0 for all α < λ. Thus in general the pointwise
meet of two threads could not even be a thread.

In general lim−→F is not complete and RO(lim−→F) cannot be identified with a
complete subalgebra of RO(lim←−F) (i.e. lim−→F and lim←−F as forcing notions in general
share little in common). However, RO(lim−→F) can be identified with a subalgebra of
lim←−F that is complete (even though it is not a complete subalgebra), as shown in
the following proposition.

Proposition 2.2.7. Let F = {iαβ : α ≤ β < λ} be an iteration system. Then

RO(lim−→F) ' D =
{
s ∈ lim←−F : s =

∨̃ {
t ∈ lim−→F : t ≤ s

}}
.

Proof. The isomorphism associates to a regular open U ∈ RO(lim−→F) the thread

k(U) =
∨̃
U , with inverse k−1(s) =

{
t ∈ lim−→F : t ≤ s

}
.

First, we prove that k−1 ◦k(U) =
{
t ∈ lim−→F : t ≤

∨̃
U
}

= U . Since
∨̃
U >

∨
U ,

it follows that U ⊆ k−1 ◦ k(U). Furthermore, since U is a regular open set, if t /∈ U ,
there exists a t′ ≤ t that is in the interior of the complement of U (i.e., ∀t′′ ≤ t′ t′′ /∈
U). So suppose towards a contradiction that there exist a t ≤

∨̃
U as above (i.e.,

∀t′ ≤ t t′ /∈ U). Let α be the support of t, so that t(α) ≤
∨
{s(α) : s ∈ U}. Then,

there exists an s ∈ U such that s(α) is compatible with t(α), hence s ∧ t > 0 and is
in U (since U is open). Since s ∧ t ≤ t, this is a contradiction.

It follows that k(U) ∈ D for every U ∈ RO(lim−→F). Moreover, k−1(s) is in

RO(lim−→F) (i.e., is regular open). In fact, it is open and if t /∈ k−1(s) then t � s and
this is witnessed by some α > supp(t), so that t(α) � s(α). Let t′ = iα(t(α)\s(α)) >
0, then for all t′′ ≤ t′, t′′(α) ⊥ s(α) hence t′′ � s, thus k−1(s) is regular.

Furthermore, k−1 is the inverse map of k since we already verified that k−1 ◦
k(U) = U and for all s ∈ D, k ◦ k−1(s) = s by definition of D. Finally, k and k−1

are order-preserving maps since U1 ⊆ U2 iff
∨̃
U1 ≤

∨̃
U2.

As noted before, the notion of supremum in lim←−F may not coincide with the
notion of pointwise supremum. However, it is possible to give a sufficient condition
for this to happen, as in the following proposition.
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2.2 Iteration systems

Proposition 2.2.8. Let F = {iαβ : α ≤ β < λ} be an iteration system and A ⊆
lim←−F be an antichain such that παλ[A] is an antichain for some α < λ. Then

∨̃
A

is the supremum of the elements of A in RO(lim←−F).

Proof. Suppose by contradiction that
∨
A <

∨̃
A in RO(lim←−F). Then there exists

t ∈ lim←−F such that 0 < t ≤ ¬
∨
A ∧

∨̃
A. Let α < λ be such that παλ[A] is an

antichain and let s ∈ A be such that s(α) is compatible with t(α). Such an s exists
because t(α) ≤

∨
{s(α) : s ∈ A} and t(α) > 0. We now prove that s and t are

compatible. Consider

t′ = 〈t(β) ∧ iαβ (s(α)) : α ≤ β < λ〉.

Then t′ ≤ t and it is a thread in lim←−F . In fact, since iα,β = iξ,β ◦ iα,ξ for each
α ≤ ξ ≤ β < λ,

πξ,β(t′(β)) = πξ,β(t(β) ∧ iα,β ◦ s(α)) = πξ,β(t(β)) ∧ iα,ξ(s(α)) = t′(ξ).

It only remains to prove that t′(β) ≤ s(β) for each β ≥ α. Notice that t′(β) ≤
t(β) ≤ sup{s′(β) : s′ ∈ A}, t′(β) > 0 and t′(β) is incompatible with s′(β) for all
s′ 6= s in A. Thus

t′(β) ≤
∨
{s′(β) : s′ ∈ A} ∧

(
¬
∨
{s′(β) : s′ ∈ A, s′ 6= s}

)
= s(β)

for all β ≥ α, hence t and s are compatible. Since s, t ∈ A, we get a contradiction.

2.2.2 Relation between inverse and direct limits

Even though in general lim−→F is different from lim←−F , in certain cases they happen
to coincide.

Lemma 2.2.9. Let F = {iαβ : α ≤ β < λ} be an iteration system such that lim−→F
is <λ-cc1. Then lim←−F = lim−→F is a complete boolean algebra.

Proof. First, since every element of RO(lim−→F) is the supremum of an antichain in
lim−→F , and since lim−→F is <λ-cc and λ is regular, the supremum of such an antichain
can be computed in some Bα for α < λ hence RO(lim−→F) = lim−→F .

Let s be in lim←−F \ lim−→F . Since s is a non-constant thread, for all α < β we have
that iαβ(s(α)) ≥ s(β) and for all α there is an ordinal βα such that iαβα(s(α)) >
s(βα). By restricting to a subset of λ w.l.o.g. we can suppose that s(β) < iαβ(s(α))
for all β > α. Hence {iαλ(s(α)) : α < λ} is a strictly descending sequence of length
λ of elements in lim−→F

+. From a descending sequence we can always define an
antichain in lim−→F setting pα = iαλ(s(α)) ∧ ¬iα+1,λ(s(α+ 1)). Since lim−→F is <λ-cc,
this antichain has to be of size less than λ hence for coboundedly many α, pα = 0
hence s(α+ 1) = iα,α+1(s(α)) and s ∈ lim−→F , a contradiction.

Theorem 2.2.10 (Baumgartner). Let F = {iαβ : α ≤ β < λ} be an iteration sys-
tem such that Bα is <λ-cc for all α and S =

{
α : Bα ∼= RO(lim−→F�α)

}
is stationary.

Then lim−→F is <λ-cc.
1We refer to Definition 3.1.1 for a definition of <λ-cc boolean algebra.
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2 Iteration systems

Proof. Suppose by contradiction that there exists an antichain 〈sα : α < λ〉. Let
f : λ→ λ be such that f(α) > α, supp(sα). Let C be the club of closure points of f
(i.e. such that for all α ∈ C, f [α] ⊆ f(α)). Then we can define a regressive function

g : S → λ
α 7→ min

{
supp(s) : s ∈ (lim−→F�α)+, s < sα(α)

}
and a corresponding function h : S → lim−→F such that supp(h(α)) = g(α), h(α)(α) <
sα(α). By Fodor’s Lemma let ξ ∈ λ, T ⊂ S be stationary such that g[T ] = {ξ}.

Since h[T ∩ C] has size λ and Bξ is <λ-cc, there are α, β ∈ T ∩ C such that
h(α) ∧ h(β) ≥ p > 0 for some p with supp(p) = ξ. Moreover sα(α) > p(α) holds
and the support of p is below α, so that sα ∧ p > 0. Furthermore, sβ(β) > p(β) ≥
(sα ∧ p) (β) and the support of sα ∧ p is below β, thus sβ ∧ sα ∧ p > 0 contradicting
the hypothesis that 〈sα : α < λ〉 is an antichain.

Notice that for an iteration system F as above of regular length δ > λ, lim−→F is
also <λ-cc by an easier regularity argument.

2.3 Two-step iterations and generic quotients

In the first part of this section we define the two-step iteration B ∗ Ċ following
[27, Chp. 16] and study the basic properties of the natural regular embedding of B
into B ∗ Ċ where Ċ is a B-name for a complete boolean algebra.

In the second part of this section we study the properties of generic quotients
given by B-names C/i[ĠB] where i : B → C is a complete homomorphism and show
that if we have a commutative diagram of complete homomorphisms:

B C0

C1

i0

i1
k

and G is a V -generic filter for B, then the map defined by k/G([p]i0[G]) = [k(p)]i1[G]

is a complete homomorphism in V [G]. We also show a converse of this property.

In the third part of this section we show that the two approaches are equivalent,
that is, i : B→ C is a complete homomorphism iff C is isomorphic to B∗C/i[ĠB] and
prove a converse of the above factorization property when we start from B-names
for regular embeddings k̇ : Ċ→ Ḋ.

Finally, in the last part we apply the above results to analyze generic quotients
of iteration systems.

All the results in this section can be generalized to complete (not necessarily
injective) homomorphisms i, by considering i� coker(i), which is a regular embedding
(see Definition 2.1.2).
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2.3 Two-step iterations and generic quotients

2.3.1 Two-step iterations

We present two-step iterations following [27].

Definition 2.3.1. Let B be a complete boolean algebra, and Ċ be a B-name for a
complete boolean algebra. We denote by B ∗ Ċ the boolean algebra defined in V
whose elements are the equivalence classes of B-names for elements of Ċ (i.e. ṗ ∈ V B

such that
r
ṗ ∈ Ċ

z

B
= 1) modulo the equivalence relation:

ṗ ≈ q̇ ⇔ Jṗ = q̇KB = 1,

with the following operations:

[ṗ] ∨B∗Ċ [q̇] = [ṙ] ⇐⇒
q
ṙ = ṗ ∨Ċ q̇

y
B = 1;

¬B∗Ċ[ṗ] = [ṙ] ⇐⇒
q
ṙ = ¬Ċṗ

y
B = 1.

Literally speaking our definition of B ∗ Ċ yields an object whose domain is a
family of proper classes of B-names. By means of Scott’s trick we can arrange so
that B ∗ Ċ is indeed a set. We leave the details to the reader.

Lemma 2.3.2. Let B be a complete boolean algebra, and Ċ be a B-name for a
complete boolean algebra. Then B ∗ Ċ is a complete boolean algebra and the maps
iB∗Ċ, πB∗Ċ defined as

iB∗Ċ : B → B ∗ Ċ
p 7→ [τp]≈

πB∗Ċ : B ∗ Ċ → B
[ṗ]≈ 7→ Jṗ > 0KB

where τp ∈ V B is a B-name for an element of Ċ such that Jτp = 1KB = p and
Jτp = 0KB = ¬p, are a regular embedding with its associated retraction.

Proof. We leave to the reader to verify that B ∗ Ċ is a boolean algebra. We can also
check that

[ṗ] ≤ [q̇] ⇐⇒ Jṗ ∨ q̇ = q̇KB = 1 ⇐⇒ Jṗ ≤ q̇KB = 1.

Observe that B ∗ Ċ is complete: if {[ṗα] : ξ < δ} ⊆ B ∗ Ċ, let q̇ be such that
Jq̇ =

∨
{ṗξ : ξ < δ}KB = 1. Then [q̇] ≥

∨
{[ṗξ] : ξ < δ} since for all α < δ

r∨
{ṗξ : ξ < δ} ≥ ṗα

z

B
= 1.

Moreover if Jṙ ≥ ṗαKB = 1 for all α < δ, then∧
{Jṙ ≥ ṗαKB : α < δ} = 1

thus Jṙ ≥ q̇KB = 1, hence [ṙ] ≥ [q̇], which gives that [q̇] =
∨
{[ṗα] : α < δ}.

We now prove that iB∗Ċ is a regular embedding and that πB∗Ċ is its associated
retraction.

• First of all, a standard application of the mixing lemma to the maximal an-
tichain {p,¬p} and the family of B-names {1̇, 0̇} shows that for each p ∈ B
there exists a unique [τp] ∈ B ∗ Ċ such that Jτp = 1KB = p and Jτp = 0KB = ¬p.
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2 Iteration systems

• iB∗Ċ preserves negation since J¬τp = τ¬pKB = 1.

• iB∗Ċ preserves joins. Consider {pα ∈ B : α < δ}. We have that

r∨
τpα = 0

z

B
=
∧

Jτpα = 0KB =
∧

(¬pα) = ¬(
∨
pα).

Furthermore,

r∨
τpα = 1

z

B
≤

r∨
τpα > 0

z

B
=
∨

Jτpα > 0KB

=
∨

Jτpα = 1KB ≤
r∨

τpα = 1
z

B
;

then J
∨
τpα = 1KB =

∨
Jτpα = 1KB =

∨
pα. Thus,

iB∗Ċ

(∨
pα

)
=
[∨

τpα

]
=
∨[

iB∗Ċ(pα)
]
.

• iB∗Ċ is regular since iB∗Ċ(p) = iB∗Ċ(p′)⇒ p = Jτp = 1KB =
q
τp′ = 1

y
B = p′.

• Finally, we show that πiB∗Ċ([ṗ]) = Jṗ > 0KB. By definition of retraction associ-
ated to iB∗Ċ,

πiB∗Ċ([ṗ]) =
∧
{q ∈ B : iB∗Ċ(q) ≥ [ṗ]}.

If q is such that iB∗Ċ(q) ≥ [ṗ], then Jτq ≥ ṗKB = 1 hence

q = Jτq = 1KB = Jτq > 0KB ≥ Jṗ > 0KB ∧ Jτq ≥ ṗKB = Jṗ > 0KB ,

so we have the first inequality πiB∗Ċ([ṗ]) ≥ Jṗ > 0KB.

Let now iB∗Ċ(Jṗ > 0KB) = [τ ]. Then,

¬ Jṗ = 0KB = Jṗ > 0KB = Jτ = 1KB ≤ Jṗ ≤ τKB

and Jṗ = 0KB ≤ Jṗ ≤ τKB. If follows that Jṗ ≤ τKB ≥ ¬ Jṗ = 0KB∨Jṗ = 0KB = 1,
hence [ṗ] ≤ [τ ] = iB∗Ċ(Jṗ > 0KB). Thus, πiB∗Ċ([ṗ]) ≤ Jṗ > 0KB as was to be
shown.

When clear from the context, we shall feel free to omit the subscripts in iB∗Ċ,
πB∗Ċ. This definition is provably equivalent to Kunen’s two-step iteration of posets

[32], i.e. RO(P ∗ Q̇) is isomorphic to RO(P) ∗ RO(Q̇).

Proposition 2.3.3. A = {[ṗα]≈ : α ∈ λ} is a maximal antichain in D = B ∗ Ċ iff

r
{ṗα : α ∈ λ} is a maximal antichain in Ċ

z

B
= 1.

Proof. It is sufficient to observe the following:

q
ṗα ∧ ṗβ = 0̇

y
B = 1 ⇐⇒ [ṗα]≈ ∧ [ṗβ]≈ =

[
0̇
]
≈ ,

r∨
ṗα = 1̇

z

B
= 1 ⇐⇒

∨
[ṗα]≈ =

[∨
ṗα

]
≈

=
[
1̇
]
≈ .
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2.3 Two-step iterations and generic quotients

2.3.2 Generic quotients

We now outline the main definition and properties of generic quotients.

Proposition 2.3.4. Let i : B → C be a regular embedding of complete boolean
algebras and G be a V -generic filter for B. Then C/G, defined with abuse of notation
as the quotient of C with the filter generated by i[G], is a boolean algebra in V [G].

Proof. We have that

V [G] |= C is a boolean algebra and i[G] generates a filter on C.

Thus C/G is a boolean algebra in V [G] such that

• [p] = [q] if and only if p4q = (p \ q) ∨ (q \ p) ∈ i[G]∗;

• [p] ∨ [q] = [p ∨ q];

• ¬ [p] = [¬p];

where i[G]∗ is the dual ideal of the filter i[G].

Lemma 2.3.5. Let i : B→ C be a regular embedding, Ġ be the canonical name for
a generic filter for B and ṗ be a B-name for an element of C/Ġ. Then there exists

a unique q ∈ C such that
r
ṗ = [q]i[Ġ]

z

B
= 1.

Proof. First, notice that the B-name for the dual of the filter generated by i[Ġ] is
İ = {〈q,¬πi(q)〉 : q ∈ C}.

Uniqueness. Suppose that q0, q1 are such that
q
ṗ = [qk]İ

y
B = 1 for k < 2. Then

q
[q0]İ = [q1]İ

y
= 1 hence

r
q04q1 ∈ İ

z

B
= ¬πi(q04q1) = 1. This implies that

πi(q04q1) = 0⇒ q04q1 = 0⇒ q0 = q1.

Existence. Let A ⊂ B be a maximal antichain deciding the value of ṗ, and for
every r ∈ A let qr be such that r 
B ṗ = [qr]İ . Let q ∈ C be such that
q =

∨
{i(r) ∧ qr : r ∈ A}, so that

q
[q]İ = [qr]İ

y
B =

r
q4qr ∈ İ

z

B
= ¬πi(q4qr) ≥ ¬πi(i(¬r)) = r

since q4qr ≤ ¬i(r) = i(¬(r)). Thus,

q
ṗ = [q]İ

y
B ≥

q
ṗ = [qr]İ

y
B ∧

q
[q]İ = [qr]İ

y
B ≥ r ∧ r = r.

The above inequality holds for any r ∈ A, so
q
ṗ = [q]İ

y
B ≥

∨
A = 1 concluding

the proof.

Proposition 2.3.6. Let i : B → C be a regular embedding of complete boolean
algebras and G be a V -generic filter for B. Then C/G is a complete boolean algebra
in V [G].
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2 Iteration systems

Proof. By Proposition 2.3.4, we only need to prove that C/G is complete. Let
{ṗα : α < δ} ∈ V be a set of B names for elements of C/Ġ. Then, by Lemma 2.3.5,
for each α < δ there exists qα ∈ C such that

r
ṗα = [qα]i[Ġ]

z

B
= 1.

We have that
∨
qα ∈ C, since C is complete. Let r ∈ C be such that [r] ≥ [qα] in

V [G] for all α < δ. Then,

¬π(qα ∧ ¬r) =
r
qα ∧ ¬r ∈ i[Ġ]

∗z

B
= J[r] ≥ [qα]KB ∈ G

So π(qα ∧ ¬r) 6∈ G for all α < δ. In particular since {π(qα ∧ ¬r) : α < δ} ∈ V is
disjoint from G,

q =
∨
{π(qα ∧ ¬r) : α < δ} = π(¬r ∧

∨
{qα : α < δ}) 6∈ G.

Thus if π(r) ∈ G, V [G] |= [r] ≥ [
∨
qα] while if π(r) 6∈ G, π(¬r) ∈ G and∨

{π(qα) : α < δ} =
∨
{π(qα ∧ ¬r) : α < δ} ∨

∨
{π(qα ∧ r) : α < δ}

≤ q ∨ π(r) 6∈ G,

hence [qα] and [
∨
{qα : α < δ}] are all equal to 0. In either cases [

∨
{qα : α < δ}]

is the least upper bound of the family {[qα] : α < δ} in V [G]. This shows that
V [G] |= C/G is complete for all V -generic filters G.

The construction of generic quotients can be defined also for regular embeddings:

Proposition 2.3.7. Let B, C0, C1 be complete boolean algebras, and let G be a V -
generic filter for B. Let i0, i1, k form a commutative diagram of regular embeddings
as in the following picture:

B C0

C1

i0

i1
k

Then k/G : C0/G → C1/G defined by k/G([p]i0[G]) = [k(p)]i1[G] is a well-defined
regular embedding of complete boolean algebras in V [G] with associated retraction π
such that π([q]i1[G]) = [πk(q)]i0[G].

Proof. By Proposition 2.3.6, k/G is a map between complete boolean algebras. We
can also verify that k/G is:

well-defined. Suppose [p]i0[G] = [q]i0[G]. Then p4q ∈ i0[G]∗ and k(p)4k(q) =

k(p4q) ∈ i1[G]∗, so that [k(p)]i1[G] = [k(q)]i1[G].

complete homomorphism of boolean algebras. By Proposition 2.3.6,

k/G(¬ [pα]i0[G]) = k/G([¬pα]i0[G]) = [k(¬pα)]i1[G]

= [¬k(pα)]i1[G] = ¬ [k(pα)]i1[G]
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2.3 Two-step iterations and generic quotients

and

k/G

(∨
[pα]i0[G]

)
= k/G

([∨
pα

]
i0[G]

)
=
[
k
(∨

pα

)]
i1[G]

=
[∨

k(pα)
]
i1[G]

=
∨

[k(pα)]i1[G] .

injective. Let p, q ∈ C0 be such that k/G([p]i0[G]) = k/G([q]i0[G]). Then k(p4q) ∈
i1[G]∗ and there exists r 6∈ G such that k(p4q) ≤ i1(r) = k(i0(r)). Since k is
injective, p4q ∈ i0[G]∗.

projection is π([q]i1[G]) = [πk(q)]i0[G]. For any q ∈ C1, by definition of projection

π([q]i1[G]) =
∧
{[p]i0[G] ∈ C0/G : k/G([p]i0[G]) ≥ [q]i1[G]}.

Given any p ∈ C0,
r
k/Ġ([p]i0[Ġ]) ≥ [q]i1[Ġ]

z

B
=

r
[k(p)]i1[Ġ] ≥ [q]i1[Ġ]

z

B

=
r
q ∧ ¬k(p) ∈ i1[Ġ]

∗z

B

= ¬πi1(q ∧ ¬k(p))

= ¬πi0(πk(q ∧ k(¬p))) = ¬πi0(πk(q) ∧ ¬p)

thus k/G([p]i0[G]) ≥ [q]i1[G] iff πi0(πk(q) ∧ ¬p) ∈ G∗ iff πk(q) ∧ ¬p ∈ i0[G]∗ iff
[p]i0[G] ≥ [πk(q)]i0[G]. It follows that

π([q]i1[G]) =
∧{

[p]i0[G] ∈ C0/G : [p]i0[G] ≥ [πk(q)]i0[G]

}
= [πk(q)]i0[G] .

2.3.3 Equivalence of two-step iterations and regular embeddings

We are now ready to prove that two-step iterations and regular embeddings capture
the same concept.

Theorem 2.3.8. Let i : B→ C be a regular embedding of complete boolean algebras,
Ġ = ĠB be the canonical name for the V -generic filter for B. Then B ∗ C/i[Ġ]

∼= C.

Proof. Define

i∗ : C→ B ∗ C/i[Ġ]

p 7→
[
[p]i[Ġ]

]
≈
.

By Proposition 2.3.6 and definition of two-step iteration,

i∗(¬p) =
[
[¬p]i[Ġ]

]
≈

=
[
¬[p]i[Ġ]

]
≈

= ¬
[
[p]i[Ġ]

]
≈

= ¬i∗(p),

i∗(
∨
pα) =

[
[
∨
pα]i[Ġ]

]
≈

=
[∨

[pα]i[Ġ]

]
≈

=
∨[

[pα]i[Ġ]

]
≈

=
∨
i∗(pα).

Furthermore, given q̇ a B-name for an element of C/Ġ, by Lemma 2.3.5 there

exists a unique p ∈ C such that
r

[p]i[Ġ] = q̇
z

B
= 1, that is, [[p]i[Ġ]]≈ = [q̇]≈. Thus i∗

is a bijection.
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Proposition 2.3.9. Let Ċ0, Ċ1 be B-names for complete boolean algebras, and let
k̇ be a B-name for a regular embedding from Ċ0 to Ċ1. Then there is a regular
embedding i : B ∗ Ċ0 → B ∗ Ċ1 such that

r
k̇ = i/ĠB

z

B
= 1.

Proof. Let Ġ = ĠB. Define

i : B ∗ Ċ0 → B ∗ Ċ1

[ṗ]≈ 7→ [k̇(ṗ)]≈.

Since k̇ is a B-name for a regular embedding with boolean value 1,

[ṗ]≈ = [q̇]≈ ⇐⇒ Jṗ = q̇KB = 1 ⇐⇒
r
k̇(ṗ) = k̇(q̇)

z

B
= 1 ⇐⇒

[
k̇(ṗ)

]
≈

=
[
k̇(q̇)

]
≈

hence i is well defined and injective. Furthermore, i is a complete homomorphism:

i (¬ [ṗ]≈) = i ([¬ṗ]≈) =
[
k̇ (¬ṗ)

]
≈

=
[
¬k̇ (ṗ)

]
≈

= ¬
[
k̇ (ṗ)

]
≈

= ¬i ([ṗ]≈) ,

i
(∨

[ṗα]≈

)
= i
([∨

ṗα

]
≈

)
=
[
k̇
(∨

ṗα

)]
≈

=
[∨

k̇ (ṗα)
]
≈

=
∨[

k̇ (ṗα)
]
≈

=
∨
i ([ṗα]≈) .

Observe that the diagram

B B ∗ Ċ0

B ∗ Ċ1

iB∗Ċ0

iB∗Ċ1

i

commutes. Thus by Proposition 2.3.7,

t

i/Ġ([[ṗ]≈]iB∗Ċ0
[Ġ]) = [i ([ṗ]≈)]iB∗Ċ1

[Ġ] =
[[
k̇ (ṗ)

]
≈

]
iB∗Ċ1

[Ġ]

|

B

= 1

hence k̇ = i/Ġ.

2.3.4 Generic quotients of iteration systems

The results on generic quotients of the previous sections generalize without much
effort to iteration systems. In the following we outline how this occurs.

Lemma 2.3.10. Let F = {iαβ : Bα → Bβ : α ≤ β < λ} be a complete iteration
system of complete boolean algebras, Gξ be a V -generic filter for Bξ. Then F/Gξ =
{iαβ/Gξ : ξ < α ≤ β < λ} is a complete iteration system in V [Gξ].
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2.3 Two-step iterations and generic quotients

Proof. Follows from Proposition 2.3.7.

Lemma 2.3.11. Let F = {iαβ : Bα → Bβ : α ≤ β < λ} be a complete iteration
system of complete boolean algebras, Ġα be the canonical name for a generic filter
for Bα and ṡ be a Bα-name for an element of lim←−F/Ġα. Then there exists a unique

t ∈ lim←−F such that
r
ṡ =

[
ť
]
Ġα

z

Bα
= 1.

Proof. We proceed applying Lemma 2.3.5 at every stage β > α.

Existence. For every β > α, by hypothesis ṡ(β) is a name for an element of
the quotient Bβ/iαβ [Ġα]. Let t(β) be the unique element of Bβ such that
r
ṡ(β) =

[
ť(β)

]
iαβ [Ġα]

z

Bα
= 1. Then,

r
ṡ =

[
ť
]
Ġα

z

Bα
=

r
∀β ∈ λ ṡ(β) =

[
ť(β)

]
Ġα

z

Bα

=
∧{r

ṡ(β) =
[
ť(β)

]
iαβ [Ġα]

z

Bα
: β ∈ λ

}
=
∧

1 = 1.

Furthermore, by Proposition 2.3.7 παβ(t(β)) = t(α) for all β > α hence t is a
thread in lim←−F .

Uniqueness. If t′ is such that
r
ṡ =

[
ť′
]
Ġα

z

Bα
= 1 then for every β > α,

r
ṡ(β) =

[
ť′(β)

]
iαβ [Ġα]

z

Bα
= 1.

Such an element is unique by Lemma 2.3.5, hence t′(β) = t(β) defined above
completing the proof.
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CHAPTER 3

FORCING AXIOMS

In the first part of this section we introduce the most common forcing classes, with
a special focus on properness and semiproperness, and their corresponding forcing
axioms. In the second part we introduce the definition of weakly iterable forcing class
and outline its main properties. In this context will shall be able to explore how the
forcing classes previously introduced behave with respect to the limit operations on
iteration systems as introduced in Section 2.2. This will require to analyze them
with respect to the following order.

Definition 3.0.1. Let Γ be a definable class of complete boolean algebras and let
B,C be complete boolean algebras.

We say that B ≤∗Γ C iff there is a complete homomorphism i : C→ B such that
the quotient algebra B/i[ĠC] is in Γ with boolean value 1.

We say that B ≤Γ C iff there is a regular embedding with the same properties as
above.

Notice that we do not require neither B nor C to be in Γ when B ≤Γ C. In
the final part of this section, we shall prove that SP and SSP forcings are weakly
iterable. The other relevant cases (ccc, Axiom-A, proper) are left to the reader, since
the corresponding proofs are either simpler or given by straightforward modifications
of the arguments presented.

Section 3.1 introduces the main examples of forcing classes and their basic prop-
erties. Section 3.2 introduces the corresponding forcing axioms, using the terminol-
ogy developed in Chapter 2. In Section 3.3 we introduce the definition of weakly
iterable forcing class, outline its main consequences and argue that most relevant
forcing classes fall into the scope of this definition. In Section 3.4 we apply the
machinery developed so far to prove the preservation of semiproperness through two
step iterations and revised countable support iterations. The proof of the latter
splits in three cases according to the cofinality of the length of the iteration system
(ω, ω1, bigger than ω1) and mimics in this new setting the original proof of Shelah
of these results. We then prove that stationary set preserving forcings are weakly
iterable (provided there are class many supercompact cardinals), building on the
results obtained for semiproper iterations.
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3 Forcing axioms

3.1 Forcing classes

We list below the main forcing classes Γ we shall analyze throughout this thesis.

Definition 3.1.1. A boolean algebra B is <κ-cc (satisfies the κ-chain condition)
iff every antichain has size less than κ. B is locally <κ-cc iff there exists a maximal
antichain A ⊆ B such that B�p is <κ-cc for all p ∈ A. B is ccc (locally ccc) iff it is
<ω1-cc (locally <ω1-cc).

Definition 3.1.2. A poset P is <κ-closed iff every descending chain 〈pα : α < γ〉
with γ < κ has a lower bound in P.

Definition 3.1.3. A boolean algebra B is <κ-distributive iff every family D of < κ
open dense sets in B has dense intersection

⋂
D.

For a fixed κ, any <κ-cc non trivial boolean algebra B is not <κ+-distributive
and conversely. On the other hand, <κ-distributivity is strongly related to <κ-
closure for posets: every <κ-closed poset has a <κ-distributive boolean completion,
even though the converse does not hold. In addition, <κ-closed posets and <κ-
distributive boolean algebras share their main forcing property (not adding subsets
of V of size less than κ).

Definition 3.1.4. A boolean algebra B is axiom-A iff there exists a dense subset
D of P and sequence 〈≤n: n < ω〉 of partial orderings on D such that the following
hold:

i. p ≤0 q ⇒ p ≤ q and p ≤n+1 q ⇒ p ≤n q for all p, q ∈ D, n < ω;

ii. if 〈pn : n < ω〉 is such that p0 ≥0 p1 ≥1 p2 ≥2 . . ., then there exists a q ∈ D
such that q ≤n pn for all n < ω;

iii. given any p ∈ D, n < ω and α̇ name for an ordinal there exist a q ≤n p and a
countable set A such that q 
B α̇ ∈ Ǎ.

Definition 3.1.5. Let B be a boolean algebra, θ > 2|B| be a cardinal, M ≺ Hθ such
that B ∈ M . We say that a condition p ∈ B is M -generic iff for every α̇ ∈ M ∩ V B
name for an ordinal, p 
B α̇ ∈ M̌ . We say that a condition p ∈ B is M -semigeneric
iff for every α̇ ∈M ∩ V B name for a countable ordinal, p 
B α̇ ∈ M̌ .

Definition 3.1.6. A boolean algebra B is proper iff for every M as in the previous
definition and q ∈M ∩B there is an M -generic condition below q. Similarly, we say
that B is semiproper (SP) iff for every M as in the previous definition and q ∈M ∩B
there is an M -semigeneric condition below q.

Equivalently, a boolean algebra B is proper iff it preserves stationary sets on
[λ]ω for any λ uncountable cardinal (see [27, Thm. 31.7]). If we require the latter
property to hold only for λ = ω1, we obtain the following larger forcing class.

Definition 3.1.7. A boolean algebra B is stationary set preserving (in short, SSP)
iff for every stationary set S ⊆ ω1, 1 
B Š is stationary.
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3.1 Forcing classes

The following diagram summarizes the relations between the various forcing
classes just introduced.

<ω1-cc locally <ω1-cc

<ω1-closed
<ω1-distributive

axiom-A proper SP SSP
⊆ ⊆

⊆

⊆

⊆ ⊆ ⊆

3.1.1 Algebraic formulation of properness and semiproperness

The notions of properness and semiproperness can also be stated in a more algebraic
fashion. This will later be used throughout this chapter in order to simplify the
treatment of semiproper iterations.

Definition 3.1.8. Let B be a complete boolean algebra, M ≺ Hθ for some θ > 2|B|,
PD(B) be the collection of predense subsets of B, and PDω1(B) be PD(B) ∩ [B]≤ω1 .

The boolean value

g(B,M) =
∧{∨

(D ∩M) : D ∈ PD(B) ∩M
}

is the degree of genericity of M with respect to B. The boolean value

sg(B,M) =
∧{∨

(D ∩M) : D ∈ PDω1(B) ∩M
}

is the degree of semigenericity of M with respect to B.

The degree of semigenericity can be also calculated from maximal antichains,
and behaves well with respect to the restriction operation.

Proposition 3.1.9. Let B, M be as in the previous definition, and let A(B) ⊆
PD(B), Aω1(B) ⊆ PDω1(B) be the subcollections given by maximal antichains of B.
Then

g(B,M) =
∧{∨

(A ∩M) : A ∈ A(B) ∩M
}

and
sg(B,M) =

∧{∨
(A ∩M) : A ∈ Aω1(B) ∩M

}
.

Proof. Since A(B) ⊆ PD(B), the inequality

g(B,M) ≤
∧{∨

(A ∩M) : A ∈ A(B) ∩M
}

is trivial. Conversely, if D = {bα : α < λ} ∈ PD(B) ∩M , define

AD =
{
aα = bα ∧ ¬

∨
{bβ : β < α} : α < λ

}
.

By elementarity, since D ∈ M also AD is in M . It is straightforward to verify that
AD is an antichain, and since

∨
AD =

∨
D = 1 it is also maximal. Moreover, since
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3 Forcing axioms

aα ≤ bα we have that
∨
AD ∩M ≤

∨
D ∩M . Thus, for any D ∈ PD(B) ∩M , we

have that
∧
{
∨

(A ∩M) : A ∈ A(B) ∩M} ≤
∨
D ∩M hence∧{∨

(A ∩M) : A ∈ A(B) ∩M
}
≤ g(B,M)

and the same can be proved also for sg(B,M) following the same procedure.

Proposition 3.1.10. Let B be a complete boolean algebra and M ≺ Hθ for some
θ > 2|B|. Then for all p ∈M ∩ B,

g(B�p,M) = g(B,M) ∧ p

and

sg(B�p,M) = sg(B,M) ∧ p.

Proof. Observe that if A is a maximal antichain in B, then A�p = {q ∧ p : q ∈ A} is
a maximal antichain in B�p. Moreover for each maximal antichain Ap in B�p ∩M ,
A = Ap ∪ {¬p} is a maximal antichain in B ∩M . Therefore

g(B,M) ∧ p =
∧∨

(A ∩M) ∧ p =
∧∨

((A�p) ∩M) = g(B�p,M)

and the same holds for sg(B,M).

We are now ready to introduce the algebraic definition of semiproperness and
properness for complete boolean algebras.

Theorem 3.1.11. Let B be a complete boolean algebra, θ > 2|B| be a cardinal. Then
B is proper iff for club many M ≺ Hθ, g(B,M) is compatible with every p in B∩M ,
and B is semiproper iff for club many M ≺ Hθ, sg(B,M) is compatible with every p
in B ∩M .

Lemma 3.1.12. Let B be a complete boolean algebra and fix M ≺ Hθ. Then

g(B,M) =
∨
{p ∈ B : p is M -generic}

and

sg(B,M) =
∨
{p ∈ B : p is M -semigeneric} .

Proof. Given A = {pβ : β < ω1} ∈ Aω1(B), define α̇A = {〈γ̌, pβ〉 : γ < β < ω1}.
Then we can easily check that

Jα̇A < ω̌1KB =
∨{q

α̇A = β̌
y
B : β < ω1

}
=
∨
{pβ : β < ω1} = 1.

Conversely, given α̇ ∈ V B ∩M such that Jα̇ < ω̌1KB = 1, define

Aα̇ =
{
pβ =

q
α̇ = β̌

y
B : β < ω1

}
.

Then we can easily check that Aα̇ ∈ Aω1(B).
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3.2 Forcing axioms

Suppose now that p is an M -semigeneric condition, and fix an arbitrary A ∈
Aω1(B) ∩M . Then α̇A ∈M and Jα̇A < ω̌1KB = 1, hence

p ≤
r
α̇A < ˇ(M ∩ ω1)

z

B
=
∨{q

α̇A = β̌
y
B : β ∈M ∩ ω1

}
=
∨
{pβ : β ∈M ∩ ω1} =

∨
A ∩M.

It follows that p ≤
∧
{
∨

(A ∩M) : A ∈ Aω1(B) ∩M} = sg(B,M), hence

sg(B,M) ≥
∨
{p ∈ B : p is M -semigeneric} .

Finally, we show that sg(B,M) is M -semigeneric itself. Fix an arbitrary α̇ ∈
V B ∩M such that 1 
B α̇ < ω̌1, and let Aα̇ ∈ Aω1(B) be as above. Since α̇ ∈ M ,
also Aα̇ ∈M . Moreover,

r
α̇ < ˇ(M ∩ ω1)

z

B
=
∨{q

α̇ = β̌
y
B : β ∈M ∩ ω1

}
=
∨
{aβ : β ∈M ∩ ω1} =

∨
Aα̇ ∩M ≥ sg(B,M)

and the same holds for g(B,M).

Proof of Theorem 3.1.11. First, suppose that B is semiproper and given M ≺ Hθ,
p ∈ B∩M let q ≤ p be an M -semigeneric condition. Then q > 0 and by Proposition
3.1.12, q ≤ sg(B,M), hence sg(B,M) ∧ p ≥ q > 0.

Conversely, suppose that B is as in the hypothesis of the theorem, M ≺ Hθ,
p ∈ B∩M . Then sg(B,M)∧p = q > 0. Since the set of M -semigeneric conditions is
dense below sg(B,M) (hence below q), we can find a q′ < q that is M -semigeneric.

The same reasoning holds also for g(B,M) with trivial modifications.

3.2 Forcing axioms

Forcing is well-known as a versatile tool for proving consistency results. The purpose
of forcing axioms is to turn it into a powerful tool for proving (conditional) theorems.
Let Γ denote a definable class of complete boolean algebras, κ be a cardinal.

Definition 3.2.1. The bounded forcing axiom BFAκ(Γ) holds if for all B ∈ Γ and
all families {Dα : α < κ} of predense subsets of B of size at most κ, there is a filter
G ⊂ B meeting all these sets.

Definition 3.2.2. The forcing axiom FAκ(Γ) holds if for all B ∈ Γ and all families
{Dα : α < κ} of predense subsets of B, there is a filter G ⊂ B meeting all these sets.

Definition 3.2.3. The forcing axiom FA++
κ (Γ) holds if for all B ∈ Γ and all families

{Dα : α < κ} of predense subsets of B and all families {Ṡα : α < κ} of B-names
for stationary subsets of κ, there is a filter G ⊂ B meeting all these dense sets and
evaluating each Ṡα as a stationary subset of κ.
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3 Forcing axioms

For κ = ω1, the forcing axioms are widely studied for many different classes Γ
of complete boolean algebras. Thus, in the following we shall feel free to omit the
index κ whenever κ = ω1. In particular, for the classes of posets:

ccc ⊂ proper ⊂ SP ⊂ SSP

the forcing axiom FAω1 is called respectively MA (Martin’s Axiom), PFA (Proper
Forcing Axiom), SPFA (Semiproper Forcing Axiom), MM (Martin’s Maximum).
The corresponding bounded versions are BMA, BPFA, BSPFA, BMM, while the
strengthened versions are MA++, PFA++, SPFA++, MM++. BMA is provably
equivalent to MA [32], while MM++ is a strengthening of MM [41]. These axioms
also have distinct consistency strengths: for example, MA is consistent relative to
ZFC [27, Thm. 16.13], BPFA and BSPFA++ are consistent relative to a reflecting
cardinal [21], while BMM is consistent relative to ω-many Woodin cardinals [46],
and MM++ is consistent relative to a supercompact cardinal (Theorem 3.4.15).

The class of SSP posets play a special role in the development of forcing axioms.
In fact, MM is the strongest possible form of forcing axiom for ω1.

Definition 3.2.4. B is locally SSP iff there exists a p ∈ B such that B�p is SSP.

Proposition 3.2.5 (Shelah). If B is not locally SSP then FAω1(B) is false.

Proof. Assume that B is not locally SSP and let S be a stationary set on ω1, Ċ ∈ V B
be such that 1 
B Ċ ⊆ ω̌1 club ∧ Š ∩ Ċ = ∅̌. Define:

Dα =
{
p ∈ B : p 
B α̌ ∈ Ċ ∨ p 
B α̌ /∈ Ċ

}
Eβ =

{
p ∈ B : p 
B β̌ /∈ Ċ ⇒ ∃γ < β p 
B Ċ ∩ β̌ ⊆ γ̌

}
Fγ =

{
p ∈ B : ∃α > γ p 
B α̌ ∈ Ċ

}
Those sets are dense in B by  Loś theorem since Ċ is forced to be a club. Suppose
by contradiction that FAω1(B) holds, and let G be a filter that intersects all the sets

Dα, Eβ, Fγ . Then the set C =
{
α < ω1 : ∃p ∈ G p 
B α̌ ∈ Ċ

}
is a club in V , so

there is a β ∈ S ∩ C. By definition of C, there exists a condition q ∈ G such that
q 
B β̌ ∈ Ċ, and β ∈ S ⇒ q 
B β ∈ Š ∩ Ċ 6= ∅̌, a contradiction.

Since FA(locally SSP) is easily seen to be equivalent to MM, Proposition 3.2.5
implies that MM is the strongest possible form of FAω1(Γ) for some Γ.

The forcing axioms have many equivalent formulations. In Section 3.2.1 we shall
see how many of them can be expressed as density properties of the corresponding
forcing classes. Furthermore, they can also be formulated in terms of the existence
of generic filters G ∈ V for small set models M ∈ V of ZFC.

Definition 3.2.6. We say that M is a κ-model iff |M | = κ, κ ⊆M and M models
ZFC− (i.e. ZFC without powerset and with collection and separation, as in [20]).

We remark that this definition of κ-model is weaker than other definitions for the
same term present in literature (which often require also that κ ∈M and <κM ⊆M).
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3.2 Forcing axioms

Definition 3.2.7. Let B be a complete boolean algebra, M be a κ-model such that
B ∈M . We say that G is an M -generic filter for B iff G∩D ∩M 6= ∅ for all D ∈M
dense subsets of B. We say that G is an M -correct filter for B if it is M -generic and
for every Ṡ ∈M B-name for a stationary subset of P (κ), valG(Ṡ) is stationary in V .

Proposition 3.2.8 ([46, Thm. 2.53]). Let B be a complete boolean algebra with
P(B) ∈ Hθ. Then the following are equivalent:

1. FAκ(B),

2. there exists a κ-model M ≺ Hθ and a filter G such that B ∈ M and G is
M -generic for B,

3. there are stationary many κ-models M ≺ Hθ and a filter G such that B ∈ M
and G is M -generic for B.

Proof. 1⇒ 2. First, suppose that FAκ(B) holds and let M ≺ Hθ be a κ-model such
that B ∈ M . There are at most κ dense subsets of B in M , hence by FAκ(B) there
is a filter G meeting all those sets. However, G might not be M -generic since for
some D ∈M , the intersection G ∩D might be disjoint from M . Define:

N =
{
x ∈ Hθ : ∃τ ∈M ∩ V B ∃q ∈ G (q 
B τ = x̌)

}
Clearly, N cointains M (hence contains κ), and the cardinality |N | ≤

∣∣M ∩ V B∣∣ =
κ since every τ can be evaluated in an unique way by the elements of the filter
G. To prove that N ≺ Hθ, let ∃xφ(x, a1, . . . , an) be any formula with parameters
a1, . . . , an ∈ N which holds in V . Let τi ∈MB, qi ∈ G be such that qi 
B τi = ǎi for
all i < n. Define Aφ = {p ∈ B : p 
B ∃x ∈ V φ(x, τ1, . . . , τn)}, this set is definable
in M hence Aφ ∈M . Furthermore, Aφ ∩G is not empty since it contains any q ∈ G
below all qi. By fullness in Hθ, we have that:

Hθ � ∀p ∈ Aφ p 
B ∃x ∈ V φ(x, τ1, . . . , τn)⇒
Hθ � ∃τ ∀p ∈ Aφ p 
B τ ∈ V ∧ φ(τ, τ1, . . . , τn)⇒
M � ∃τ ∀p ∈ Aφ p 
B τ ∈ V ∧ φ(τ, τ1, . . . , τn)

Fix such a τ , by elementarity the last formula holds also in Hθ and in particular for
q ∈ Aφ. Since the set {p ∈ B : ∃x ∈ Hθ p 
B x̌ = τ} is an open dense set definable
in M , there is a q′ ∈ G below q belonging to this dense set, and an a ∈ Hθ such
that q′ 
B τ = ǎ. Then q′, τ witness that a ∈ N hence the original formula
∃xφ(x, a1, . . . , an) holds in N .

Finally, we need to check that G is N -generic for B. Let D ∈ N be a dense
subset of B, and Ḋ ∈M be such that 1 
B Ḋ is dense∧ Ḋ ∈ V and for some q ∈ G,
q 
B Ḋ = D. Since 1 
B Ḋ ∩ Ġ 6= ∅, by fullness lemma there exists a τ ∈ Hθ such
that 1 
B τ ∈ Ḋ ∩ Ġ, and by elementarity there is such a τ also in M . Let q′ ∈ G
below q be deciding the value of τ , q′ 
B τ = p̌. Since q′ forces that p̌ ∈ Ġ, it must
be q′ ≤ p so that p ∈ G hence p ∈ G ∩D ∩N is not empty.

2⇒ 3. Let M ≺ Hθ+ , G be as in the hypothesis of the proposition. Define:

S = {N ≺ Hθ : κ ⊂ N ∧ |N | = κ ∧ ∃G filter N -generic}
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3 Forcing axioms

Note that S is definable in M then S ∈M . Furthermore, M ∩Hθ ≺ Hθ and M ∩Hθ

is in S. Given any Cf ∈ M club on Hθ, since f ∈ M we have that M ∩Hθ ∈ Cf .
Then V � S ∩ Cf 6= ∅ and by elementarity the same holds for M . Thus, S is
stationary in M and again by elementarity S is stationary also in V .

3⇒ 1. Fix a collection D = 〈Dα : α < κ〉 of dense subsets of B. Since the set
of κ-models with a generic filter is stationary, we can find a κ-model M such that
D ∈ M and there is an M -generic filter G for B. Since κ ⊂ M and D has size κ,
Dα ∈ M for every α < κ. Thus, the M -generic filter G will meet all dense sets in
D, verifying FAκ(B) for this collection.

Under some mild restrictions a similar result holds also for FA++(B), as shown
in the following proposition.

Proposition 3.2.9. Let B be a complete boolean algebra with |P(B)|+ ∈ Hθ. Then
the following are equivalent:

1. FA++
ω1

(B ∗ Coll(ω1, (2
|B|)+)),

2. there exists a ω1-model M ≺ Hθ and a filter G such that B ∈ M and G is
M -correct for B ∗ Coll(ω1, (2

|B|)+),

3. there are stationary many ω1-models M ≺ Hθ with a filter G such that B ∈M
and G is M -correct for B ∗ Coll(ω1, (2

|B|)+).

Proof. Along the same lines of the proof of Proposition 3.2.8 (see [46, Thm. 2.53]).

3.2.1 Forcing axioms as density properties

Many of the common forcing axioms can be formulated in terms of density properties
of their corresponding forcing classes Γ. This kind of formulation will be natural for
the resurrection axioms that we shall consider in the rest of the chapter.

Theorem 3.2.10 (Bagaria, [6]). BFA(Γ) is equivalent to the assertion that the class{
B ∈ Γ : Hω2 ≺1 V

B
}

is dense in (Γ,≤all).

We remark that the latter assertion is actually equivalent to requiring this class
to coincide with the whole Γ (since Σ1-formulas are always upwards absolute).

Under suitable large cardinal assumptions the unbounded versions of the forcing
axioms can also be reformulated as density properties, but only for Γ = SSP (at
least to our knowledge).

Theorem 3.2.11 (Woodin, [33]). Assume there are class many Woodin cardinals.
Then MM is equivalent to the assertion that the class{

B ∈ SSP : B is a presaturated tower forcing1
}

is dense in (SSP,≤all).
1We refer the reader to [43, Def. 4.14] for a definition of presaturated tower and to [43, Def. 5.8]

for a definition of strongly presaturated towers (see below).
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3.3 Weak iterability

Theorem 3.2.12 (Viale, [43]). Assume there are class many Woodin cardinals, then
MM++ is equivalent to the assertion that the above class is dense in (SSP,≤SSP).

In this chapter we shall also refer to the following strengthening of MM++, which
is defined by a density property of the class SSP as follows:

Definition 3.2.13 (Viale, [43]). MM+++ is the assertion that the class{
B ∈ SSP : B is a strongly presaturated tower 2

}
is dense in (SSP,≤SSP).

3.2.2 Resurrection axioms

The resurrection axiom, introduced by Hamkins and Johnstone in [23], can be con-
cisely stated as a density property for the class partial order ≤Γ defined above.

Definition 3.2.14 (Hamkins, Johnstone [23]). The resurrection axiom RA(Γ) is
the assertion that the class {

B ∈ Γ : Hc ≺ HB
c

}
is dense in (Γ,≤Γ).

The weak resurrection axiom wRA(Γ) is the assertion that for all B ∈ Γ, there
exists a C ≤all B such that Hc ≺ HC

c .

Several variations of this axiom have been proposed.

Definition 3.2.15 (Hamkins, Johnstone [24]). The boldface resurrection axiom
RA∼ (Γ) asserts that for every A ⊆ c the following class:{

B ∈ Γ : ∃A∗ ⊆ cB 〈Hc,∈, A〉 ≺ 〈HB
c ,∈, A∗〉

}
is dense in (Γ,≤Γ).

Definition 3.2.16 (Tsaprounis [40]). The unbounded resurrection axiom UR(Γ)
asserts that for every cardinal θ > c the following class:{

B ∈ Γ : ∃j : Hθ → H(j(θ))B elementary ∧ crit(j) = c ∧ j(c) > θ
}

is dense in (Γ,≤Γ) below Γ ∩Hθ.

3.3 Weak iterability

We are now ready to introduce the definition of weakly iterable class of forcing
notions. Given a definable class Γ of forcing notions, let Γlim denote the (definable)
class of complete iteration systems F = {iαβ : Bα → Bβ : α ≤ β < λ} such that iαβ
witnesses that Bβ ≤Γ Bα for all α ≤ β < λ.
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3 Forcing axioms

Definition 3.3.1. Let T be a theory extending ZFC, Γ a definable class of complete
boolean algebras, Σ : Γlim → Γlim a definable class function, κ a definable cardinal.
We say that an iteration system F ∈ Γlim of length λ follows Σ if and only if for all
β even3, F�(β + 1) = Σ(F�β).

We say that Σ is a weak iteration strategy for Γ if and only if we can prove in T
that for every F of length λ which follows Σ, Σ(F) has length λ+1 and F = Σ(F)�λ.

We say that Σ is a κ-weak iteration strategy for Γ if in addition Σ(F) = lim−→F
whenever cof(λ) = κ or cof(λ) > κ, cof(λ) > |B| for all B in F .

Definition 3.3.2. Let B be a collection of complete boolean algebras. We denote as∏
B the lottery sum of the algebras in B, defined as the boolean algebra obtained by

the cartesian product of the respective boolean algebras with pointwise operations.

The name lottery sum is justified by the intuition that forcing with
∏
B corre-

sponds with forcing with a “random” algebra in B. In fact, since the set of p ∈
∏
B

that are 1 in one component and 0 in all the others form a maximal antichain, every
V -generic filter G for

∏
B concentrates only on a specific B ∈ B (determined by the

generic).

Definition 3.3.3. Let T be a theory extending ZFC by a finite number of axioms,
Γ a definable class of complete boolean algebras, Σ : Γlim → Γlim a definable class
function, κ a definable cardinal.

We say that Γ is κ-weakly iterable through Σ iff we can prove in T that:

• Γ is closed under two-step iterations and set-sized lottery sums;

• Σ is a κ-weak iteration strategy for Γ;

• 〈Γ,Σ〉 as computed in Vα is equal to 〈Γ∩Vα,Σ∩Vα〉 whenever α is inaccessible
and Vα |= T 4.

We say that Γ is weakly iterable iff it is κ-weakly iterable for some κ.

We highlight that the latter definition (for a T ⊇ ZFC) is not related to a specific
model V of T , and requires that the above properties are provable in T hence hold
for every T -model M : for example, if T = ZFC they must hold in every Vκ where
κ is inaccessible. We shall feel free to omit the reference to T when clear from the
context, and in particular when T = ZFC.

Many notable cases for Γ are ωi-weakly iterable for some i = 0, 1: i.e, Γ =
all, locally ccc (using finite supports iteration strategy), σ-closed, axiom-A, proper
(using countable supports iteration strategy). Furthermore, locally <κ+-cc and <κ-
closed are κ-weakly iterable (using <κ-sized supports iteration strategy).

In Section 3.4 we shall prove that semiproper forcings are ω1-weakly iterable in
ZFC and stationary set preserving forcings are ω1-weakly iterable in the theory T =
ZFC +“there exists a proper class of supercompact cardinals”, thus concluding that
most notable cases for Γ are weakly iterable. We leave all the other cases mentioned
above to the interested reader (see [7] for further details), since the corresponding

3We remark that every limit ordinal is even.
4Note that since α is inaccessible, this statement is equivalent to Vα |= T \ ZFC which is finite.
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3.3 Weak iterability

proofs are either simpler or given by straightforward modifications of the arguments
presented in Section 3.4. Contrary to the cases mentioned above, the strategies Σ
involved in the iteration of SP and SSP forcings will have to make careful choices
for Σ(F) also when F has length α even successor ordinal.

The definition of weak iterability for a definable class of forcing notions Γ seem
rather technical, and gets its motivation in providing the right conditions to carry
out the lottery iteration PΓ,f

κ with respect to a partial function f : κ → κ where
κ is an inaccessible cardinal. The lottery iteration has been studied extensively by
Hamkins [22] and is one of the main tools for proving the consistency of forcing
axioms. We will employ these type of iterations in Section 3.4.3 and in Chapter 4.

Definition 3.3.4. Let Γ be weakly iterable through Σ and f : κ → κ be a partial

function. Define Fξ =
{
iαβ : PΓ,f

α → PΓ,f
β : α ≤ β < ξ

}
by recursion on ξ ≤ κ+1 as:

1. F0 = ∅ is the empty iteration system;

2. Fξ+1 = Σ(Fξ) if ξ is even;

3. Fξ+2 has PΓ,f
ξ+1 = PΓ,f

ξ if ξ + 1 is odd and f(ξ) is undefined;

4. Fξ+2 has PΓ,f
ξ+1 = PΓ,f

ξ ∗ Ċ otherwise, where Ċ is a PΓ,f
ξ -name for the lottery

sum (as computed in V P
Γ,f
ξ ) of all complete boolean algebras in Γ of rank less

than f(ξ), i.e. a PΓ,f
ξ -name for

∏(
Γ ∩ Vf(ξ)

)
.

We say that PΓ,f
κ is the lottery iteration of Γ relative to f .

Proposition 3.3.5. Let T ⊇ ZFC be a theory, Γ be γ-weakly iterable through Σ,
f : κ→ κ be a partial function with κ inaccessible cardinal such that Vκ |= T . Then:

1. PΓ,f
κ exists and is in Γ;

2. PΓ,f
κ is <κ-cc and for all α < κ, 1 
PΓ,f

κ
2α̌ ≤ κ̌;

3. PΓ,f
κ is definable within Vκ using the class parameter f ;

4. Let g : λ → λ with λ inaccessible be such that f = g�κ, Vλ |= T . Then PΓ,g
λ

absorbs every forcing in Γ ∩ Vg(κ) as computed in V P
Γ,f
κ . That is, for every Ḃ

in (Γ ∩ Vg(κ))
V PΓ,f

κ , there is a condition p ∈ PΓ,g
λ such that PΓ,g

λ �p ≤Γ PΓ,f
κ ∗ Ḃ.

Proof. 1. Follows from Σ being a weak iteration strategy for α < κ even, and
from Γ closed under two-step iterations and lottery sums for α odd.

2. Since Σ∩Vκ is Σ as computed in Vκ, we can prove by induction on α < κ that
|Bα| < κ. Furthermore, PΓ,f

κ = Σ(Fκ) = lim−→Fκ since κ = cof(κ) > γ, |Bα| for
all α < κ and Σ is a γ-weak iteration strategy, and the set

S =
{
α < κ : PΓ,f

α = lim−→F�α
}
⊇ {α < κ : cof(α) = γ}

is stationary. Thus by Theorem 2.2.10, PΓ,f
κ is <κ-cc.
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3 Forcing axioms

For the second part, given α < κ let ẋ be a PΓ,f
κ -name for a subset of α. Then ẋ

is decided by α < κ antichains of size <κ, hence ẋ = ı̂β(ẏ) for some ẏ ∈ V P
Γ,f
β ,

β < κ. Since
∣∣∣PΓ,f
β

∣∣∣ < κ and κ is inaccessible, there are less than κ-many

names for subsets of α in V P
Γ,f
β . Thus there are at most κ-many names for

subsets of α in V P
Γ,f
κ .

3. Follows since 〈Γ ∩ Vκ,Σ ∩ Vκ〉 is 〈Γ,Σ〉 as computed in Vκ.

4. Let g : λ → λ with λ inaccessible be such that f = g�κ, Vλ |= T . Since

〈Γ ∩ Vκ,Σ ∩ Vκ〉 is 〈Γ,Σ〉 as computed in Vκ and the same holds for Vλ, PΓ,f
κ

is an initial part of PΓ,g
λ . Furthermore given any Ḃ in (Γ ∩ Vg(κ))

V PΓ,f
κ , Ḃ is a

factor of Ċ =
∏(

Γ ∩ Vf(α)

)V PΓ,f
κ

as defined in Definition 3.3.4.(4). Let q̇ ∈ Ċ
be the condition choosing Ḃ in the lottery sum (so that q̇ is 1 in the component
corresponding to Ḃ and 0 in all the others), and let p ∈ PΓ,g

λ be p = iλ([q̇]).
Thus,

PΓ,f
κ ∗ Ḃ = PΓ,f

κ ∗ Ċ�q̇ = PΓ,g
κ+1�[q̇] ≥Γ PΓ,g

λ �p.

3.4 Semiproper and SSP iterations

We now prove that semiproper forcings are ω1-weakly iterable and SSP forcings are
ω1-weakly iterable in the theory T = ZFC +“there exists a proper class of supercom-
pact cardinals”. The treatment of semiproper forcings will be split in the two-step
and limit cases, then we shall explore the SSP case building on the results previously
obtained.

3.4.1 Semiproper two-step iterations

We recall here the algebraic definition of semiproperness, stated in a way that is
more convenient to us.

Definition 3.4.1. Let B be a complete boolean algebra, S be a stationary set on
Hθ with θ > 2|B|. Then B is S-SP iff for club many M ∈ S, sg(B,M)∧ p > 0 for all
p in B ∩M .

Similarly, i : B→ C is S-SP iff B is S-SP and for club many M ∈ S,

π(q ∧ sg(C,M)) = π(q) ∧ sg(B,M).

for all q in C ∩M .

Finally, an iteration system F = {iαβ : α ≤ β < λ} is S-SP iff iαβ is S-SP for all
α ≤ β < λ.

The previous definitions can be reformulated with a well-known trick in the
following form.

Proposition 3.4.2. B is S-SP iff for every δ � θ regular, M ≺ Hδ with B, S ∈M
and M ∩Hθ ∈ S we have that sg(B,M) ∧ p > 0 for every p ∈ B ∩M .
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3.4 Semiproper and SSP iterations

Similarly, i : B→ C is S-SP iff B is S-SP and for every δ � θ regular, M ≺ Hδ

with i, S ∈M and M ∩Hθ ∈ S we have that

π(q ∧ sg(C,M)) = π(q) ∧ sg(B,M).

for every q ∈ C ∩M .

Proof. First, suppose that B, i : B → C satisfy the above conditions. Then C =
{M ∩Hθ : M ≺ Hδ, B, S ∈M} contains a club (since it is the projection of a club),
and witnesses that B, i : B→ C are S-SP.

Conversely, suppose that B, i : B → C are S-SP and fix δ � θ regular and
M ≺ Hδ with B, S ∈M , M ∩Hθ ∈ S. Since the sentence that B, i : B→ C are S-SP
is entirely computable in Hδ and M ≺ Hδ, there exists a club C ∈M witnessing that
B, i : B→ C are S-SP. Furthermore, M models that C is a club hence M ∩Hθ ∈ C
and sg(B,M) ∧ p > 0, π(q ∧ sg(C,M)) = π(q) ∧ sg(B,M) hold for any p ∈ B ∩M ,
q ∈ C ∩M since C witnesses that B, i : B→ C are S-SP and M ∩Hθ ∈ S ∩ C.

Observe that if i : B→ C is S-SP, then C is S-SP. As a matter of fact q ∈ C∩M
is such that sg(C,M) ∧ q = 0 if and only if

0 = π(q ∧ sg(C,M)) = π(q) ∧ sg(B,M),

which contradicts the assumption that B is S-SP since π(q) ∈ B ∩M .
The notion of being S-SP can change when we move to a generic extension: for

example, S can be no longer stationary. In order to recover the “stationarity” in
V [G] of an S which is stationary in V , we are led to the following definition:

Definition 3.4.3. Let S be a subset of P(Hθ), B ∈ Hθ be a complete boolean
algebra, G be a V -generic filter for B. We define

S(G) = {M [G] : B ∈M ∈ S}.

Proposition 3.4.4. Let S be a stationary set on Hθ, B ∈ Hθ be a complete boolean
algebra, G be a V -generic filter for B. Then S(G) is stationary in V [G].

Proof. Let Ċ ∈ V B be a name for a club C on P(Hθ), and let M ≺ Hθ+ be such
that M ∩Hθ ∈ S, B, Ċ ∈ M . Then C ∈ M [G] and M [G] models that C is a club,
hence M [G] ∩ Hθ ∈ C. Furthermore, M [G] ∩ Hθ = (M ∩ Hθ)[G] since B is <θ-cc
and M [G] ∩Hθ ∈ S(G) ∩ C.

Proposition 3.4.5. Let B be a S-SP complete boolean algebra, Ċ be such that

r
Ċ is S(Ġ)- SP

z

B
= 1,

then D = B ∗ Ċ and iB∗Ċ are S-SP.

Proof. First, we verify that i = iB∗Ċ is S-SP. Let Ċ1 be the club that witnessesr
Ċ is S(Ġ)- SP

z

B
= 1, and let M be such that Ċ1 ∈ M . This guarantees that

V [G] �M [G] ∩HV [G]
θ ∈ val(C1, G).
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3 Forcing axioms

First, we prove that π(sg(D,M)) = sg(B,M). By Lemma 2.1.5, sg(D,M) ≤
i(sg(B,M)) hence π(sg(D,M)) ≤ (sg(B,M)). In order to prove the opposite in-
equality, suppose that G is a V -generic filter for B such that sg(B,M) ∈ G. By
semiproperness of B, V [G] � M ∩ ω1 = M [G] ∩ ω1 and by Lemma 2.3.3, V [G] �
[sg(D,M)]i[G] = sg(C,M [G]). If follows that

r
[sg(D,M)]i[Ġ] = sg(Ċ,M [Ġ])

z

B
≥ sg(B,M)

and

sg(B,M) ∧
r

[sg(D,M)]i[Ġ] > 0̇
z

B
= sg(B,M) ∧

r
sg(Ċ,M [Ġ]) > 0̇

z

B
= sg(B,M)

by semiproperness of Ċ. Thus,

π(sg(D,M)) =
r

[sg(D,M)]i[Ġ] > 0̇
z

B
≥ sg(B,M).

Finally, by Lemma 3.1.10 and 2.1.7 we can repeat the proof for D�[ṗ]≈ =
B�π([ṗ]≈) ∗ Ċ�ṗ (that is a two-step iteration of S-SP boolean algebras) and obtain
that

π(sg(D,M) ∧ [ṗ]≈) = sg(B,M) ∧ π([ṗ]≈)

hence i is S-SP. Since B is S-SP, it follows that D is also S-SP.

Lemma 3.4.6. Let B, C0, C1 be S-SP complete boolean algebras, and let G be any
V -generic filter for B. Let i0, i1, k form the following commutative diagram of
regular embeddings:

B C0

C1

i0

i1
k

Moreover assume that C0/i0[G] is S(G)-SP and

r
C1/k[ĠC0

] is S(ĠC0)- SP
z

C0

= 1.

Then in V [G], k/G : C0/G → C1/G is an S(G)-SP embedding.

Proof. Let K be any V [G]-generic filter for C0/i0[G], and let

H = {p ∈ C0 : [p]i0[G] ∈ K}

so that
K = H/i0[G] = {[p]i0[G] : p ∈ H}.

Then H is V -generic for C0, V [H] = V [G][K], S(H) = S(G)(K). Furthermore, the
latter equalities hold for any choice of K thus in V [G] the map k/G : C0/G → C1/G
is such that r

(C1/G)/k/G[ĠC0/G
] is S(G)(ĠC0/G)- SP

z

C0/G
= 1.

By Proposition 3.4.5, k/G is S(G)-SP in V [G].
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3.4 Semiproper and SSP iterations

3.4.2 Semiproper iteration systems

The limit case needs a slightly different approach depending on the length of the
iteration. We shall start with some general lemmas, then we will proceed to examine
the different cases one by one.

Proposition 3.4.7. Let F = {iαβ : α ≤ β < λ} be an S-SP iteration system, s be
in lim←−F . Then

F�s = {(iαβ)s(β) : Bα�s(α)→ Bβ�s(β) : α ≤ β < λ}

is an S-SP iteration system and its associated retractions are the restriction of the
original retractions.

Proof. By Lemma 2.1.7, F�s is indeed an iteration system and its associated re-
tractions are the restriction of the original retractions. By Proposition 3.1.10,
sg(Bα�s(α)) = sg(Bα) ∧ s(α) for all α < λ thus for any M ∈ S with F , s ∈M ,

παβ(sg(Bβ�s(β)) = παβ(sg(Bβ) ∧ s(β)) = sg(Bα) ∧ s(α) = sg(Bα�s(α))

for all α, β ∈M , since in this case also s(α), s(β) are in M and iαβ is S-SP.

Lemma 3.4.8. Let F = {iαβ : Bα → Bβ : α ≤ β < λ} be an RCS and S-SP iteration
system with S stationary on [Hθ]

ω. Let M be in S, t ∈M be any condition in lim
rcs
F ,

α̇ ∈ M be a lim
rcs
F-name for a countable ordinal, ζ ∈ M be an ordinal smaller than

λ. Then:

• if lim
rcs
F = lim←−F , there exists a condition t′ ∈ lim

rcs
F ∩M below t with t′(ζ) =

t(ζ) such that t′ ∧ iζ(sg(Bζ ,M)) forces that α̇ < M ∩ ω1;

• if λ = ω1, there exists a condition t′ ∈ RO(lim
rcs
F) ∩M as above and such that

t′ ∧ iζ(sg(Bζ ,M)) is in lim−→F and has support contained in M ∩ ω1.

Proof. Let D ∈ M be the set of conditions in lim
rcs
F deciding the value of α̇ (D is

open dense by the forcing theorem):

D = {s ∈ lim
rcs
F : ∃β < ω1 s 
lim

rcs
F α̇ = β̌}.

Consider the set πζ [D�t] (which is open dense below t(ζ) by Lemma 2.1.5) and
fix A ⊆ Bζ a maximal antichain in M contained in it, so that

∨
A = t(ζ). Let

f : A → D�t be a map in M such that πζ(f(p)) = p for every p ∈ A, and define

t′ ∈ lim←−F ∩M by t′ =
∨̃
f [A]. Observe that t′(ζ) = t(ζ) by definition of pointwise

supremum and t′ ≤ t since
∨̃
f [A] is really the supremum of f [A] in RO(lim←−F) by

Lemma 2.2.8.
Furthermore, if lim

rcs
F = lim←−F , t′ is in lim

rcs
F as required. If instead λ = ω1,

lim
rcs
F = lim−→F and t′ ∈ RO(lim−→F) as characterized in Proposition 2.2.7: in both

cases, t′ ∈ RO(lim
rcs
F) is

∨
f [A]. Then we can define a name5 β̇ ∈ V Bζ ∩M as:

β̇ =
{
〈ξ̌, p〉 : p ∈ A, f(p) 
lim

rcs
F α̇ > ξ̌

}
5Literally speaking this is not a Bζ-name according to our definition. See the footnote below 1.3.2

to resolve this ambiguity.
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so that for any p ∈ A, p 
 β̇ = ξ̌ iff f(p) 
 α̇ = ξ̌. It follows that

r
ı̂ζ(β̇) = α̇

z

lim
rcs
F
≥
∨
f [A] = t′.

Moreover, sg(Bζ ,M) ≤
r
β̇ < ˇM ∩ ω1

z

Bζ
and is compatible with t′(ζ) ∈ M (since

Bζ is S-SP), so that
q
α̇ < ˇM ∩ ω1

y
lim
rcs
F ≥ t′ ∧ iζ(sg(Bζ ,M)). If lim

rcs
F = lim←−F , this

concludes the proof.

If λ = ω1, we still need to prove that the support of t′∧iζ(sg(Bζ ,M)) is contained
in M ∩ ω1. Define a name η̇ ∈ V Bζ ∩M for a countable ordinal setting:

η̇ =
{
〈ξ̌, p〉 : p ∈ A, ξ < supp(f(p))

}
.

Notice that η̇ is defined in such a way that for all β < ω1,

q
η̇ = β̌

y
Bζ

=
∨{

p ∈ A : supp(f(p)) = β̌
}
.

hence

iζ(
q
η̇ < β̌

y
Bζ

) ∧ t′ = iζ(
∨
{p ∈ A : supp(f(p)) < β}) ∧

∨
{f(p) : p ∈ A}

=
∨̃
{f(p) : p ∈ A ∧ supp(f(p)) < β}.

Since t′ ∧ iζ(sg(Bζ ,M)) =
∨̃
{f(p) ∧ iζ(sg(Bζ ,M)) : p ∈ A} and sg(Bζ ,M) ≤q

η̇ < ˇM ∩ ω1

y
Bζ

, we get that

t′ ∧ iζ(sg(Bζ ,M)) = t′ ∧ iζ(sg(Bζ ,M)) ∧ iζ(Jη̇ < M ∩ ω1KBζ )

=
∨̃
{f(p) : p ∈ A ∧ supp(f(p)) < M ∩ ω1} ∧ iζ(sg(Bζ ,M)).

It is now immediate to check that t′′ =
∨̃
{f(p) : p ∈ A∧ supp(f(p)) < M ∩ω1} has

support contained in M ∩ ω1 as required.

Lemma 3.4.9. Let F = {inm : n ≤ m < ω} be an S-SP iteration system with S
stationary on [Hθ]

ω. Then lim←−F and the corresponding inω are S-SP.

Proof. By Proposition 3.4.2, any countable M ≺ Hδ with δ > θ, M ∩Hθ ∈ S and
F , S ∈ M witnesses the semiproperness of every inm. We need to show that for
every s ∈ lim←−F ∩M and n < ω,

πnω(sg(RO(lim←−F),M) ∧ s) = sg(Bn,M) ∧ s(n)

this would also imply that RO(lim←−F)is S-SP by the same reasoning of the proof of
Lemma 3.4.5. Without loss of generality, we can assume that n = 0 and by Lemma
3.1.10 and 3.4.7 we can also assume that s = 1. Thus is sufficient to prove that

π0ω(sg(RO(lim←−F),M)) = sg(B0,M)
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Let {α̇n : n ∈ ω} be an enumeration of the lim←−F-names in M for countable
ordinals. Let t0 = 1, tn+1 be obtained from tn, α̇n, n as in Lemma 3.4.8, so that

q
α̇n < ˇM ∩ ω1

y
lim←−F

≥ tn+1 ∧ in(sg(Bn,M))

Consider now the sequence t̄(n) = tn(n) ∧ sg(Bn,M). This sequence is a thread
since in,n+1 is S-SP and tn(n) ∈M for every n, hence

πn,n+1(sg(Bn+1,M) ∧ tn+1(n+ 1)) = sg(Bn,M) ∧ πn,n+1(tn+1(n+ 1))

and πn,n+1(tn+1(n+ 1)) = tn+1(n) = tn(n) by Lemma 3.4.8. Furthermore, for every
n ∈ ω, t̄ ≤ tn since the sequence tn is decreasing, and t̄ ≤ in(sg(Bn,M)) since
t̄(n) ≤ sg(Bn,M). It follows that t̄ forces that α̇n < ˇM ∩ ω1 for every n, thus
t̄ ≤ sg(RO(lim←−F),M) by Lemma 3.1.12. Then,

π0(sg(RO(lim←−F),M)) ≥ t̄(0) = t0(0) ∧ sg(B0,M) = sg(B0,M)

and the opposite inequality is trivial, completing the proof.

Lemma 3.4.10. Let F = {iαβ : Bα → Bβ : α ≤ β < ω1} be an RCS and S-SP it-
eration system with S stationary on [Hθ]

ω. Then lim−→F and the corresponding iαω1

are S-SP.

Proof. The proof follows the same pattern of the previous Lemma 3.4.9. By Propo-
sition 3.4.2, any countable M ≺ Hδ with δ > θ, F , S ∈ M , M ∩Hθ ∈ S, witnesses
the semiproperness of every iαβ with α, β ∈ M ∩ ω1. As before, by Lemma 3.1.10
and 3.4.7 we only need to show that

π0(sg(RO(lim−→F),M)) ≥ sg(B0,M),

the other inequality being trivial. Let 〈ζn : n ∈ ω〉 be an increasing sequence of
ordinals such that ζ0 = 0 and supn ζn = ζ = M ∩ ω1, and {α̇n : n ∈ ω} be an
enumeration of the lim−→F-names in M for countable ordinals. Let t0 = 1, tn+1 be
obtained from tn, α̇n, ζn as in Lemma 3.4.8, so that

q
α̇n < ˇM ∩ ω1

y
lim←−F

≥ tn+1 ∧ iζn(sg(Bζn ,M)).

Consider now the sequence t̄(ζn) = tn(ζn) ∧ sg(Bζn ,M). This sequence induces a
thread on F�ζ, so that t̄ ∈ Bζ since F is an RCS iteration, ζ has countable cofinality
and thus we can naturally identify lim←−F�ζ as a dense subset of Bζ . Moreover we can
also check that iζ(t̄) is a thread in lim−→F with support ζ such that iζ(t̄)(α) = t̄(α)
for all α < ζ. Since by Lemma 3.4.8,

supp(tn+1 ∧ iζn(sg(Bζn ,M))) ≤ ζ,

the relation iζ(t̄) ≤ tn+1 ∧ iζn(sg(Bζn ,M)) holds pointwise hence iζ(t̄) forces that
α̇n < ˇM ∩ ω1 for every n. Thus, iζ(t̄) ≤ sg(RO(lim−→F),M) by Lemma 3.1.12 and
π0(sg(RO(lim←−F),M)) ≥ t̄(0) = t0(0) ∧ sg(B0,M) = sg(B0,M) as required.
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3 Forcing axioms

Lemma 3.4.11. Let F = {iαβ : Bα → Bβ : α ≤ β < λ} be an RCS and S-SP itera-
tion system with S stationary on [Hθ]

ω such that lim−→F is <λ-cc. Then lim−→F and
the corresponding iαλ are S-SP.

Proof. The proof follows the same pattern of the previous Lemmas 3.4.9 and 3.4.10.
By Proposition 3.4.2, any countable M ≺ Hδ with δ > θ, F , S ∈ M , M ∩Hθ ∈ S,
witnesses the semiproperness of every iαβ with α, β ∈M ∩λ. By Lemma 3.1.10 and
3.4.7 we only need to show that

π0(sg(RO(lim−→F),M)) ≥ sg(B0,M).

Let 〈ζn : n ∈ ω〉 be an increasing sequence of ordinals such that ζ0 = 0 and supn ζn =
ζ = sup(M ∩ λ), {α̇n : n ∈ ω} be an enumeration of the lim−→F-names in M for
countable ordinals, and t0 = 1 be in lim−→F .

Since lim−→F is <λ-cc, by Theorem 2.2.9 we have that lim−→F = lim
rcs
F = lim←−F .

Thus we can define tn+1 from tn, α̇n, ζn as in Lemma 3.4.8, so that tn ∈ lim−→F ∩M
and q

α̇n < ˇM ∩ ω1

y
lim−→F

≥ tn+1 ∧ iζn(sg(Bζn ,M)).

Since tn is in lim−→F ∩ M , M has to model tn to be eventually constant hence
supp(tn) < ζ. Then the sequence t̄(ζn) = tn(ζn) ∧ sg(Bζn ,M) induces a thread
on F�ζ (since t̄ ∈ Bζ = RO(lim←−F�ζ) by the countable cofinality of ζ) and iζ(t̄) ≤
tn+1∧iζn(sg(Bζn ,M)) for every n, so that iζ(t̄) ≤ sg(RO(lim−→F),M) by Lemma 3.1.12
and π0(sg(RO(lim−→F),M)) ≥ t̄(0) = t0(0) ∧ sg(B0,M) = sg(B0,M) as required.

Theorem 3.4.12. Let F = {iαβ : Bα → Bβ : α ≤ β < λ} be an RCS and S-SP it-
eration system with S stationary on [Hθ]

ω, such that for all α < β < λ,

r
Bβ/iαβ [Ġα] is S(Ġα)- SP

z

Bα
= 1

and for all α there is a β > α such that 1 
Bβ |Bα| ≤ ω1. Then lim
rcs
F and the

corresponding iαλ are S-SP.

Proof. First, suppose that for all α we have that |Bα| < λ. Then, by Theorem 2.2.10,
lim−→F is <λ-cc and lim

rcs
F = lim−→F hence by Lemma 3.4.11 we have the thesis.

Now suppose that there is an α such that |Bα| ≥ λ. Then by hypothesis there
is a β > α such that 1 
Bβ |Bα| ≤ ω1, thus 1 
Bβ cof λ ≤ ω1. So by Lemma 3.4.6

F/Ġβ is a Bβ-name for an S(Ġβ)-SP iteration system that is equivalent to a system

of length ω or ω1 hence its limit is S(Ġβ)-SP by Lemma 3.4.9 or Lemma 3.4.10
applied in V Bβ . Finally, lim

rcs
F can always be factored as a two-step iteration of Bβ

and lim
rcs
F/Ġβ , hence by Proposition 3.4.5 we have the thesis.

Corollary 3.4.13. Semiproper forcings are ω1-weakly iterable.

Proof. It is easy to check that S-SP forcings are closed under lottery sums and in
Section 3.4.1 we proved that they are closed under two step iterations. Consider
the strategy Σ : Γlim → Γlim which extends an iteration system F with lim

rcs
F if F
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3.4 Semiproper and SSP iterations

has limit length, and with B ∗Coll(ω1, |B|) if F has successor length and terminates
with B. It is easy to check that 〈Γ,Σ〉 as computed in Vα where Vα |= ZFC is equal
to 〈Γ ∩ Vα,Σ ∩ Vα〉. Finally, if F = {iαβ : α ≤ β < λ} follows Σ it also satisfies the
hypothesis of Theorem 3.4.12 hence Σ(F) = lim

rcs
F extends F to an S-SP iteration

system of length λ + 1 whenever λ is limit. If instead λ is successor, Σ(F) is S-SP
by Proposition 3.4.5.

3.4.3 Stationary set preserving iterations

In order to prove that SSP forcings are weakly iterable, we first prove the consistency
of the semiproper forcing axiom SPFA from a supercompact cardinal. This axiom
will play a crucial role in the iteration theorem for SSP forcings since it implies that
SSP = SP (Shelah, [27, Thm. 37.10]). We will then be able to carry out the proof
of an iteration theorem for SSP forcings in the theory T = ZFC +“there exists a
proper class of supercompact cardinals” along the lines of the iteration theorem for
SP forcings.

Definition 3.4.14. A cardinal δ is supercompact and f : δ → Vδ is its Menas
function iff for every δ cardinal there exists an elementary embedding j : V → M
such that crit(j) = κ, j(f)(κ) > δ and <δM ⊆M .

Theorem 3.4.15 (Magidor, Foreman, Shelah). Let κ be supercompact with Menas

function f . Then PSP,f
κ , the lottery iteration of SP forcings guided by f , forces SPFA

and collapses κ to ω2.

Proof. Let Ḃ be a PSP,f
κ -name for a semiproper forcing, Ḋ be a PSP,f

κ -name for a
collection of ω1 many open dense sets of Ḃ. Let j : V →M be elementary such that

crit(j) = κ, j(f)(κ) > δ and <δM ⊆M where δ > rank(Ḃ),
∣∣∣PSP,f
κ ∗ Ḃ

∣∣∣.
Let G be V -generic for PSP,f

κ , H be V [G]-generic for valG(Ḃ). Since j(PSP,f
κ ) =(

PSP,j(f)
j(κ)

)M
and Ḃ is in (Vj(f)(κ))

M , by Proposition 3.3.5 there is a p ∈ j(PSP,f
κ ) such

that j(PSP,f
κ )�p ≤SP PSP,f

κ ∗ Ḃ hence we can find a further G′ such that G ∗H ∗ G′
is V -generic for j(PSP,f

κ ).

Since crit(j) = κ and PSP,f
κ is a direct limit of smaller forcings, j[G] = G ⊆

G ∗H ∗G′ thus we can extend j to an elementary map ̄:

̄ : V [G] → M [G ∗H ∗G′]
valG(ẋ) 7→ valG∗H∗G′(j(ẋ)).

Let B = valG(Ḃ), D = valG(Ḋ). Since H is a filter on B which meets every
element of D and D has size ω1 < κ, ̄(D) = ̄[D] and for any ̄(A) ∈ ̄(D) there
exists a p ∈ H ∩ A so that ̄(p) ∈ j[H] ∩ ̄(A). It follows that ̄[H] ∈ V [G ∗H ∗G′]
is a filter on ̄(B) which meets every element of ̄(D).

Since H = valG∗H∗G′(ĠB) and M is closed under <δ-sequences with δ > |PSP,f
κ ∗

Ḃ|, j[ĠB] ∈M hence ̄[H] = valG∗H∗G′(j[ĠB]) ∈M [G ∗H ∗G′]. Thus,

M [G ∗H ∗G′] |= ∃F ⊆ ̄(B) filter ∀A ∈ ̄(D) F ∩A 6= ∅ ⇒
V [G] |= ∃F ⊆ B filter ∀A ∈ D F ∩A 6= ∅

concluding the proof.
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3 Forcing axioms

We are now able to prove that SSP forcings are weakly iterable.

Lemma 3.4.16. The class of SSP forcings is closed under two-step iterations and
lottery sums.

Proof. Let B ∗ Ċ be a two-step iteration of SSP forcings and S ⊆ ω1 be a stationary
set in V . Since B is SSP, Š is a stationary subset of ω̌1 in V B. Since Ċ is SSP in
V B, it follows that Š is a stationary subset of ω̌1 in V B∗Ċ as well.

Let now B =
∏
{Bα : α < λ} be a lottery sum of SSP forcings, S ⊆ ω1 be a

stationary set in V . Then the set of p ∈
∏
B that are 1 in one component and 0

in all the others form a maximal antichain in B which forces Š to be a stationary
subset of ω̌1 in V B.

Theorem 3.4.17. Stationary set preserving forcings are ω1-weakly iterable in T =
ZFC +“there exists a proper class of supercompact cardinals”.

Proof. By Lemma 3.4.16 we only need to show a definable iteration strategy for SSP.
Let ṖB denote the lottery sum of all the semiproper boolean algebras of minimal
rank which force SPFA and collapse |B| to ω1 as computed in V B. That is,

ṖB =
(∏

{C ∈ SP : rank(C) = α̌ ∧ 1 
C SPFA∧ |B| ≤ ω1}
)V B

where α is minimal such that the above set is not empty. Such an α exists by
Theorem 3.4.15, together with the fact that any supercompact cardinal κ > |B| is
supercompact in V B. Consider the following definable class Σ : SSPlim → SSPlim.

• Σ(∅) = Ṗ2, where 2 is the two-valued boolean algebra;

• Σ({Bα : α < λ+ 1}) = Bλ ∗ ṖBλ ;

• Σ({Bα : α < λ}) = lim
rcs
{Bα : α < λ} if λ is a limit ordinal.

It is easy to check that the above definition grants that for all κ with Vκ |= T ,
〈SSP∩Vκ,Σ ∩ Vκ〉 is 〈SSP,Σ〉 as computed in Vκ. Thus we only need prove that Σ
is indeed an iteration strategy.

Let F = {Bα : α < λ} be an iteration system following Σ. We prove by induction
on λ that F is an SP iteration system. If λ = 0, it follows since Ṗ2 is semiproper. If
λ = α+1 is odd, it follows since Bα forces SPFA hence SSP = SP thus Bα+1 ≤SSP Bα
has to be semiproper. If λ = α + 2 is even successor, it follows since ṖBα+1 is
semiproper. If λ is limit, it follows by Theorem 3.4.12 since every Bα ∗ ṖBα collapses
the size of Bα to ω1.
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CHAPTER 4

GENERIC ABSOLUTENESS

In this chapter we introduce the iterated resurrection axioms, which are forcing
axioms with a relatively low consistency strength, and show that strong generic
absoluteness results can be obtained from them. These axioms are variations of the
resurrection axioms [23]. We shall assume from now on that the reader is acquainted
with the content of Section 1.1 (second order elementarity and clopen class games),
Chapter 2 (iterated forcing), Sections 3.1 - 3.3 (forcing axioms and weakly iterable
forcing classes). All the material in this chapter is joint work with Matteo Viale [5].

Section 4.1 introduces the definition of the iterated resurrection axioms together
with their basic properties, and proves the main Theorem 4.1.12. Section 4.2 devel-
ops the necessary technical devices for the consistency proofs of the axioms RAα(Γ).
These proofs are carried out in Section 4.3 adapting the consistency proofs for the
resurrection axioms introduced in [23] to this new setting of iterated resurrection.
Section 4.4 outlines the main possible directions of further research on the topic.

4.1 Iterated resurrection and absoluteness

In this section we introduce the iterated resurrection axioms RAα(Γ) with Γ a suit-
able definable class of complete boolean algebras, and prove that the iterated res-
urrection axiom RAω(Γ) gives generic absoluteness for the first order theory (with
parameters) of H2γ for a certain cardinal γ which is computed in terms of the com-
binatorial properties of Γ. In particular, we aim to choose γ as high as possible
while still being able to consistently prove the generic absoluteness of the theory of
H2γ with respect to Γ. We are inspired by the resurrection axioms introduced by
Hamkins and Johnstone in [23], which are formulated in similar terms when γ = ω.

Definition 4.1.1. Let Γ be a definable class of complete boolean algebras closed
under two step iterations. The cardinal preservation degree cpd(Γ) of Γ is the max-
imum cardinal κ such that every B ∈ Γ forces that every cardinal ν ≤ κ is still a
cardinal in V B. If all cardinals are preserved by Γ, we say that cpd(Γ) =∞.

The distributivity degree dd(Γ) of Γ is the maximum cardinal κ such that every
B ∈ Γ is <κ-distributive.
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4 Generic absoluteness

We remark that the supremum of the cardinals preserved by Γ is preserved by
Γ, and similarly for the property of being <κ distributive. Furthermore, dd(Γ) ≤
cpd(Γ) and dd(Γ) 6=∞ whenever Γ is non trivial (i.e. it contains a boolean algebra
that is not forcing equivalent to the trivial boolean algebra).

Definition 4.1.2. Let Γ be a definable class of complete boolean algebras. Then
we let γ = γΓ be:

• cpd(Γ) if cpd(Γ) <∞;

• dd(Γ) otherwise.

For example, γ = ω if Γ is among all, ccc, while for Axiom-A, proper, semiproper,
SSP we have that γ = ω1 and for <κ−closed we have that γ = κ.

We aim to isolate an axiom AX(Γ) with the following properties:

1. assuming certain large cardinal axioms, the family of B ∈ Γ which force AX(Γ)
is dense in (Γ,≤Γ),

2. AX(Γ) gives generic aboluteness for the theory with parameters of H2γ with
respect to all forcings in Γ which preserve AX(Γ).

Towards this aim remark the following:

• cpd(Γ) is the maximum possible cardinal γ for which an axiom AX(Γ) as above
can grant generic absoluteness with respect to Γ of the theory of H2γ with pa-
rameters. To see this, let Γ be such that cpd(Γ) = γ <∞ and assume towards
a contradiction that there is an axiom AX(Γ) yielding generic absoluteness
with respect to Γ for the theory with parameters of H

2(γ+) .

Assume that AX(Γ) holds in V . Since cpd(Γ) = γ, there exists a B ∈ Γ which
collapses γ+. Let C ≤Γ B be obtained by (1) so that AX(Γ) holds in V C, and
remark that γ+ cannot be a cardinal in V C as well. Then γ+ is a cardinal
in H

2(γ+) and not in HC
2(γ+)

, witnessing failure of generic absoluteness and

contradicting (2).

• dd(Γ) is the least possible cardinal γ such that AX(Γ) is a non-trivial axiom
asserting generic absoluteness for the theory of Hγ+ with parameters. In fact,
Hdd(Γ) is never changed by forcings in Γ.

In the remainder of this chapter we shall see that the axiom RAω(Γ) satisfies
both of the above requirements and is consistent for a variety of forcing classes Γ.
In particular, we shall prove the consistency of RAω(Γ) for forcing classes which are
weakly iterable (see Definition 3.3.3) and satisfy the following property.

Definition 4.1.3. Let Γ be a definable class of complete boolean algebras. We say
that Γ is well behaved iff it is closed under two-step iterations and either:

• if cpd(Γ) <∞, for all κ > γ there are densely many B ∈ Γ collapsing κ to γ;

• if cpd(Γ) =∞, for all κ > γ there are densely many B ∈ Γ forcing that 2γ > κ.
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4.1 Iterated resurrection and absoluteness

The first requirement ensures that the cardinal preservation degree of Γ gives a
uniform bound for the cardinals which are preserved by the forcings in Γ. The second
requirement ensures that above the distributivity degree of Γ there are no further
bounds on the possible values of 2γ in extensions by forcings in Γ. We remark that
this property is not significantly restrictive, as it holds for any forcing class Γ we
defined in Section 3.1. Thus, throughout all of this chapter we shall always assume
that Γ is a well behaved definable class of complete boolean algebras and γ = γΓ is
given by Definition 4.1.2.

In order to prove the consistency of RAα(Γ), we shall also need to assume that Γ
is weakly iterable (Definition 3.3.3). Even though this hypothesis will not be needed
for most of the results presented in this section, we shall sometimes assume it when
convenient to carry out the proofs.

4.1.1 Resurrection game

Motivated by Hamkins and Johnstone’s [23], as well as by Tsaprounis’ [40], we
introduce the following new class games and corresponding forcing axioms.

Definition 4.1.4. The Γ-weak resurrection game GwRA is as follows. Player I
(Kill) plays couples (αn,Bn) where αn is an ordinal such that αn+1 < αn and Bn is
such that Bn+1 ≤Γ Cn. Player II (Resurrect) plays boolean algebras Cn such that

HCn
2γ ≺ H

Cn+1

2γ and Cn ≤all Bn. The last player who can move wins.

The Γ-resurrection game GRA is the same game as GwRA with the additional
requirement for Player II (Resurrect) to play so that Cn ≤Γ Bn for all n.

The Γ-strong resurrection game GRFA++
is the same game as GRA with the further

requirement for Player II (Resurrect) to play so that V Cn |= FA++
γ (Γ) for all n.

I (Kill). (α0,B0)

  

(α1,B1)

  

(α2,B2)

##II (Resurrect). C0

>>

C1

>>

. . .

Definition 4.1.5. The α-weak resurrection axiom wRAα(Γ) is the assertion that
Player II (Resurrect) wins the Γ-weak resurrection game after 〈(α,2),2〉1.

The α-resurrection axiom RAα(Γ) is the assertion that Player II (Resurrect)
wins the Γ-resurrection game after 〈(α,2),2〉.

The α-strong resurrection axiom RFA++
α (Γ) is the assertion that Player II (Res-

urrect) wins the Γ-strong resurrection game after 〈(α,2),2〉.
We say that wRAON(Γ) (respectively RAON(Γ), RFA++

ON(Γ)) holds iff the corre-
sponding axioms hold for all α ∈ ON.

Note that all these games are clopen class games, since Player I plays descending
sequences of ordinals. Since we require Γ to be (first-order) definable, the cor-
responding axioms asserting the existence of a class winning strategy for Player
II in the relevant game (equivalently, that all strategies in the relevant game are

1With 2 we denote the two-valued boolean algebra {0,1}.
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not winning for Player I) are ∆1
1-statements (in set parameters) over the theory

NBG + AD(∆0
1).

A posteriori these axioms can also be formulated in recursive terms, as we will
see in the next proposition. However, this type of formulation cannot be directly
used as a definition in L2. We will come back in more details to this delicate point
after the proof of the next proposition.

Proposition 4.1.6 (AD(∆0
1)). wRAα(Γ) holds iff for all β < α and B ∈ Γ there is

a C ≤all B such that H2γ ≺ HC
2γ and V C |= wRAβ(Γ).

RAα(Γ) holds iff the same holds with C ≤Γ B; or equivalently for all β < α the
class {

B ∈ Γ : H2γ ≺ HB
2γ ∧ V B |= RAβ(Γ)

}
is dense in (Γ,≤Γ).

Similarly, RFA++
α (Γ) holds iff for all β < α the class{

B ∈ Γ : H2γ ≺ HB
2γ ∧ V B |= FA++

γ (Γ),RFA++
β (Γ)

}
is dense in (Γ,≤Γ).

Proof. First we prove that for any C, wRAβ(Γ) holds in V C iff Player II (Resurrect)
wins GwRA in V after 〈(β,C),C〉. Let G be V -generic for C and D ≤all C with
witnessing map i : C→ D (i being the identity for D = C), and define DG := D/i[G]

in V [G]. Let s be in GwRA extending 〈(β,C),C〉 and define sG as the sequence
obtained by substituting every boolean algebra D appearing in s with DG. By
AD(∆0

1), let σ be a winning strategy for player I or II in GwRA after 〈(β,C),C〉. Then
σG = {sG : s ∈ σ} is a winning strategy for the same player in the corresponding
game in V [G] after 〈(β,2),2〉. It follows that GwRA�〈(β,2),2〉 is determined in V [G]
and Player II (Resurrect) wins iff he wins the corresponding game GwRA�〈(β,C),C〉
in V .

Furthermore we observe that whenever there is a winning strategy σ for player I
or II in GwRA and s = 〈(α,2),2, (β,B),C〉 is in σ, we can define a winning strategy
for the same player σs =

{
〈(β,C),C〉au : sau ∈ σ

}
in the game GwRA�〈(β,C),C〉.

Now we can prove the proposition: suppose that wRAα(Γ) holds, and fix β < α,
B ∈ Γ. Let σ be a winning strategy for Player II (Resurrect) in GwRA after s0 =

〈(α,2),2〉. Then s1 = sa0 (β,B) ∈ σ and there is exactly one s2 C s1
2 in σ, s2 = sa1 C

with C ≤all B and H2
2γ = H2γ ≺ HC

2γ . Moreover, σs2 is a winning strategy for Player
II (Resurrect) in GwRA after 〈(β,C),C〉, thus wRAβ(Γ) holds in V C.

Conversely, suppose that for all β < α, B ∈ Γ there is a C such that wRAβ(Γ)
holds in V C and H2γ ≺ HC

2γ . Assume towards a contradiction that wRAα(Γ) fails.
Then by AD(∆0

1) Player I (Kill) has a winning strategy σ in GwRA after s0 =

〈(α,2),2〉, and there is exactly one s1 = sa0 (β,B) ∈ σ. Let C be such that wRAβ(Γ)

holds in V C, H2γ ≺ HC
2γ . Then s2 = sa1 C is a valid move (hence is in σ) and by the

first part of this proof, since V C |= wRAβ(Γ), Player II (Resurrect) wins the game
GwRA�〈(β,C),C〉. Since σs2 is a winning strategy for Player I (Kill) in the same
game, we get a contradiction.

Similar arguments yield the thesis also for RAα(Γ), RFA++
α (Γ).

2We remark that s2 C s1 iff s1 = s2�(|s2| − 1).
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Remark 4.1.7. Assume 〈V, C,∈〉 is a model of MK. Let φ0(x, y) be the formula

φ0(x, y) ≡ x, y are complete boolean algebras and Hx
2γ ≺ H

y
2γ

and for all n < ω, let φn+1(x, y) be the formula

φn+1(x, y) ≡ φ0(x, y) ∧ (∀z ≤Γ y ∃w ≤Γ z φn(y, w)) .

Then for all n < ω the assertion φn(2,2) is equivalent to RAn(Γ) in 〈V, C,∈〉 and it
is a formula with no class quantifier. In particular we get that

〈V, C,∈〉 |= RAn(Γ) ⇐⇒ 〈V,∈〉 |= φn(2,2).

hence the formulae φn(2,2) can be used as a first order formulation of the axioms
RAn(Γ) expressible in ZFC with no sort for class variables. However, if

〈V, C,∈〉 |= RAω(Γ)

we can infer that for all n < ω, 〈V,∈〉 |= φn(2,2) but it is not at all clear whether we
can express in the structure 〈V,∈〉 that RAω(Γ) holds. In fact, the simplest strategy
to express this property of V would require us to perform an infinite conjunction of
the formulae φn(2,2) for all n < ω, thus getting out of first order syntax.

This problem can be overcome in models of MK appealing to the class-game
formulation of these axioms.

From now on, we will stick to the recursive formulation of the α-resurrection
axioms given by the latter proposition in order to prove the main results by induction
on α. The same will be done with the subsequent Definitions 4.2.1, 4.2.6, 4.2.9 of
other class games. Note that by Proposition 4.1.6, wRA0(Γ), RA0(Γ) hold vacuously
true for any Γ. Thus wRA1(Γ), RA1(Γ) imply the non-iterated formulations of
resurrection axioms given in [23].

The different forcing axioms we have just introduced are connected by the fol-
lowing implications:

• if β < α, wRAα(Γ)⇒ wRAβ(Γ) (same with RA, RFA++),

• if Γ1 ⊆ Γ2 and their associated γ1 ≤ γ2, wRA(Γ2)⇒ wRA(Γ1),

• RFA++
α (Γ)⇒ RAα(Γ)⇒ wRAα(Γ) whenever Γ is closed under two step iter-

ations: for the latter implication notice that the winning strategy σ for II in
GRA starting from 〈(α,2),2〉 can also be used in GwRA and will force I to play
always a Bn in Γ. In particular σ will remain a winning strategy also in GwRA.

We shall be mainly interested in RAα(Γ), even though wRAα(Γ) will be conve-
nient to state theorems in a modular form (thanks to its monotonic behavior with
respect to Γ), and RFA++

α (Γ) will be convenient to handle the Γ = SSP case.
Some implications can be drawn between iterated resurrection axiom and the

usual forcing axioms, as shown in the following theorems.

Theorem 4.1.8. wRA1(Γ) implies H2γ ≺1 V
B for all B ∈ Γ and BFAκ(Γ) for all

κ < 2γ.
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Proof. Let B be any boolean algebra in Γ, and C ≤all B be such that H2γ ≺ HC
2γ ,

hence H2γ ≺ HC
2γ ≺1 V

C by Levy’s absoluteness. Let φ = ∃xψ(x) be a Σ1 formula.
If φ holds in H2γ , it trivially holds in V B since Σ1 formulas are upwards absolute.
If φ holds in V B, it holds in V C as well hence in H2γ , concluding the first part.

Let now B be in Γ and D be a family of κ many predense subsets of B of size
at most κ. Let B′ ⊆ B be boolean algebra finitely generated by

⋃
D in B, so

that |B′| ≤ κ. Without loss of generality we can assume that both B′ and D are
in Hκ+ ⊆ H2γ by replacing B with an isomorphic copy if necessary. Let G be a
V -generic filter for B. Then G meets every predense in D, that is,

V [G] |= ∃F ⊆ B′ filter ∧ ∀A ∈ D F ∩A 6= ∅

and since H2γ ≺1 V
B, H2γ has to model the same completing the proof.

Theorem 4.1.9. Assume there are class many super almost huge cardinals. Then
MM+++ implies RFA++

ON(SSP).

Proof. Recall that γSSP = ω1 and MM implies that 2ω = 2ω1 = ω2. We prove
that MM+++ implies RFA++

α (SSP) by induction on α. For α = 0 it follows since
MM+++ ⇒ MM++, suppose now that α > 0 and the thesis holds for all β < α.

Let A be the class of all super almost huge cardinals in V . Let USSP
δ be the

forcing whose condition are the SSP-cbas in SSP∩Vδ ordered by ≤SSP. Since A is a
proper class, by [43, Thm. 3.5, Lemma 3.12] the class

{
USSP
δ : δ ∈ A

}
is predense

in (SSP,≤SSP). Moreover H2ω1 = Hω2 ≺ H
USSP
δ

ω2 for all δ ∈ A, since by [43, Lemma
5.19] USSP

δ is forcing equivalent to a (strongly) presaturated tower for any such δ.
Finally, by [43, Cor. 5.20], every such USSP

δ forces MM+++ and preserves that there
are class many super almost huge cardinals (since large cardinals are indestructible
by small forcings). It follows by inductive hypothesis that every such USSP

δ forces
RFA++

β (SSP) for any β < α as well, hence RFA++
α (SSP) holds in V .

It is also interesting to examine the consequences of the iterated resurrection
axioms on the cardinal arithmetic.

Proposition 4.1.10. If cpd(Γ) = γ <∞, wRA1(Γ) implies that 2γ = γ+.

Proof. Suppose by contradiction that 2γ > κ = γ+. By definition of cpd, there exists
a B ∈ Γ such that κ is collapsed in V B. Let C ≤all B be obtained from wRA1(Γ) so

that H2γ ≺ HC
2γ . Since κ is a cardinal in HV

2γ and it is not a cardinal in HV C
2γ , this

is a contradiction. Thus 2γ ≤ γ+, concluding the proof.

The latter proposition suggests that formulating the resurrection axioms in terms
of the theory of H2γ instead of that of Hγ+ might be misleading, since in most cases
they turn out to be the same. However, this is not the case whenever cpd(Γ) =∞.

Proposition 4.1.11. If cpd(Γ) = ∞, then wRA1(Γ) implies that 2γ is a limit
cardinal.

Proof. Since cpd(Γ) is infinite, γ = dd(Γ). Suppose by contradiction that 2γ = κ+

is a successor cardinal. Since Γ is well behaved, there exists a B ∈ Γ such that
2γ > (κ+)V in V B. Then by wRA1(Γ) we can find a C ≤Γ B such that HV

2γ ≺ HV C
2γ .

Since κ is the maximum cardinal in H2γ and not in HC
2γ , we get a contradiction.
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4.1 Iterated resurrection and absoluteness

We remark that similar results were obtained by Hamkins and Johnstone from
their formulation of the resurrection axiom RA(Γ) (see Definition 3.2.14). In fact,
RA1(Γ) seem to overlap with RA(Γ) whenever 2γ = c. However, even in this case
there are some subtle differences. In particular, let Γ be such that γ = ω1, 2ω1 = 2ω

and Add(ω1, 1) is in Γ (e.g. Γ is among axiom-A, proper, semiproper, SSP). Then:

• Add(ω1, 1) preserves RA(Γ). Assume that RA(Γ) holds in V and let G be

V -generic for Add(ω1, 1) so that 2ω = ω1 in V [G] and H
V [G]
c = H

V [G]
ω1 = HV

ω1
.

Then, any B ∈ Γ in V [G] which resurrect the theory of HV
c will also resurrect

the theory of H
V [G]
c = H

V [G]
ω1 = HV

ω1
. Thus B ∗ Add(ω1, 1) will resurrect the

theory of H
V [G]
c and there are densely many such forcing since there are densely

many B resurrecting the theory of HV
c in V .

• There is no reason to expect that Add(ω1, 1) preserves RA1(Γ). In fact, in
this latter case we want to resurrect the theory of H2ω1 as computed in V [G]

and H
V [G]
2ω1 ⊇ H

V [G]
c+

⊇ HV
c+ , and the theory of HV

c+ is not at all controlled by
RA1(Γ).

Thus, it is not transparent under which conditions on Γ the axiom RA1(Γ)
can be compatible with the GCH, unlike its non-iterated counterpart RA(Γ) which
is compatible with CH whenever Γ contains an <ω1-distributive boolean algebra
forcing CH.

4.1.2 Resurrection axioms and generic absoluteness

The main motivation for the iterated resurrection axioms can be found in the fol-
lowing result:

Theorem 4.1.12. Suppose n ∈ ω, RAn(Γ) holds and B ∈ Γ forces RAn(Γ). Then
H2γ ≺n HB

2γ .

Proof. We proceed by induction on n. Since 2γ ≤ (2γ)V
B
, H2γ ⊆ HB

2γ and the
thesis holds for n = 0 by the fact that all transitive structures M ⊂ N are Σ0-
elementary. Suppose now that n > 0, and fix G V -generic for B. By Proposition
4.2.2 and RAn(Γ), let C ∈ V [G] be such that whenever H is V [G]-generic for C,

V [G ∗H] |= RAn−1(Γ) and HV
2γ ≺ H

V [G∗H]
2γ . Then we have the following diagram:

HV
2γ H

V [G∗H]
2γ

H
V [G]
2γ

Σω

Σn−1Σn−1

obtained by inductive hypothesis applied both on V , V [G] and on V [G], V [G ∗H]
since in all those classes RAn−1(Γ) holds.

Let φ = ∃xψ(x) be any Σn formula with parameters in HV
2γ . First suppose that

φ holds in V , and fix x̄ ∈ V such that ψ(x̄) holds. Since HV
2γ ≺n−1 H

V [G]
2γ and ψ is

Πn−1, it follows that ψ(x̄) holds in V [G] hence so does φ. Now suppose that φ holds
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4 Generic absoluteness

in V [G] as witnessed by x̄ ∈ V [G]. Since H
V [G]
2γ ≺n−1 H

V [G∗H]
2γ it follows that ψ(x̄)

holds in V [G ∗H], hence so does φ. Since HV
2γ ≺ H

V [G∗H]
2γ , the formula φ holds also

in V concluding the proof.

Corollary 4.1.13. Assume RAω(Γ) holds and B ∈ Γ forces RAω(Γ). Then H2γ ≺
HB

2γ .

A similar absoluteness result for L(ONω1) concerning SSP forcings in the MM+++

setting was previously obtained in [43]. Corollary 4.1.13 for Γ = SSP provides a
weaker statement (since it concerns the smaller model Hω2). However, it is a more
general result since it holds also for Γ 6= SSP, and the consistency of RAω(Γ) follows
from much weaker large cardinal assumptions than the principle MM+++ needed to
prove absoluteness for L(ONω1). Furthermore, the above result can be applied to
classes Γ such that the corresponding γ is above ω1 thus providing generic absolute-
ness for the (partially) larger model H2γ with 2γ ≥ ω3.

4.2 Uplifting cardinals and definable Menas functions

In order to measure the consistency strength of the α-resurrection axiom, we need
to introduce the following large cardinal notion:

Definition 4.2.1. The uplifting game GUP is as follows. Player I (challenge) plays
couples of ordinals (αn, θn) such that αn+1 < αn. Player II (uplift) plays regular
cardinals κn such that Vκn+1 ≺∆1

1
Vκn+1+1, κn ≥ θn. The last player who can move

wins.

I (Challenge). (α0, θ0)

��

(α1, θ1)

��

(α2, θ2)

##II (Uplift). κ0

??

κ1

??

. . .

We say that κ is (α)-uplifting iff Player II (Uplift) wins the uplifting game after
〈(α, 0), κ〉. We say that κ is (ON)-uplifting iff it is (α)-uplifting for all α ∈ ON.

The uplifting game is a clopen class game, since Player I (Challenge) plays a
descending sequence of ordinals. It follows that upliftingness is a ∆1

1-property. As
for the iterated resurrection axioms, we can give a formulation in recursive terms.

Proposition 4.2.2 (AD(∆0
1)). κ is (α)-uplifting iff it is regular and for all β < α,

θ > κ there is a λ > θ that is (β)-uplifting and Vκ+1 ≺∆1
1
Vλ+1.

Proof. Follows the one of Proposition 4.1.6. Let σ be a winning strategy for Player
I or II in GUP, s = 〈(α, 0), κ, (β, θ), λ〉 be in σ. Then σs =

{
〈(β, 0), λ〉au : sau ∈ σ

}
is a winning strategy for the same player in GUP�〈(β, 0), λ〉. Then we can follow step
by step the last part of the proof of Proposition 4.1.6 using the reduction σ → σs
defined above.
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4.2 Uplifting cardinals and definable Menas functions

Note that replacing “regular” with “inaccessible” in Definition 4.2.1 would pro-
duce no difference for α > 0, since no successor cardinal κ can satisfy Vκ ≺ Vλ
with λ > κ. However, the formulation hereby chosen for Definition 4.2.1 is more
convenient for the proofs in Section 4.3.

We remark that the definition of (0)-uplifting cardinal overlaps with that of
a regular cardinal. Although similar, the class of (1)-uplifting cardinals does not
coincide with the class of uplifting cardinals as defined by Johnstone and Hamkins
in [23] (see Definition 4.3.11 below). In fact, being (1)-uplifting is a stronger property
than being uplifting, since the family of ∆1

1-formulae for the MK-model Vκ+1 strictly
includes all formulae in the language of set theory with parameters in Vκ. However
the consistency strength of (ON)-uplifting cardinals is close to that of uplifting
cardinals as defined by Johnstone and Hamkins. This is shown in Proposition 4.2.4
below.

The key reason which led us to introduce the notion of (α)-uplifting cardinal as a
natural strengthening of the Hamkins and Johnstone original notion of upliftingness
is to be found in Lemma 4.2.5 below which states a very nice reflection property of
(α)-uplifting cardinal which we cannot predicate for the recursive strengthenings of
Hamkins and Johnstone notion of upliftingness (see Def. 4.3.11). These reflection
properties are a key ingredient in our proof of the consistency of the iterated resur-
rection axioms. We shall come back to these issues in more details in Section 4.3.

4.2.1 Consistency strength of (α)-uplifting cardinals

Lemma 4.2.3. Assume δ is Mahlo. Then there are stationarily many inaccessible
κ < δ such that Vκ+1 ≺∆1

1
Vδ+1.

Proof. Let C ⊆ δ be a club, M0 be the Skolem hull of {C} in Vδ+1. Define a sequence
〈Mα, κα : α < δ〉 where κα = max(α, rank(Mα ∩ Vδ)), Mα+1 ≺ Vδ+1 is obtained
by Lowenheim-Skolem Theorem from Mα ∪ Vκα , and Mα =

⋃
β<αMβ for α limit

ordinal.
Since Mα < δ implies that κα < δ and |Mα+1| = |Mα ∪ Vκα | < δ, by induction

on α we have that |Mα| , κα < δ for all α. Furthermore, the sequence 〈κα : α < δ〉
is a club on δ, which is Mahlo, thus we can find an ᾱ < δ limit such that κᾱ is
inaccessible.

Since ᾱ is limit, Mᾱ ∩ Vδ = Vκα . Since Vδ+1 |= C is a club and Mᾱ ≺ Vδ+1,
C ∈ Mᾱ, also Mᾱ |= C is a club hence κᾱ is a limit point of C. Thus, κᾱ is
an inaccessible cardinal in C and by Corollary 1.1.2 Vκᾱ+1 ≡∆1

1(T ) Mᾱ ≺ Vδ+1,
concluding the proof.

Proposition 4.2.4. Assume δ is Mahlo. Then Vδ+1 models MK + there are class
many (ON)-uplifting cardinals.

Proof. Since δ is inaccessible, Vδ+1 models MK. Furthermore,

S =
{
κ < δ : κ inaccessible ∧ Vκ+1 ≺∆1

1
Vδ+1

}
is stationary by Lemma 4.2.3. We prove that every element of S is (α)-uplifting in
Vδ+1 by induction on α < δ.
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4 Generic absoluteness

First, every element of S is (0)-uplifting by definition. Suppose now that every
element of S is (β)-uplifting for every β < α, and let κ be in S. Since S is unbounded,
for every β < α, θ > κ in Vδ there is a λ ∈ S, λ > θ. Such λ is (β)-uplifting by
inductive hypothesis and Vκ+1, Vλ+1 ≺∆1

1
Vδ+1 implies that Vκ+1 ≺∆1

1
Vλ+1. We can

now use Property 4.2.2 to conclude.

As shown in [23, Thm. 11], if there is an uplifting cardinal then there is a tran-
sitive model of ZFC + ON is Mahlo. So the existence of an (ON)-uplifting cardinal
is in consistency strength strictly between the existence of a Mahlo cardinal and the
scheme “ON is Mahlo”. We take these bounds to be rather close together and low
in the large cardinal hierarchy.

4.2.2 Reflection properties of (α)-uplifting cardinals

The following proposition outlines a key reflection property of (α)-uplifting cardinals:

Lemma 4.2.5. Let κ be an (α)-uplifting cardinal with α < κ, and δ < κ be an
ordinal. Then (δ is (α)-uplifting)Vκ iff it is (α)-uplifting.

Proof. Let φ(α) be the statement of this theorem, i.e:

∀κ > α (α)-uplifting ∀δ < κ
(

(δ is (α)-uplifting)Vκ ⇔ δ is (α)-uplifting
)

We shall prove φ(α) by induction on α using the recursive formulation given by
Proposition 4.2.2. For α = 0 it is easily verified, suppose now that α > 0.

For the forward direction, suppose that (δ is (α)-uplifting)Vκ , and let β < α,
θ > δ be ordinals. Let λ > θ be a (β)-uplifting cardinal with Vκ+1 ≺∆1

1
Vλ+1,

so that (δ is (α)-uplifting)Vλ since upliftingness is a ∆1
1-property under AD(∆0

1)
(and AD(∆0

1) holds at inaccessible cardinals). Then there is a ν > θ in Vλ with
Vδ+1 ≺∆1

1
Vν+1 and (ν is (β)-uplifting)Vλ . By inductive hypothesis, since β < α and

λ is (β)-uplifting in V , also ν is (β)-uplifting in V concluding this part.
Conversely, suppose that δ is (α)-uplifting in V and let β < α, θ > δ be ordinals

in Vκ. Let ν > θ be a (β)-uplifting cardinal such that Vδ+1 ≺∆1
1
Vν+1, and let λ > ν

be a (β)-uplifting cardinal such that Vκ+1 ≺∆1
1
Vλ+1. By inductive hypothesis, since

β < α and ν, λ are (β)-uplifting in V , (ν is (β)-uplifting)Vλ , thus

Vλ+1 |= ∃ν > θ Vδ+1 ≺∆1
1
Vν+1 ∧ ν is (β)-uplifting.

By ∆1
1-elementarity, Vκ+1 models the same concluding the proof.

4.2.3 Variations and strengthenings of (α)-upliftingness

To achieve a consistency result also for RFA++, we need to introduce the following
definition:

Definition 4.2.6. The uplifting for supercompacts game GUP++
is the same game

as GUP (see Definition 4.2.1) with the additional requirement that Player II (Uplift)
has to play supercompact cardinals.
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4.2 Uplifting cardinals and definable Menas functions

We say that κ is (α)-uplifting for supercompacts iff it is supercompact and Player
II (Uplift) wins the uplifting for supercompacts game after 〈(α, 0), κ〉. We say that
κ is (ON)-uplifting for supercompacts iff it is (α)-uplifting for supercompacts for all
α ∈ ON.

Proposition 4.2.7 (AD(∆0
1)). κ is (α)-uplifting for supercompacts iff it is super-

compact and for all β < α, θ > κ there is a λ > θ that is (β)-uplifting for supercom-
pacts and Vκ+1 ≺∆1

1
Vλ+1.

Proof. Follows the one of Proposition 4.2.2.

A bound for this large cardinal notion can be obtained in a completely similar
way to Proposition 4.2.4:

Proposition 4.2.8. There are class many (ON)-uplifting for supercompacts cardi-
nals consistently relative to an inaccessible cardinal which is a stationary limit of
supercompact cardinals.

4.2.4 Menas functions for uplifting cardinals

As previously mentioned, to obtain the consistency results at hand we shall use a
lottery iteration relative to a fast-growing function f : κ→ κ for a sufficiently large
cardinal κ. The exact notion of fast-growth we will need is given by the Menas
property schema introduced in [36] and developed by Hamkins for several different
cardinal notions in [23, 22].

We remark that it is always possible to define Menas functions for cardinals that
have a Laver function, while it is also possible to define such functions for some
cardinals that don’t have a Laver function. Moreover, from Menas functions we can
obtain many of the interesting consequences given by Laver functions.

Definition 4.2.9. The Menas uplifting game GM−UP is as follows. Player I (Chal-
lenge) plays couples of ordinals (αn, θn) such that αn+1 < αn. Player II (Up-
lift) plays partial functions fn : κn → κn with κn regular cardinal such that3

〈Vκn+1, fn〉 ≺∆1
1
〈Vκn+1+1, fn+1〉 and fn+1(κn) ≥ θn+1. The last player who can

move wins.

I (Challenge). (α0, θ0)

��

(α1, θ1)

��

(α2, θ2)

##II (Uplift). f0

??

f1

??

. . .

We say that a partial function f : κ→ κ is Menas for (α)-uplifting iff Player II
(Uplift) wins the Menas uplifting game after 〈(α, 0), f〉. We say that f is Menas for
(ON)-uplifting iff it is Menas for (α)-uplifting for all α ∈ ON.

Proposition 4.2.10 (AD(∆0
1)). A partial function f : κ → κ is Menas for (α)-

uplifting iff κ is regular and for all β < α, θ > κ there is a Menas for (β)-uplifting
function g : λ→ λ with g(κ) > θ and 〈Vκ+1, f〉 ≺∆1

1
〈Vλ+1, g〉.

3〈M,C〉 ≺∆1
1
〈N,D〉 iff set(M) ⊆ set(N) and for all ∆1

1-properties φ(~x, Y ) with ~x a tuple of set

variables and Y a class variable, 〈M,C〉 |= φ(~a,C) iff 〈N,D〉 |= φ(~a,D).
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4 Generic absoluteness

Proof. Follows the one of Proposition 4.2.2.

We can now prove the existence of definable Menas functions for (α)-uplifting
cardinals:

Proposition 4.2.11. If κ is (α)-uplifting, then there is a definable Menas function
for (α)-uplifting on κ.

Proof. We shall prove by induction on α that whenever κ is (α)-uplifting, such
a function is given by the following definition (failure of upliftingness function)
relativized to Vκ+1:

f(ξ) = sup
{
ν : Vξ+1 ≺∆1

1
Vν+1 ∧

∃β ν is (β)-uplifting ∧ ξ is not (β + 1)-uplifting}

Note that f(ξ) is undefined only if ξ is (ON)-uplifting (in the domain of f), since
otherwise ξ would be an element considered in the supremum. Thus f(ξ) ≥ ξ when
it is defined.

If κ is (0)-uplifting any function g : κ → κ is Menas, in particular our f . Now
suppose that κ is (α)-uplifting with α > 0 and let β < α, θ > κ be ordinals. Let
ν > θ be a (β)-uplifting cardinal such that Vκ+1 ≺∆1

1
Vν+1, and let λ be the least

(β)-uplifting cardinal bigger than ν such that Vκ+1 ≺∆1
1
Vλ+1.

Thus no ν ′ ∈ (ν, λ) with Vκ+1 ≺∆1
1
Vν′+1 can be (β)-uplifting in V , hence by

Lemma 4.2.5 neither in Vλ. It follows that κ cannot be (β+ 1)-uplifting in Vλ, while
again by Lemma 4.2.5 it is (β)-uplifting in Vλ. Then any ν ′ considered in calculating
fVλ+1(κ) must be witnessed by a β′ ≥ β (since κ is (β′+ 1)-uplifting in Vλ+1 for any
β′ < β) hence be (β)-uplifting.

It follows that fVλ+1(κ) = ν and 〈Vκ+1, f
Vκ+1〉 ≺∆1

1
〈Vλ+1, f

Vλ+1〉 since f is

∆1
1-definable, concluding the proof.

Note that in the proof of this Lemma we used in key steps the reflection properties
of (α)-uplifting cardinals given by Lemma 4.2.5.

4.3 Consistency strength

The results of this section expand on the ones already present in [23] and [43]. In
the previous section we outlined the large cardinal properties we shall need for our
consistency proofs. Now we shall apply the machinery developed by Hamkins and
Johnstone in their proof of the consistency of RA(Γ) for various classes of Γ, and
show that with minor adjustments their techniques will yield the desired consistency
results for RAα(Γ) for weakly iterable Γ when applied to lottery preparation forcings
guided by suitable Menas functions. To prove the consistency of RFA++

α (SSP) we
will instead employ the technology introduced by the Viale in [43]. For this reason
we shall feel free to sketch some of the proofs leaving to the reader to check the
details, that can be developed in analogy to what is done in [23] and [43].
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4.3 Consistency strength

4.3.1 Upper bounds

Let Γ be a weakly iterable class of forcing notions. In this section we shall prove
that PΓ,f

κ , the lottery iteration of Γ relative to a function f : κ→ κ, forces RAα(Γ)
whenever f is Menas for (α)-uplifting. In order to prove this result, we will need to

ensure that PΓ,f
κ “behaves well” as a class forcing with respect to Vκ.

There are two possible approaches. In the first one, we can consider 〈Vκ, f〉 as a

ZFC model extended with an additional unary predicate for f , so that PΓ,f
κ can be

handled as a definable class forcing. Thus we can proceed following step by step the
analogous argument carried out in [23]. In the second one, we can consider the MK

model Vκ+1 and expand on the results in [1] to prove that PΓ,f
κ preserve enough of MK

and behaves well with respect to elementarity. Even though the second approach is
more general and natural in some sense, the first approach is considerably simpler.
Thus we will follow the argument in [23] and give the following definition.

Definition 4.3.1. Let 〈M,C〉 be a model of ZFC expanded with an additional class
predicate C, and P be a class partial order definable in 〈M,C〉.

An 〈M,C〉-generic filter G for P is a filter meeting all dense subclasses of P which
are definable in 〈M,C〉 with parameters.
P is nice for forcing in 〈M,C〉 if the forcing relation 
P is definable in 〈M,C〉

and the forcing theorem holds, i.e. for every first-order formula φ with parameters
in 〈M,C〉 and every 〈M,C〉-generic filter G for P,

〈M [G], C〉 |= φ ⇔ ∃p ∈ G 〈M,C〉 |= (p 
P φ) .

Note that the definition is interesting only when P /∈ M is a class forcing with
respect to M . The next lemmas provide a sufficient condition for being nice for
forcing in Hλ.

Lemma 4.3.2. Let λ be a regular cardinal in V and P ⊆ Hλ be a partial order
preserving the regularity of λ. Assume G is V -generic for P. Then

Hλ[G] = {valG(ẋ) : ẋ ∈ V P ∩Hλ} = H
V [G]
λ .

The above Lemma is rather standard but we sketch a proof since we cannot find
a precise reference for it.

Proof. Since every element of Hλ with λ regular is coded with a bounded subset
of λ, and P preserves the regularity of λ, we can assume that every P-name for an

element of H
V [G]
λ is coded by a P-name for a function ḟ : λ → 2 such that ḟ is

allowed to assume the value 1 only on a bounded subset of λ. In particular we let
for any such ḟ ,

Dḟ =
{
p ∈ P : ∃α p 
 ḟ−1[{1}] ⊆ α

}
and for all ξ < λ,

Eξ,ḟ =
{
p ∈ P : ∃i < 2 ḟ(ξ) = i

}
Notice that p ∈ Dḟ as witnessed by α implies that p ∈ Eξ,ḟ for all ξ ≥ α. In

particular to decide the values of ḟ below such conditions p we just need to consider
the dense sets Eξ,ḟ for ξ < α.
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Let p ∈ P be arbitrary, Aξ ⊆ Eξ,ḟ ∩Dḟ be maximal antichains. Since P preserves
the regularity of λ, it is <λ-presaturated (see Definition 5.2.5) hence we can find
q ≤ p such that q ∈ Dḟ as witnessed by α and

Bξ = {r ∈ Aξ : r is compatible with q}

has size less than λ for all ξ < α. We can now use these antichains Bξ to cook up a
name ġq ∈ Hλ ∩ V P such that q forces that ḟ = ġq. By standard density arguments,
the thesis follows.

Lemma 4.3.3. Let P ⊆ Hκ be a partial order preserving the regularity of κ that is
definable in 〈Hκ, C〉. Then P is nice for forcing in 〈Hκ, C〉.

Proof. Since P is a definable class in 〈Hκ, C〉, the corresponding forcing relation 
κ
given by formulas with parameters in Hκ ∩ V P and whose quantifiers range only
over the P-names in Hκ is clearly definable in 〈Hκ, C〉. Moreover, we can prove by
induction on φ that this relation coincides with the forcing relation as calculated in
V , i.e. p 
 φḢκ iff (p 
κ φ)Hκ . The case φ atomic follows from absoluteness of ∆1

formulas and the case of propositional connectives is easily handled, so we focus on
the case φ = ∃xψ(x). Using the previous Lemma 4.3.2,

p 
 φḢκ ⇔
{
q ≤ p : ∃τ ∈ V P q 
 ψ(τ)Ḣκ ∧ τ ∈ Ḣκ

}
open dense

⇔
{
q ≤ p : ∃σq ∈ Hκ ∩ V P q 
 ψ(σq)

Ḣκ
}

open dense

⇔ (p 
κ φ)Hκ

since the intersection of two open dense sets is open dense. It follows that

Hκ[G] |= φ⇔HV [G]
κ |= φ⇔ V [G] |= φHκ ⇔

∃p ∈ G p 
 φḢκ ⇔ ∃p ∈ G Hκ |= p 
κ φ

concluding the proof.

Lemma 4.3.4 (Lifting Lemma, [23, Lemma 17]). Let 〈M,C〉 ≺ 〈M ′, C ′〉 be models
of ZFC expanded with additional class predicates C and C ′. Let P be a definable class
poset in 〈M,C〉 that is nice for forcing. Let P′ be defined by the same formula in
〈M ′, C ′〉 (obtained replacing C with C ′) and suppose that P′ is also nice for forcing.

Then for any G 〈M,C〉-generic for P and G′ 〈M ′, C ′〉-generic for P′ such that
G′ ∩M = G, we have that 〈M [G], C,G〉 ≺ 〈M ′[G′], C ′, G′〉.

We remark that since PΓ,f
κ is definable in 〈Vκ, f〉, the above results are applicable

to this kind of iteration (even though the PΓ,f
κ we will be interested with are non-

definable classes in Vκ alone).

Theorem 4.3.5. Let Γ be weakly iterable in ZFC. Then RAα(Γ) is consistent
relative to MK + the existence of an (α)-uplifting cardinal.

Proof. The proof follows the one of [23, Thm. 18]. Let V be the standard model of

MK. We prove by induction on α that Pκ = PΓ,f
κ , the lottery iteration of Γ relative

to a function f : κ → κ, forces RAα(Γ) whenever f is Menas for (α)-uplifting.
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4.3 Consistency strength

By Lemma 4.2.11, the existence of such an f follows from the existence of an (α)-
uplifting cardinal, giving the desired result.

Since RA0(Γ) holds vacuously true, the thesis holds for α = 0. Suppose now
that α > 0. Let Q̇ ∈ V Pκ be a name for a forcing in Γ, β < α be an ordinal.
Using the Menas property for f , let g : λ→ λ be such that 〈Vκ+1, f〉 ≺∆1

1
〈Vλ+1, g〉,

g(κ) ≥ rank(Q̇) and g is a Menas for (β)-uplifting function on λ. Let Pλ = PΓ,g
λ be

the lottery iteration of Γ relative to g.
Since g�κ = f , by Proposition 3.3.5 we have that:

• Pκ is <κ-cc and is definable in 〈Vκ, f〉 thus by Lemma 4.3.3 is nice for forcing.
Similarly, Pλ is <λ-cc and definable in 〈Vλ, g〉 thus nice for forcing.

• Pκ forces 2γ ≤ κ and Pλ forces 2γ ≤ λ.

• Since g(κ) > rank(Q̇) and Q̇ is in ΓV
Pκ

, Pλ�p ≤Γ Pκ ∗ Q̇ for a certain p ∈ Pλ.

Furthermore, by inductive hypothesis Pλ forces RAβ(Γ). Thus, we only need to

prove that (H2γ )V
Pκ ≺ (H2γ )V

Pλ . The thesis will then follow by Proposition 4.1.6,
since Pλ�p would be a legal (and winning) move in GRA after Pκ ∗ Q̇.

Let G be any V -generic filter for Pκ, H be a V [G]-generic filter for valG(Q̇).
Since g(κ) ≥ rank(Q̇), Q̇ is one of the elements of the lottery sum considered at
stage κ+1 so that G∗H is V -generic for Pλ� (κ+ 1). Let G′ be V [G∗H]-generic for
Pλ. Since Pκ, Pλ are nice for forcing in the respective models and 〈Hκ, f〉 ≺ 〈Hλ, f〉,
we can apply Lemma 4.3.4 to obtain that Hκ[G] ≺ Hλ[G ∗H ∗G′]. Furthermore by
Lemma 4.3.2,

HV [G]
κ = Hκ[G] ≺ Hλ[G ∗H ∗G′] = H

V [G∗H∗G′]
λ

Since 2γ ≤ κ in V [G] and 2γ ≤ λ in V [G ∗ H ∗ G′], we can restrict the above

elementarity obtaining that H
V [G]
2γ ≺ HV [G∗H∗G′]

2γ and concluding the proof.

We also mention the following interesting cases, where generic absoluteness can
be obtained at the level of any cardinal κ.

Corollary 4.3.6. Generic absoluteness for the theory of H2κ and <κ-closed forcing
follows from RAω(<κ-closed) and is consistent relative to an (ω)-uplifting cardinal.

In general, the axioms RAω(Γ) for different choices of Γ are pairwise incompati-
ble. However, the axioms RAω(<κ-closed) for different values of κ are all compatible
together, as shown in the following result.

Lemma 4.3.7. RAα(<κ-closed) is preserved under <κ+-closed forcing.

Proof. Assume RAα(<κ-closed) holds in V , and B is a <κ+-closed forcing. We
prove that RAα(<κ-closed) holds in V B by induction on α and appealing to the
formulation given by Proposition 4.1.6.

Given β < α and C ≤Γκ B where Γκ = <κ-closed, notice that B is <κ+-closed
thus <κ-closed hence so is C. Then by RAα(<κ-closed) in V we can find a D ≤Γκ C
such that RAβ(<κ-closed) holds in V D and H2κ ≺ HD

2κ . Since B is <κ+-closed
and 2κ = κ+ by Proposition 4.1.10, H2κ = HB

2κ hence HB
2κ ≺ HD

2κ witnessing that
RAα(<κ-closed) holds in V B.
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4 Generic absoluteness

The last lemma directly implies that the axioms RAα(<ωα-closed) are pairwise
compatible for any two ordinals α, β. Moreover, we can also show that these axioms
are all simultaneously compatible together.

Definition 4.3.8. Let B be a complete boolean algebra. Then its closure degree
cd(B) is the largest cardinal κ such that there exists a dense subset D ⊆ B which is
a <κ-closed poset.

Theorem 4.3.9. RAω(<κ-closed) for all cardinals κ simultaneously is consistent
relative to a Mahlo cardinal.

Proof. Let δ be a Mahlo cardinal, and let

S =
{
κ < δ : κ inaccessible ∧ Vκ+1 ≺∆1

1
Vδ+1

}
be stationary by Lemma 4.2.3. Fix an increasing enumeration 〈κα : α < δ〉 of a
subset of S which is discontinuous at the limits, and let 〈fα : κα → κα : α < δ〉 be
a sequence of corresponding Menas for (ω)-uplifting functions.

Define the following forcing iteration4 F = 〈Bα : α < δ〉:

1. B0 = 2 the trivial boolean algebra;

2. Bα+1 = Bα ∗ ṖΓωα ,fα
κα where ṖΓωα ,fα

κα is a Bα-name for the lottery iteration of
length κα guided by fα of <ωα-closed forcings;

3. Bα = lim−→{Bβ : β < α} whenever α is inaccessible;

4. Bα = lim←−{Bβ : β < α} otherwise.

By Theorem 4.3.5, for any α < δ Bα+1 forces that RAω(<ωα-closed) holds in

V
Bα+1

δ thus 2ωα = ωα+1 by Proposition 4.1.10. We now prove by induction on α ≤ δ
that for every β < α, Bα/iβα[Ġβ ] is a <ωβ-closed forcing.

Remark that given any <γ-closed iteration F = 〈Cα : α < λ〉 (i.e. an F such

that
r

cd(Cβ/iαβ [Ġα]) ≥ γ
z

Cα
= 1 for all α ≤ β < λ), we have that lim←−F is always

<γ-closed and lim−→F is <γ-closed if cof(λ) > γ. The proof splits in three cases:

• If α = ξ + 1 is successor, the thesis holds since Ċ = Bξ/iβξ[Ġβ ] is <ωβ-closed

by inductive hypothesis and Bα/iβα[Ġβ ] is the two-step iteration Ċ ∗ Ṗ
Γωξ ,fξ
κξ of

<ωβ-closed forcings.

• If α is inaccessible, by inductive hypothesis (F�α)/Ġβ is a <ωβ-closed iteration

system of regular length α > ωβ. It follows that its direct limit lim−→(F�α)/Ġβ =

Bα/Ġβ is <ωβ-closed as well.

4We do not specify here the embeddings corresponding to the iteration system, since they can
be easily derived from the standard embeddings defined in Sections 2.2 and 2.3.
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4.3 Consistency strength

• If α is a limit ordinal which is not inaccessible, there exists a ξ < α, ξ > β such
that ωξ > cof(α). By inductive hypothesis, Ċ = Bξ/iβξ[Ġβ ] is <ωβ-closed. Fur-

thermore, by inductive hypothesis (F�α)/Ġξ is a<ωβ-closed iteration system of

length cof(α) < ωβ. It follows that its inverse limit lim←−(F�α)/Ġξ = Bα/Ġξ = Ḋ
is <ωβ-closed as well. Finally, Bα/Ġβ can be split as the two step iteration

Ċ ∗ Ḋ thus it is <ωβ-closed, concluding the induction.

Since Bα+1 forces that 2ωα = ωα+1 hold in V
Bα+1

δ , and Bδ/iα+1,δ[Ġα+1] is <ωα+1 =

<2ωα-closed, in V Bδ the GCH holds up to δ which is a limit cardinal. Furthermore,
the inaccessible cardinals below δ are stationary in δ hence in F the direct limit is
taken stationarily often and by Theorem 2.2.10 Bδ is <δ-cc. Thus, δ is inaccessible
in V Bδ and Vδ[G] = (Vδ)

V [G] is a model of MK for any G a V -generic filter for Bδ.
We are now able to prove that RAω(<κ-closed) holds in V Bδδ for all κ < δ. Since

Bδ/iαδ[Ġα] is a class forcing for any α < δ, we cannot directly apply Lemma 4.3.7.
However, its proof can be adapted to work also in this setting.

We prove that RAn(<ωα-closed) holds in V Bδδ by induction on n < ω and ap-

pealing to the formulation given by Proposition 4.1.6. Let Ċ be a Bδ-name for a
<ωα-closed boolean algebra in V Bδδ . Since Bδ is <δ-cc and δ is inaccessible in V Bδ ,

there exists a ξ < δ, ξ > ωα+1 such that Ċ is indeed a Bξ-name. Furthermore, Ċ
has to be <ωα-closed in V Bξ as well. Since by Lemma 4.3.7 RAω(<ωα-closed) holds

in V
Bξ
δ , there exists a further Ḋ ≤Γωα Ċ such that H

Bξ
2ωα ≺ H

Bξ∗Ḋ
2ωα . Since Bδ/iξδ [Ġξ] is

<2ωα-closed, Ḋ is <ωα-closed in V Bδ as well and

HBδ
2ωα = H

Bξ
2ωα ≺ H

Bξ∗Ḋ
2ωα = HBδ∗Ḋ

2ωα

concluding the proof.

In Theorem 4.3.5 one notable case was excluded, i.e. Γ = SSP since SSP forcings
are not weakly iterable in ZFC. The best known upper bound for the consistency
strength of RA(SSP) is given in [40, Thm. 3.1] where it is shown that in the presence
of class many Woodin cardinals MM++ implies RA(SSP) (according to Hamkins and
Johnstone’s terminology), although it is not clear how this result can be generalized
to the axioms RAα(SSP) we introduced.

Assuming the existence of an (α)-uplifting cardinal κ which is a limit of super-
compact cardinals, we can obtain the consistency of RAα(SSP) since in this case
Vκ models that there are class many supercompact cardinals and under such as-
sumption the class SSP is weakly iterable. We remark that an (α)-uplifting cardinal
which is a limit of supercompact cardinals has lower consistency strength than a
Mahlo cardinal which is a stationary limit of supercompact cardinals.

We know that MM++ can be forced by a semiproper iteration of length a su-
percompact cardinal to get SPFA and SP = SSP. For RAα(SSP) a similar idea can
be applied iteratively, in order to ensure that after each resurrection the equality
SP = SSP still holds. This led to the definition of RFA++

α (Γ) and (α)-uplifting
for supercompacts cardinal. In fact, we can now prove that the stronger axiom
RFA++

α (SSP) can be obtained from an (α)-uplifting for supercompacts cardinal.
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4 Generic absoluteness

Notice that we cannot directly generalize the previous result in order to obtain
RFA++

α (SSP). In fact, a function f that is Menas for (α)-uplifting for supercompacts
defined in analogy to the one in Lemma 4.2.11, might fail to produce a lottery
iteration PSSP,f

κ that forces MM++. Thus, in order to prove a consistency upper
bound for RFA++

α (SSP) we will change slightly the approach, replacing the lottery
iteration with the category forcing USSP

κ introduced in [43].

Theorem 4.3.10. RFA++
α (SSP) is consistent relative to an (α)-uplifting for super-

compacts cardinal.

Proof. We prove by induction on α that USSP
κ , the category forcing of height κ, forces

RFA++
α (SSP) whenever κ is (α)-uplifting for supercompacts. Since RFA++

0 (SSP)
holds vacuously true, the thesis holds for α = 0.

Suppose now that α > 0. Let Q̇ ∈ V USSP
κ be a name for a forcing in SSP, β < α

be an ordinal. Since κ is (α)-uplifting for supercompacts, let λ > rank(Q̇) be a
(β)-uplifting for supercompacts cardinal such that Vκ+1 ≺∆1

1
Vλ+1. By inductive

hypothesis, USSP
λ forces RFA++

β (SSP), and by [43, Thm. 3.5.2] it forces also MM++.

Let G be any V -generic filter for USSP
κ , H be a V [G]-generic filter for valG(Q̇).

Since λ ≥ rank(Q̇), USSP
κ ∗ Q̇ is in USSP

λ hence by [43, Lemma 3.12, Lemma 3.22]
there is a G′ such that G ∗H ∗G′ is generic for USSP

λ with USSP
κ ∗ Q̇ ∈ G ∗H ∗G′.

By [43, Lemma 3.19], USSP
κ preserves the regularity of κ, hence by Lemma 4.3.3

USSP
κ is nice for forcing in Hκ. Then we can apply Lemma 4.3.4 to obtain Hκ[G] ≺

Hλ[G ∗H ∗G′].
Furthermore, since USSP

κ preserves the regularity of κ and USSP
λ preserves the

regularity of λ, we have that Hκ[G] = H
V [G]
κ and Hλ[G ∗ H ∗ G′] = H

V [G∗H∗G′]
λ .

Finally, by [43, Thm. 3.23] κ = ω2 = 2ω in V [G] and λ = ω2 = 2ω in V [G ∗H ∗G′],
so that H

V [G]
2ω ≺ HV [G∗H∗G′]

2ω concluding the proof.

4.3.2 Lower bounds

A lower bound for the axioms RAα(Γ) can be quickly found noticing that RAα(Γ)
implies the resurrection axiom RA(Γ) introduced by Hamkins and Johnstone for any
α ≥ 1, and lower bounds for the latter with several choices of Γ were already given
in [23]. For a more detailed analysis, we need the following definition:

Definition 4.3.11. The HJ-uplifting game GHJ is the weakening of game GUP in
Definition 4.2.1 where Player II (uplift) is allowed to play regular cardinals κn such
that Vκn ≺ Vκn+1 (instead of requiring ∆1

1-elementarity).

We say that κ is HJ(α)-uplifting iff Player II (Uplift) wins the HJ-uplifting game
after 〈(α, 0), κ〉.

Proposition 4.3.12 (AD(∆0
1)). κ is HJ(α)-uplifting iff it is regular and for all

β < α, θ > κ there is a λ > θ that is HJ(β)-uplifting and such that Vκ ≺ Vλ.

Proof. Follows the one of Proposition 4.2.2.

The HJ(1)-uplifting cardinals are exactly the uplifting cardinals introduced by
Hamkins and Johnstone in [23], by a reasoning similar to the one shown in Remark
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4.3 Consistency strength

4.1.7. Notice that if κ is (α)-uplifting according to our definition it is also HJ(α)-
uplifting. Since Definition 4.3.11 and Proposition 4.3.12 are based on a second order
formalization of set theory such as the one provided by MK, we need to translate
all the notions involved in the proof of [23, Thm. 16] to the MK setting.

In particular, we need to define a natural expansion of L into a model of MK. If
the starting model of MK is of the kind Vκ+1 with κ inaccessible, such expansion is
naturally given by considering CL = (Vκ+1)L = P(Lκ) ∩ L. By [32, Thm. II.6.23],
CL = P(Lκ) ∩ Lκ+ and every x ∈ Lκ+ has |trcl(x)| ≤ κ. This suggests a natural
strategy to define the canonical constructible model of the theory MK.

Definition 4.3.13. Let 〈V, C〉 be a (transitive) model of MK.
Given a well-founded extensional class relation E ⊆ X2 in C and x ∈ X, we define

trclE(x) as the subclass of X that represents the transitive closure of x in the well-
founded extensional structure 〈X,E〉, identifying E with the membership relation
on X (it can be easily shown under the above assumptions that trclE(x) ∈ C). Let
E�x denote E ∩ trclE(x)2.

We say that 〈Y, F 〉 is a definable powerset of 〈X,E〉 if F ⊆ Y 2 is a well-founded
extensional relation, X ⊆ Y , F ∩X2 = E and for all y ∈ Y there is some formula φ
in the language of set theory and some ~a ∈ X<ω such that for all z ∈ Y :

z F y ⇔ z ∈ X ∧ 〈X,E〉 |= φ(z,~a) (4.1)

and conversely for all formulae φ in the language of set theory and ~a ∈ X<ω there
is some y ∈ Y such that (4.1) holds.

Definition 4.3.14. Let 〈V, C〉 be a (transitive) model of MK. Given a well-founded
extensional class relation E ⊆ X2 and a class A ⊆ X all in C, we say that 〈X,E〉 is
a constructible initial segment (c.i.s.) of length A iff:

• L ⊆ X and E ∩ L2 =∈,

• E′ = E�A is a well-order on A with a maximum and such that the sequence
〈{Lα : α ∈ ON} ,∈〉 is an initial segment of 〈A,E′〉,

• if y ∈ A is the successor of x in E′, then 〈y,E�y〉 is a definable powerset of
〈x,E�x〉,

• if y ∈ A is limit in E′, then E�y is the union of E�x for x E′ y with x ∈ A,

• if y ∈ A is the maximum of E′, then x E y for every x ∈ X.

Define L+ = 〈L, CL〉, where CL is the collection of classes in C defined by:

CL = {C ⊆ L : ∃X,E ∈ C with 〈X,E〉 c.i.s. ∃x ∈ X such that

∀y ∈ L y ∈ C ↔ y E x}.

Note that the structure 〈X,E〉 in the previous definition can be thought as
representing the hyper-class Lα for some α a meta-ordinal of size ON, while the
class A which is the length of the c.i.s 〈X,E〉 can be thought as the collection
of representatives in E of hyper-classes Lβ for β < α. Such c.i.s. can be proved
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4 Generic absoluteness

to exist for arbitrary meta-ordinal length, and can be proved to be unique and
absolute (modulo isomorphisms) for a fixed length by an adaptation of the usual
ZFC arguments for Lα with α ordinal.

Moreover, by adapting the proof of [32, Thm. II.6.23] we can prove that MK
holds in L+ = 〈L, CL〉, that L+ is absolute between models of MK with the same
ordinals, and hence that L+ is the canonical extension of L to a model 〈V, C〉 of MK.
We are now able to prove the following theorems.

Theorem 4.3.15. Assume that Γ is weakly iterable and RA1(Γ) implies that 2γ is
regular. Then RAα(Γ) implies that (2γ)V is HJ(α)-uplifting in L+.

Proof. Since L+ is a model of MK, AD(∆0
1) holds in L+ and set(L+) = L hence

we can resort to the recursive formulation given by Proposition 4.3.12 relativized to
L. We proceed by induction on α. For α = 0, κ = 2γ is regular in V hence in L,
concluding the proof.

Assume now that α > 0 and let β < α, θ > κ be arbitrary. If cpd(Γ) = γ <∞,
let B ∈ Γ be such that θ+ is collapsed to γ. If cpd(Γ) =∞ and dd(Γ) = γ, let B ∈ Γ
be adding θ+ subsets of γ. Thus in both cases B forces that 2γ is bigger than θ. Let
C ≤Γ B be such that H2γ ≺ HC

2γ and RAβ(Γ) holds in V C. Then λ = (2γ)C is bigger
than θ, Hκ ≺ HC

λ , and by inductive hypothesis λ is HJ(β)-uplifting in L+.

Restrict the latter elementarity to L obtaining that (Hκ)L ≺ (Hλ)L. It follows
that κ, λ cannot be successor cardinals in L, hence they need to be inaccessible
obtaining that (Hκ)L = (Vκ)L and the same for λ, concluding the proof.

We remark that the hypothesis that wRA1(Γ) implies that 2γ is regular is true
whenever γ = cpd(Γ) <∞ by Proposition 4.1.10.

There might be a gap between the lower and upper bounds showed in this section,
due to the fact that the ∆1

1-elementarity between Vκ and Vλ is not exploited to
give additional properties between the corresponding H2γ in the forcing extensions.
Nonetheless these bounds are very close together (since both are between the axioms
scheme “ON is Mahlo” and “there exists a Mahlo cardinal”), so we claim these results
to be quite satisfactory.

4.4 Conclusions and open problems

In this chapter we showed how strong generic absoluteness results can be obtained
from forcing axioms of relatively low consistency strength. This was achieved via a
iterated version of a base axiom. Thus it is natural to ask whether this same pro-
cedure can be carried out for different base axioms and to inquire on the properties
that such base axioms might have. This gives rise to the following.

Question 4.4.1. What is the consistency strength of RAω∼ (Γ), and what degree of

generic absoluteness can entail?

This is currently a work in progress [3]. Whereas the consistency strength in this
case seems to be quite mild, it is not clear whether it is possible to infer a stronger
generic absoluteness result from RAω∼ (Γ) than the one we can obtain from RAω(Γ).
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Question 4.4.2. What is the consistency strength of URα(Γ), and what degree of
generic absoluteness can entail?

We suspect an I3 cardinal to be needed for the consistency of URα(Γ). On the
other hand, it is likely that URα(Γ) would be able to extend the generic absoluteness
we have for H2ω to all initial segments of L(ONω1). This would give an intermediate
axiom in between MM+++ (see [43]) and RAω(SSP).

In this chapter we focused on the ω-iterated axiom RAω(Γ). Another possible
direction of research is considering whether a larger amount of iteration might affect
the axioms significantly. This not only regards RAα(Γ) for α > ω, but also a stronger
RA∞(Γ), which can be defined as follows.

Definition 4.4.3. The long Γ-resurrection game GRA∞ is the game of length ω
defined as follows. Player I (Kill) plays boolean algebras Bn+1 such that Bn+1 ≤Γ

Cn. Player II (Resurrect) plays boolean algebras Cn such that HCn
2γ ≺ H

Cn+1

2γ and
Cn ≤Γ Bn. Player II looses if it cannot move, and wins if the game reaches full
length.

I (Kill). B0

��

B1

��II (Resurrect). C0

CC

. . .

RA∞(Γ) is the assertion that Player II (Resurrect) wins the long Γ-resurrection
game after 〈2,2〉.

Since the game GRA∞ is open, it is still determined in MK and a theory similar
to that of GRA can be carried out. Furthermore, a similar definition of (∞)-uplifting
cardinal can be outlined and proved to follow from a Mahlo cardinal, while an easy
adaptation of the results in this chapter can show that RA∞(Γ) is consistent relative
to a Menas for (∞)-uplifting cardinal. However, it is not clear how to obtain a Menas
for (∞)-uplifting cardinal from an (∞)-uplifting cardinal.

Question 4.4.4. What is the consistency strength of RA∞(Γ)? Does RA∞(Γ) or
RAON(Γ) entail stronger generic absoluteness properties than RAω(Γ)?

Furthermore, we mentioned after Proposition 4.1.11 that even though RA(Γ) as
defined by Hamkins and Johnstone is compatible with CH for most classes Γ, their
proof fails for RA1(Γ) and it is not at all clear whether it can be recovered by other
means. This leads to the following question.

Question 4.4.5. For which classes Γ can RAω(Γ) be compatible with the GCH?

In Theorem 4.3.15 we were not able to prove that RAω(Γ) implies that 2γ is
regular when γ = dd(Γ) (hence when any forcing in Γ preserves all cardinals). This
implies also that a precise lower bound for RAω(Γ) is missing in this case. However,
we know that RAω(Γ) implies BFAκ(Γ) for all κ ∈ [γ, 2γ), which in the case Γ = ccc
(the only case for cpd(Γ) = ∞ we considered) gives that 2ω = 2κ for all such κ
and hence that 2γ is regular. It is therefore natural to investigate on the following
question.
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4 Generic absoluteness

Question 4.4.6. Does RAω(Γ) implies that 2γ is regular?

Finally, in this chapter we developed the axiom RAω(Γ) and we showed that it
gives generic absoluteness for the theory of H2γ and forcings in Γ. However, the
unique example with 2γ > 2ω is given by choosing Γ = <γ-closed for some γ > ω.
This is a very narrow forcing class among the ones which preserve γ.

This situation is due to the lack of fully satisfactory results regarding forcing
iterations preserving cardinals γ > ω1. However, the arguments presented in this
chapter show that the two topics are strongly connected, so that an iteration theorem
for (a certain notion of) γ-proper forcings immediately entails a generic absolute-
ness theorem for the same class of forcings and the theory of H2γ . Conversely, a
counterexample to generic absoluteness for H2γ with respect to (a certain notion
of) γ-proper forcings prevents the possibility of having an iteration theorem for the
same class of forcings. This naturally leads us to the last open problem.

Question 4.4.7. Can RAα(Γ) be consistent for cpd(Γ) = γ > ω1, Γ ) <γ-closed?
That is, are there weakly iterable Γ ) <γ-closed which preserve γ?
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CHAPTER 5

SYSTEMS OF FILTERS AND
GENERIC LARGE CARDINALS

In this chapter we introduce the notion of C-system of filters, a concept generalizing
the well-known definitions of both extenders and towers. In this framework we
investigate when extenders and towers happen to be equivalent, together with some
natural questions regarding definability of generic large cardinals. In particular, we
consider the difference between having a generic large cardinal property ideally or
generically and study how the large cardinal properties of an embedding reflect into
the structure of the derived C-system of filters. All the material in this chapter
is joint work with Silvia Steila [4]. We remark that the main contribution of this
chapter is given by the definition of C-system of filters, and that almost all mentioned
results are adaptations of well-known arguments to this new setting.

Section 5.1 introduces the concept of C-system of filters and develops their general
theory. Section 5.2 addresses some issues regarding generic large cardinals, using
the machinery previously developed. Section 5.3 gives an example showing that the
towers in V induced from a generic embedding could have very little in common
with the forcing initially used to originate them.

5.1 Systems of filters

In this section we present the definition and main properties of C-systems of filters.
This notion has both classical extenders [29, 31], ideal extenders (recently introduced
by Claverie in [9]) and towers [11, 33, 43] as special cases, and it is able to generalize
and subsume most of the standard results about extenders and towers. We recall
here the standard definitions of 〈κ, λ〉-extender (see e.g. [31]) and tower of height λ
(see e.g. [43]) in the form that is more convenient to us.

Given a, b ∈ [λ]<ω such that1 b = {α0, . . . , αn} ⊇ a = {αi0 , . . . , αim} and s =
{s0, . . . , sn}, let πba(s) = {si0 , . . . , sim}.

1Here and in the following we assume that finite sets of ordinals are always implicitly ordered
by the natural ordering on the ordinals.
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5 Systems of filters and generic large cardinals

Definition 5.1.1. E =
{
Fa : a ∈ [λ]<ω

}
is a standard 〈κ, λ〉-extender with supports

〈κa : a ∈ [λ]<ω〉 iff the following holds.

1. (Filter property) For all a ∈ [λ]<ω, Fa is a <κ-complete filter on [κa]
|a| and κa

is the least ξ such that [ξ]|a| ∈ Fa;

2. (Compatibility) if a ⊆ b ∈ [λ]<ω then

(a) κa ≤ κb;
(b) if max(a) = max(b), then κa = κb;

(c) A ∈ Fa iff π−1
ba [A] ∈ Fb;

3. (Uniformity) κ{κ} = κ;

4. (Normality) Assume that a ∈ [λ]<ω, A ∈ I+
a where Ia is the dual of Fa,

u : A → κa, i ∈ |a| are such that u(s) ∈ si for all s ∈ A. Then there exist
β ∈ ai, b ⊇ a ∪ {β} and B ≤E A (i.e. such that π−1

ba [A] ⊇ B) with B ∈ I+
b

such that for all s ∈ B, u(πba(s)) = sj , where bj = β.

Definition 5.1.2. T = {Fa : a ∈ Vλ} is a standard tower of height λ iff the following
holds.

1. (Filter property) For all a ∈ Vλ, Fa is a non trivial filter on P(a);

2. (Compatibility) For all a ⊆ b, A ∈ Fa iff A ↑ b = {X ⊆ b : X ∩ a ∈ A} ∈ Fb;

3. (Fineness) For all a ∈ Vλ and x ∈ a we have {X ⊆ a : x ∈ X} ∈ Fa;

4. (Normality) Given A ∈ I+
a , u : A → V such that u(X) ∈ X for any X ∈ A,

there exist b ⊇ a, B ∈ I+
b with B ≤T A (i.e. such that A ↑ b ⊇ B), and a fixed

y such that u(X ∩ a) = y for all X ∈ B.

5.1.1 Main definitions

Throughout this section let V denote a transitive model of ZFC.

Definition 5.1.3. We say that a set C ∈ V is a directed set of domains iff the
following holds:

1. (Ideal property) C is closed under subsets and unions;

2. (Transitivity)
⋃
C is transitive, i.e. for every y ∈ x ∈ a ∈ C we have y ∈

⋃
C

(or, equivalently in presence of the ideal property, {y} ∈ C).

We say that C has length λ iff rank(C) = λ, and that C is <γ-directed iff it is closed
under unions of size <γ in V .

Example 5.1.4. In the case of extenders, C will be [λ]<ω, while for towers
it will be Vλ. The first is absolute between transitive models of ZFC,
while the latter is <λ-directed whenever λ is regular. These two different
properties entail most of the differences in behaviour of these two objects.
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5.1 Systems of filters

Definition 5.1.5. Let C ∈ V be a directed set of domains. Given a domain a ∈ C,
we define Oa as the set of functions

Oa = {πM�(a ∩M) : M ⊆ trcl(a), M ∈ V extensional}

where πM is the Mostowski collapse map of M . If a ⊆ b, we define the standard
projection πba : Ob → Oa by πba(f) = f�a.

We shall sometimes denote πba by πa and π−1
ba by π−1

b when convenient. Notice
that every f ∈ Ob is ∈-preserving, and that πba(f) = f�a ∈ Oa for any a ⊆ b, so
that πba is everywhere defined. From now on we shall focus on filters on the boolean
algebra PV (Oa) for a ∈ C and C ∈ V a directed set of domains.

Example 5.1.6. In the case of extenders, any f ∈ Oa will be an increasing
function from the sequence a ∈ [λ]<ω to smaller ordinals. Oa can be put

in correspondence with the domain κ
|a|
a of a standard extender via the

mapping f 7→ ran(f), πba will correspond in the new setting to the usual
notion of projection for extenders.

In the case of towers, any f ∈ Oa with a transitive will be the collapsing
map of a M ⊆ a. In this case Oa can be put in correspondence with
the classical domain PV (a) via the mapping f 7→ dom(f), and πba will
correspond to the usual notion of projection for towers.

A complete proof of the above mentioned equivalences can be found in
Section 5.1.2.

Definition 5.1.7. Define x E y as x ∈ y ∨ x = y. We say that u : Oa → V is
regressive on A ⊆ Oa iff for all f ∈ A, u(f) E f(xf ) for some xf ∈ dom(f). We say
that u is guessed on B ⊆ Ob, b ⊇ a iff there is a fixed y ∈ b such that for all f ∈ B,
u(πba(f)) = f(y).

Definition 5.1.8. Let V ⊆W be transitive models of ZFC and C ∈ V be a directed
set of domains. We say that S = {Fa : a ∈ C} ∈ W is a C-system of V -filters, and
we equivalently denote S also by {Ia : a ∈ C} where Ia is the dual ideal of Fa, iff
the following holds:

1. (Filter property) for all a ∈ C, Fa is a non-trivial filter on the boolean algebra
PV (Oa);

2. (Fineness) for all a ∈ C and x ∈ a, {f ∈ Oa : x ∈ dom(f)} ∈ Fa;

3. (Compatibility) for all a ⊆ b in C and A ⊆ Oa, A ∈ Fa ⇐⇒ π−1
ba [A] ∈ Fb;

4. (Normality) every function u : A→ V in V that is regressive on a set A ∈ I+
a

for some a ∈ C is guessed on a set B ∈ I+
b for some b ∈ C such that B ⊆ π−1

ba [A];

We say that S is a C-system of V -ultrafilters if in addition:

5. (Ultrafilter) for all a ∈ C, Fa is an ultrafilter on PV (Oa).
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5 Systems of filters and generic large cardinals

We shall feel free to drop the reference to V when clear from the context, hence
denote the C-systems of V -filters as C-systems of filters. When we believe that this
convention may generate misunderstandings we shall be explicitly more careful. To
clearly distinguish C-systems of filters from C-systems of ultrafilters, in the following
we shall use S, E, T for the first and S, E , T for the latter.

Definition 5.1.9. Let S be a C-system of filters, a be in C. We say that κa is the
support of a iff it is the minimum α such that Oa ∩ aVα ∈ Fa. We say that S is a
〈κ, λ〉-system of filters if and only if:

• it has length λ and κ ⊆
⋃
C,

• F{γ} is principal generated by id � {γ} whenever γ < κ,

• κa ≤ κ whenever a ∈ Vκ+2.

Notice that κa ≤ rank(a), and κa = rank(a) when Fa is principal as in the above
definition. In particular, κ{γ} = γ + 1 in this case. The definition of C-system of
filters entails several other properties commonly required for coherent systems of
filters.

Proposition 5.1.10. Let S be a C-system of filters. Then dFa = {dom[A] : A ∈ Fa}
is a normal and fine filter on P(a), for any a in C infinite. In particular if a is
uncountable, dom[A] is stationary for all A ∈ Fa.

Proof. Filter property and fineness follow directly from restricting the corresponding
points in Definition 5.1.8 to dom[Oa]. We now focus on normality. Let u : D → a
where D = dom[A] be such that u(X) ∈ X for all X ∈ D (i.e. X = dom(f) for some
f in A). Then we can define v : A→ V as v(f) = f(u(dom(f))). Let B ∈ I+

b , y ∈ b
be such that v(πba(f)) = f(u(dom(πba(f)))) = f(y) for all f ∈ B by normality.
Since every f ∈ B is injective, u(dom(πba(f))) = y for all f ∈ B hence u is constant
on dom[B] ∈ dI+

a . By Lemma 1.2.8 if a is uncountable we conclude that dom[A] is
stationary for any A ∈ Fa.

Proposition 5.1.11. Let S be a C-system of filters, a, b be in C. Then rank(a) ≤
rank(b) implies that κa ≤ κb, i.e. the supports depend (monotonically) only on the
ranks of the domains.

Proposition 5.1.12. Let S be a 〈κ, λ〉-system of filters, a be in C. Then Fa is
<κ-complete.

We defer the proof of the last two propositions to Section 5.1.4 (just before
Proposition 5.1.30) for our convenience. We are now ready to introduce the main
practical examples of C-system of filters.

Definition 5.1.13. Let V ⊆W be transitive models of ZFC.
E ∈W is an ideal extender on V iff it is a [λ]<ω-system of filters on V for some

λ. E ∈W is an extender on V iff it is a [λ]<ω-system of ultrafilters on V .
E ∈ W is an ideal γ-extender on V iff it is a ([λ]<γ)V -system of filters for some

λ. E is a γ-extender on V iff it is a ([λ]<γ)V -system of ultrafilters on V .
T ∈ W is an ideal tower iff it is a Vλ-system of filters for some λ. T ∈ W is a

tower iff it is a Vλ-system of ultrafilters.
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5.1 Systems of filters

The above definitions of extender and tower can be proven equivalent to the
classical ones presented at the beginning of this section (see also [31, 43]) via the

mappings rana : Oa → [κa]
|a|, f 7→ ran(f) (for extenders) and doma : Oa → P(a),

f 7→ dom(f) (for towers). Furthermore, 〈κa : a ∈ C〉 correspond to the supports of
long extenders as defined in [31]. A detailed account of this correspondence is given
in Section 5.1.2.

Given a C-system of V -filters S, we can define a preorder ≤S on the collection
S+ = {A : ∃a ∈ C A ∈ I+

a } as in the following.

Definition 5.1.14. Given A ∈ I+
a , B ∈ I+

b we say that A ≤S B iff π−1
ca [A] ≤Ic

π−1
cb [B] where c = a ∪ b, and A =S B iff A ≤S B and B ≤S A.

Consider the quotient S+/ =S. With an abuse of notation for p, q ∈ S+/ =S, we
let p ≤S q iff A ≤S B for any (some) A ∈ p, B ∈ q. The partial order 〈S+/ =S,≤S〉
is a boolean algebra which is the limit of a directed system of boolean algebras, and
can be used as a forcing notion in order to turn S into a system of ultrafilters. This
process will be described in Section 5.1.3.

Proposition 5.1.15. Let C be a <γ-directed set of domains, S be a C-system of
filters. Then 〈S+/ =S,≤S〉 forms a <γ-closed boolean algebra.

Proof. Let A = 〈Aα : α < µ〉 ⊆ S+ be such that µ < γ with Aα ∈ I+
aα . Since C is

<γ-directed, there is a domain a ∈ C with |a| ≥ µ such that aα ⊆ a for all α < µ.
Fix 〈xα : α < µ〉 a (partial) enumeration of a, and define

B =
{
f ∈ Oa : ∀α < µ xα ∈ dom(f)⇒ f ∈ π−1

a [Aα]
}
.

First, B <S Aα for all α < µ by fineness, since {f ∈ B : xα ∈ dom(f)} ⊆
π−1
a [Aα]. Suppose now by contradiction that for some c ⊇ a, C ∈ I+

c is such
that C ≤S Aα for all α < µ and C ∩ π−1

c [B] = ∅. Then for any f ∈ C we can find
an αf < µ such that xαf ∈ dom(f) and f /∈ π−1

c [Aαf ]. Define

u : C −→ V
f 7−→ f(xαf )

By normality we can find a single ᾱ and a d ⊇ c ∪ {ᾱ} such that

D =
{
f ∈ π−1

d [C] : u(πd(f)) = f(xᾱ)
}
∈ I+

d .

Thus D ∩Aᾱ = ∅ and D ≤S C ≤S Aᾱ, a contradiction.

5.1.2 Standard extenders and towers as C-systems of filters

Extenders. We now compare the definition of 〈κ, λ〉-extender just introduced
(Definition 5.1.13) with the definition of standard 〈κ, λ〉-extender (Definition 5.1.1).

Let E be a 〈κ, λ〉-extender with supports 〈κa : a ∈ [λ]<ω〉 according to Definition
5.1.13. Notice that given any a ∈ [λ]<ω, the collection

O′a = {f ∈ Oa : dom(f) = a ∧ ran(f) ⊆ κa}
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5 Systems of filters and generic large cardinals

is in Fa by fineness and definition of κa. Consider the injective map rana : O′a →
[κa]

|a|, which maps Fa into a corresponding filter F ′a on [κa]
|a| that is the closure

under supersets of {rana[A ∩O′a] : A ∈ Fa}. Notice that many sequences s ∈ [κa]
|a|

cannot be obtained as the range of Mostowski collapse maps, e.g. s = {β, β + 2}
whenever a is of the kind {α, α+ 1}.

Let us denote with π′ba the projection map from F ′b to F ′a in the standard case.
Notice that for any a ⊆ b ∈ [λ]<ω and f ∈ Ob, rana(πba(f)) = π′ba(ranb(f)). Define
E′ =

{
F ′a : a ∈ [λ]<ω

}
. We claim that E′ is a 〈κ, λ〉-extender with respect to the

standard definition whenever E is a 〈κ, λ〉-extender.

Proposition 5.1.16. If E is a 〈κ, λ〉-extender then E′ is a standard 〈κ, λ〉-extender.

Proof. 1. (Filter property) It follows since F ′a is an injective image of Fa�O′a.

2. (Compatibility)

(a-b) Follow by Proposition 5.1.11, since rank(a) depends only on max(a).

(c) By compatibility of E, it follows: A′ = rana[A] ∈ F ′a iff A ∈ Fa iff
π−1
ba [A] ∈ Fb iff ranb[π

−1
ba [A]] = π′−1

ba [A] ∈ F ′b.

3. (Uniformity) By definition of 〈κ, λ〉-system of filters.

4. (Normality) Given a ∈ [λ]<ω, A′ = rana[A] ∈ I ′+a , u : A′ → κa, i < |a| such
that u(s) ∈ s(i) for all s ∈ A′, let α = ai. Define

v : A −→ V
f 7−→ u(rana(f)).

Since si = f(α), v is regressive. By normality of E, there exist β and B ⊆
π−1
ba [A], where β ∈ b ⊇ a such that for all f ∈ B, v(πba(f)) = f(β). Since
πba(f) ∈ A, f(β) = v(πba(f)) ∈ f(α). Since f is ∈-preserving, β ∈ α and
B′ = ranb[B] witnesses normality of E′.

On the other hand, given a standard 〈κ, λ〉-extender E′ we can define a collection
of corresponding filters Fa on O′a for any a ∈ [λ]<ω. This can be achieved since
rana[O

′
a] ∈ F ′a for any a ∈ [λ]<ω and standard 〈κ, λ〉-extender E′2. Let E consists of

the closure of Fa under supersets in Oa, for any a ∈ [λ]<ω. Then we can show the
following.

Proposition 5.1.17. If E′ is a standard 〈κ, λ〉-extender then E is a 〈κ, λ〉-extender.

Proof. 1. (Filter property) Follows directly from the filter property of E′.

2. (Compatibility) By compatibility of E′ and unfolding definitions, A ∈ Fa iff
A∩O′a ∈ Fa iff rana[A∩O′a] ∈ F ′a iff ranb[π

−1
ba [A∩O′a]] ∈ F ′b iff π−1

ba [A∩O′a] ∈ Fb
iff π−1

ba [A] ∈ Fb.

3. (Fineness) For any x ∈ a, {f ∈ Oa : x ∈ dom(f)} ⊇ O′a ∈ Fa.
2This fact can be proved directly using the corresponding version of Proposition 5.1.28 (i.e.

A ∈ F ′a iff a ∈ j(A)) and  Loś Theorem 5.1.26 for standard extenders.
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4. (Normality) Assume that A ∈ I+
a and that u : A → V is regressive. By

definition of regressive function we have that A = A0 ∪A1, where

A0 = {f ∈ A : ∃x ∈ doma(f)(u(f) = f(x))} ;

A1 = {f ∈ A : ∃x ∈ doma(f)(u(f) ∈ f(x))} .

We have two cases.

• If A0 ∈ I+
a there exists a fixed x ∈ a such that B = {f ∈ A : u(f) = f(x)}

is in I+
a since a is finite. Hence B and x witness normality for E.

• Otherwise, if A0 ∈ Ia, we have that A1 ∈ I+
a . Since a is finite, there

exists x = ai ∈ a such that A∗ = {f ∈ A : u(f) ∈ f(x)} ∈ I+
a . Let

A′ = rana[A
∗ ∩ O′a]. Let v : A′ → κa be such that v(s) = u(f) for any

s = rana(f), so that v(s) ∈ si. By normality of E′ there exist β ∈ ai and
B′ <E′ A

′ with B′ = ranb[B] ∈ I ′+b for b = a∪{β} such that for all s ∈ B′,
v(π′ba(s)) = sj , where bj = β. Hence for any f ∈ B, u(πba(f)) = f(β).

Towers. We now compare the definition of tower just introduced (Def. 5.1.13)
with the definition of standard tower (Def. 5.1.2). Let T be a tower of length λ.
Notice that the whole tower can be induced from the filters Fa where a is a transitive
set. Furthermore, whenever a is transitive the map doma : Oa → P(a) is a bijection.
In fact, any f ∈ Oa with dom(f) = X has to be f = πX . Thus we can map any
Fa with a transitive into an isomorphic filter F ′a = {doma[A] : A ∈ Fa} on P(a).
Define T′ = {F ′a : a ∈ Vλ}, then we can prove the following.

Proposition 5.1.18. If T is a tower of length λ then T′ is a standard tower of
length λ.

Proof. 1. (Filter property) It follows since F ′a is isomorphic to Fa.

2. (Compatibility) Due to compatibility of T, A′ = doma[A] ∈ F ′a iff A ∈ Fa iff
π−1
ba [A] ∈ Fb iff domb[π

−1
ba [A]] = {X ⊆ b : X ∩ a ∈ A′} ∈ F ′b.

3. (Fineness) Follows directly from fineness of T.

4. (Normality) Let A′ = doma[A] ∈ I ′+a , u : A′ → V be such that u(X) ∈ X for
all X ∈ A′. Since u(doma(f)) ∈ doma(f), we can define

v : A −→ V
f 7−→ f(u(doma(f))).

that is regressive on A. Thus by normality of T there exist a ⊆ b ∈ Vλ,
B ⊆ π−1

ba [A] and y ∈ b such that B ∈ I+
b and for any f ∈ B, v(πba(f)) =

f(u(dom(f) ∩ a)) = f(y). Since f is injective, u(dom(f) ∩ a) = y, hence
B′ = domb[B] and y witness normality of T′.

Proposition 5.1.19. If T′ is a standard tower of length λ then T is a tower of
length λ.

Proof. 1. (Filter property) It follows since F ′a is isomorphic to Fa.
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2. (Compatibility) By compatibility of T′, A ∈ Fa iff doma[A] ∈ F ′a iff

{X ⊆ b : X ∩ a ∈ doma[A]} = domb[π
−1
ba [A]] ∈ F ′b

iff π−1
ba [A] ∈ Fb.

3. (Fineness) Follows directly from fineness of T′.

4. (Normality) Assume that A ∈ I+
a and that u : A→ V is regressive, i.e. for all

f ∈ A there exists xf ∈ dom(f) such that u(f) E f(xf ). Since f = πdom(f)

and a is transitive, u(f) ∈ f(xf ) implies that there is an yf ∈ xf ∈ dom(f)
such that u(f) = f(yf ). Thus we can assume without loss of generality that
xf is such that u(f) = f(xf ) and define

v : doma[A] −→ V
doma(f) 7−→ xf .

Then v(X) ∈ X for all X ∈ doma[A] and we can apply normality of T′
to find a domb[B] <T doma[A], B ∈ I+

b and a fixed y such that for any
domb(f) ∈ domb[B] v(domb(f) ∩ a) = v(doma(πba(f))) = xπba(f) = y. Thus
for any f ∈ B, u(πba(f)) = f(y).

5.1.3 Systems of filters in V and generic systems of ultrafilters

In this section we shall focus on ideal extenders and ideal towers in V , and their
relationship with the corresponding generic systems of ultrafilters. This relation
will expand from the following bidirectional procedure, mapping a V -ultrafilter in a
generic extension with an ideal in V and viceversa. Full references on this procedure
can be found in [16].

Definition 5.1.20. Let Ḟ be a B-name for an ultrafilter on PV (X). Let I(Ḟ ) ∈ V
be the ideal on PV (X) defined by:

I(Ḟ ) =
{
Y ⊂ X :

r
Y̌ ∈ Ḟ

z

B
= 0

}
Conversely, let I be an ideal in V on P(X) and consider the poset C = P(X)/I.

Let Ḟ(I) be the C-name for the V -generic ultrafilter for PV (X) defined by:

Ḟ(I) =
{
〈Y̌ , [Y ]I〉 : Y ⊆ X

}
Notice that I(Ḟ(I)) = I, while the B-name Ḟ and the C-name Ḟ(I(Ḟ )) might

be totally unrelated (since C = P(X)/I(Ḟ ) does not necessarily embeds completely
into B). We refer to Theorem 5.3.12 and subsequent corollary for an example of this
behavior.

Definition 5.1.21. Let Ḟ be a B-name for an ultrafilter on PV (X). Set C =
P(X)/I(Ḟ ). The immersion map iḞ is defined as follows:

iḞ : C −→ B
[A]I(Ḟ ) 7−→

r
Ǎ ∈ Ḟ

z

B
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Proposition 5.1.22. Let Ḟ , iḞ be as in the previous definition. Then iḞ is a (not
necessarily complete) morphism of boolean algebras.

Proof. By definition of I(Ḟ ), the morphism is well-defined. Since Ḟ is a B-name for
a filter iḞ preserves the order of boolean algebras, and since Ḟ satisfies the ultrafilter
property it also preserves complementation.

The above can be immediately extended to systems of filters, by means of the
following.

Definition 5.1.23. Let Ṡ = 〈Ḟa : a ∈ C〉 be a B-name for a C-system of ultrafilters.
Then I(Ṡ) = 〈Ia = I(Ḟa) : a ∈ C〉 is the corresponding system of filters in V .
Conversely, let S = 〈Ia : a ∈ C〉 be a C-system of filters in V . Then Ḟ(S) = 〈Ḟa =
Ḟ(Ia) : a ∈ C〉 is the corresponding S-name for a system of ultrafilters.

Proposition 5.1.24. Let Ṡ be a B-name for a C-system of ultrafilters. Then I(Ṡ) is
a C-system of filters in V . Conversely, let S be a C-system of filters in V . Then Ḟ(S)
is the canonical 〈S+, <S〉-name for the V -generic filter on S and defines a C-system
of V -ultrafilters.

Proof. I(Ṡ) and Ḟ(S) satisfy the following properties.

1. (Filter and ultrafilter property) Left to the reader.

2. (Fineness) Fix a ∈ C.
I(Ṡ): Since Fa is fine and Ḟ(Ia) contains Fa with boolean value 1, the latter
is also fine.

Ḟ(S): Let A = {f ∈ Oa : x /∈ dom(f)} be obtained from any x ∈ a. Since Ḟa

is fine with boolean value 1,
r
A ∈ Ḟa

z
= 0 hence A ∈ I(Ḟa).

3. (Compatibility) Fix a ⊆ b in C, A ⊆ Oa.

I(Ṡ): A ∈ I(Ḟa) ⇐⇒
r
Ǎ ∈ Ḟa

z
= 0B =

r
π−1
ba [Ǎ] ∈ Ḟb

z
⇐⇒ π−1

ba [A] ∈ I(Ḟb).

Ḟ(S):
r
Ǎ ∈ Ḟ(Ia)

z
= [A]S =

[
π−1
ba [A]

]
S =

r
π−1
ba [Ǎ] ∈ Ḟ(Ia)

z
.

4. (Normality) Let u : Oa → V in V be regressive on A.

I(Ṡ): Suppose that A ∈ I(Ṡ)+ (i.e.
r
Ǎ ∈ Ḟa

z
= p > 0). Then p 
 Ǎ ∈ Ḟa

implies that

p 
 ∃X <Ṡ Ǎ X ∈ Ṡ+ ∃y ∈ b̌ ∀f ∈ X ǔ(πba(f)) = f(y)

Thus by the forcing theorem there is a q < p, q > 0 and fixed B ⊆ π−1
ba [A],

y ∈ b such that q forces the above formula with the quantified X replaced by

B. Then
r
B̌ ∈ Ṡ+

z
≥ q > 0 ⇒ B ∈ I(Ṡ)+, and ∀f ∈ B u(πba(f)) = f(y)

holds true in V .

Ḟ(S): Consider the system Ḟ(S). Suppose that A ∈ I+
a . Given any C ≤S A in

I+
c , we can find B ≤S C in S+ witnessing the normality of S for the regressive
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map on C defined by h 7→ u(h � a). We conclude that there are densely many
B below A such that ∃y ∈ b ∀f ∈ B u(πba(f)) = f(y), hence

r
∃B <Ḟ(S) Ǎ B ∈ Ḟ(S)+ ∃y ∈ b̌ ∀f ∈ B ǔ(πba(f)) = f(y)

z
≥ [A]S

and [A]S =
r
Ǎ ∈ Ḟ(S)+

z
.

As already noticed for single filters, the maps I and Ḟ are not inverse of each
other and Ḟ(I(Ṡ)) might differ from Ṡ.

5.1.4 Embedding derived from a system of ultrafilters

We now introduce a notion of ultrapower induced by a C-system of V -ultrafilters
S. Notice that the results of the last section allows to translate any result about C-
systems of V -ultrafilters to a result on C-systems of filters in V , by simply considering
the C-system of V -ultrafilters Ḟ(S).

Definition 5.1.25. Let V ⊆ W be transitive models of ZFC and S ∈ W be a
C-system of V -ultrafilters. Let

US = {u : Oa → V : a ∈ C, u ∈ V } .

Define the relations

u =S v ⇐⇒ {f ∈ Oc : u(πca(f)) = v(πcb(f))} ∈ Fc

u ∈S v ⇐⇒ {f ∈ Oc : u(πca(f)) ∈ v(πcb(f))} ∈ Fc
where Oa = dom(u), Ob = dom(v), c = a ∪ b. The ultrapower of V by S is
Ult(V,S) = 〈US/ =S , ∈S〉.

We leave to the reader to check that the latter definition is well-posed. From now
on, we identify the well-founded part of the ultrapower with its Mostowski collapse.

Theorem 5.1.26 ( Loś). Let φ(x1, . . . , xn) be a formula and let u1, . . . , un ∈ US .
Then Ult(V,S) |= φ([u1]S , . . . , [un]S) if and only if

{f ∈ Ob : φ(u1(πba1(f)), . . . , un(πban(f)))} = A ∈ Fb

where Oai = dom(ui) for i = 1 . . . n, b =
⋃
ai.

Proof. We proceed by induction on φ. The case φ atomic follows directly from the
definition of ultrapower, and the case for ¬ and ∨ is easily handled, so we focus on
the case φ(~x) = ∃y ψ(y, ~x). First, suppose that A ∈ Fb and define v : Ob → V so
that ψ(v(f), u1(πba1(f)), . . . , un(πban(f)) holds if f ∈ A, v(f) = ∅ otherwise. Then
Ult(V,S) |= ψ([v]S , [u1]S , . . . , [un]S) by inductive hypothesis and the thesis follows.

Conversely, suppose that Ult(V,S) |= ∃y ψ(y, [u1]S , . . . , [un]S), and fix v ∈ US
such that Ult(V,S) |= ψ([v]S , [u1]S , . . . , [un]S), v : Oc → V with c ⊇ b. Then, by
inductive hypothesis,

{f ∈ Oc : ψ(v(f), u1(πca1(f)), . . . , un(πcan(f)))} = B ∈ Fc,

hence π−1
cb [A] ⊇ B is also in Fc and by coherence A ∈ Fb.
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5.1 Systems of filters

As in common model-theoretic use, define jS : V → Ult(V,S) by jS(x) = [cx]S
where cx : O∅ → {x}. From the last theorem it follows that the map jS is elementary.
Notice that the proof of the last theorem does not use neither fineness nor normality
of the system of ultrafilters. However these properties allows us to study the elements
of the ultrapower by means of the following proposition.

Proposition 5.1.27. Let S be a C-system of ultrafilters, j : V →M = Ult(V,S) be
the derived embedding. Then,

1. [cx]S = j(x) for any x ∈ V ;

2. [projx]S = x for any x ∈
⋃
C, where

projx : O{x} −→ V

f 7−→ f(x)

3. [rana]S = a for any a ∈ C;

4. [doma]S = j[a] for any a ∈ C;

5. [ida]S = (j�a)−1 for any a ∈ C.

Proof. 1. Follows from the definition of j.

2. By induction on rank(x). Fix x ∈
⋃
C. If y ∈ x, then y = [projy]S ∈

[projx]S since all f in O{x,y} are ∈-preserving. Conversely, assume that x ∈ a
and [u : Oa → V ]S ∈ [projx]S . By  Loś’s Theorem, u is regressive on A =
{f ∈ Oa : u(f) ∈ f(x)} ∈ Fa thus there exist y ∈ b ⊇ a and B ⊆ π−1

b [A] in Fb
such that u(πa(f)) = f(y) for all f ∈ B. Since f(y) = u(πa(f)) ∈ f(x) and
any f ∈ B is ∈-preserving, it follows that y ∈ x. Finally, by  Loś’s Theorem
and inductive hypothesis [u]S = [projy]S = y ∈ x.

3. Fix a ∈ C. If y = [projy]S ∈ a, by fineness

{f ∈ Oa : f(y) ∈ rana(f)} = {f ∈ Oa : y ∈ dom(f)} ∈ Fa.

thus y = [projy]S ∈ [rana]S by  Loś’s Theorem. Conversely, assume that u :
Ob → V is such that [u]S ∈ [rana]S , b ⊇ a. By  Loś’s Theorem, u is regressive
on

A = {f ∈ Ob : u(f) ∈ rana(πa(f)) = f [a]} ∈ Fb
thus by normality there exist y ∈ c ⊇ b and B ⊆ π−1

c [A] such that u(πb(f)) =
f(y) for all f ∈ B. Since B ⊆ π−1

c [A], f(y) = u(πb(f)) = f(x) for some x ∈ a.
Since f is injective, x = y ∈ a and [u]S = [projy]S = y by  Loś’s Theorem.

4. Fix a ∈ C. If x ∈ a, by fineness {f ∈ Oa : x ∈ doma(f)} ∈ Fa hence j(x) =
[cx]S ∈ [doma]S . Conversely, assume [u : Ob → V ]S ∈ [doma]S with b ⊇ a. By
 Loś’s Theorem, A = {f ∈ Ob : u(f) ∈ doma(πa(f))} ∈ Fb and we can define

v : A −→ V
f 7−→ f(u(f)).
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5 Systems of filters and generic large cardinals

that is regressive on A. Then by normality there exist y ∈ c ⊇ b and B ⊆
π−1
c [A] such that v(πb(f)) = f(u(πb(f))) = f(y) for all f ∈ B. Since f is

injective, u(πb(f)) = y hence y is in doma(πa(f)) = dom(f)∩a. Thus by  Loś’s
Theorem [u]S = [cy]S = j(y).

5. Follows from points 3 and 4, together with the observation that [ida]S has to
be an ∈-preserving function by  Loś’s Theorem and (j�a)−1 is the only such
function with domain j[a] and range a.

These canonical representatives can be used in order to prove many general
properties of C-system of filters and of the induced ultrapowers. In particular, we
shall use them to prove Propositions 5.1.11 and 5.1.12, and other related properties.

Proposition 5.1.28. Let S be a C-system of ultrafilters, A ⊆ Oa be such that a ∈ C.
Then A ∈ Fa if and only if (jS�a)−1 ∈ jS(A).

Proof. By  Loś’s Theorem, we have A = {f ∈ Oa : f = ida(f) ∈ A} ∈ Fa if and only
if (jS�a)−1 = [ida]S ∈ [cA]S = jS(A).

Lemma 5.1.29. Let S be a C-system of filters and a ∈ C. Then κa is the minimum

α such that
r
jḞ(S)(α̌) ≥ rank(ǎ)

z

S
= 1.

Proof. Let j be the elementary embedding derived from Ḟ(S) in a generic extension
by S. Notice that Oa ∩ aVα ∈ Fa is equivalent by Proposition 5.1.28 to

(j�a)−1 ∈ j(Oa ∩ aVα) = j(Oa) ∩ j(a)Vj(α)

which is in turn equivalent to a ⊆ Vj(α) i.e. j(α) ≥ rank(a). Since this holds in all
generic extensions by S, we are done.

Proof of Proposition 5.1.11. By the previous proposition κa is the minimum α such
that 1 
S j(α) ≥ rank(a), hence it depends (monotonically) only on rank(a). The
conclusion of Proposition 5.1.11 follows.

Proposition 5.1.30. Let S be a C-system of filters. Then κ is the critical point of
j = jḞ(S) with boolean value 1 iff S is a 〈κ, λ〉-system of filters.

Proof. Suppose that κ is the critical point of j with boolean value 1. If γ < κ,
A ∈ F{γ} iff 1 
S (j� {γ})−1 = j(id � {γ}) ∈ j(A) iff id � {γ} ∈ A. Thus F{γ} is
principal generated by id � {γ}. If a ∈ C ∩ Vκ+2, rank(a) ≤ κ + 1 ≤ jḞ(S)(κ) with
boolean value 1, thus κa ≤ κ by Lemma 5.1.29.

Conversely, suppose that {id � {γ}} ∈ F{γ} for γ < κ, and κa ≤ κ for a ∈ Vκ+2.
If there is an A ∈ S+ forcing that j has no critical point or has critical point bigger
than κ, κa = rank(a) > κ for a ∈ Vκ+2 \ Vκ+1, a contradiction. If there is a B ∈ S+

forcing that j has critical point γ smaller than κ, F{γ} cannot be principal generated
by id � {γ}, again a contradiction.
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5.1 Systems of filters

Proof of Proposition 5.1.12. Let S be a 〈κ, λ〉-system of filters, a be in C, j be derived
from Ḟ(S). We need to prove that Fa is <κ-complete for all a. Suppose that A ⊆ Fa
is such that |A| < κ. Hence by Proposition 5.1.30, j(A) = j[A]. Then

⋂
A ∈ Fa iff

1 
S (j�a)−1 ∈ j(
⋂
A) =

⋂
j(A) =

⋂
j[A]

which is true since A ∈ Fa ⇒ 1 
S (j�a)−1 ∈ j(A) for all A ∈ A.

The ultrapower Ult(V,S) happens to be the direct limit of the directed system
of ultrapowers 〈Ult(V, Fa) : a ∈ C〉 with the following factor maps:

kab : Ult(V, Fa) −→ Ult(V, Fb)
[u]Fa 7−→ [u ◦ πba]Fb

ka : Ult(V, Fa) −→ Ult(V,S)
[u]Fa 7−→ [u]S

The ultrapower Ult(V,S) is also the direct limit of the ultrapowers given by the
restrictions of S, as shown in the following.

Definition 5.1.31. Let S be a C-system of filters of length λ, α < λ be an ordinal.
The restriction of S to α is the (C ∩ Vα)-system of filters S�α = {Fa : a ∈ C ∩ Vα}.
Moreover, if S is a C-system of ultrafilters the corresponding factor map is

kα : Ult(V,S�α) −→ Ult(V,S)
[u]S�α 7−→ [u]S .

Proposition 5.1.32. Let S be a C-system of ultrafilters of length λ, α < λ be an
ordinal. Then

1. kα is elementary;

2. kα ◦ jS�α = jS ;

3. kα�
⋃

(C ∩ Vα) = id �
⋃

(C ∩ Vα), hence crit(kα) ≥ α.

Proof. A particular case of Proposition 5.1.36 to follow.

5.1.5 System of ultrafilters derived from an embedding

We now present the definitions and main properties of C-system of ultrafilters derived
from a generic elementary embedding. With abuse of notation, we denote as generic
elementary embedding any map j : V → M which is elementary and such that
M ⊆ W for some W ⊇ V . In the following we shall assume that j is a definable
class in W . However, we believe that it should be possible to adapt the present
results to non-definable j, provided we are working in a strong enough set theory
with sets and classes (e.g. MK). We also provide a comparison between derived
C-systems of ultrafilters for different choices of C.

Let S be a C-system of ultrafilters, A ⊆ Oa be such that a ∈ C. Then by
Proposition 5.1.28,

A ∈ Fa ⇐⇒ (jS�a)−1 ∈ jS(A)

and this relation actually provides a definition of S from jS . This justifies the
following definition.
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5 Systems of filters and generic large cardinals

Definition 5.1.33. Let V ⊆W be transitive models of ZFC. Let j : V →M ⊆W
be a generic elementary embedding definable in W , C ∈ V be a directed set of
domains such that for any a ∈ C, (j�a)−1 ∈M . The C-system of ultrafilters derived
from j is S = 〈Fa : a ∈ C〉 such that:

Fa =
{
A ⊆ Oa : (j�a)−1 ∈ j(A)

}
.

Definition 5.1.33 combined with Proposition 5.1.28 guarantees that for a given
a C-system of ultrafilters S, the C-system of ultrafilters derived from jS is S itself.
We now show that the definition is meaningful for any embedding j.

Proposition 5.1.34. Let j, C, S be as in the definition above. Then S is a C-system
of V -ultrafilters.

Proof. 1. (Filter and ultrafilter property) Fix a ∈ C and assume that A,B ∈ Fa.
Then (j�a)−1 ∈ j(A) ∩ j(B) = j(A ∩ B). Moreover if C ⊆ Oa and A ⊆ C,
then (j�a)−1 ∈ j(A) ⊆ j(C). Finally, if (j�a)−1 /∈ j(A) we have that (j�a)−1 ∈
j(Oa) \ j(A) = j(Oa \A).

2. (Fineness) Fix x ∈ a so that j(x) ∈ j[a]. Then j(x) ∈ dom((j�a)−1) hence we
have {f ∈ Oa : x ∈ dom(f)} ∈ Fa by definition of Fa.

3. (Compatibility) Assume that a ⊆ b ∈ C and A ⊆ Oa. Then

(j�b)−1 ∈ j(π−1
ba [A]) =

{
f ∈ Oj(b) : πj(a)(f) ∈ j(A)

}
if and only if (j�a)−1 = πj(a)((j�b)

−1) ∈ j(A).

4. (Normality) Let u : A→ V be regressive on A ∈ Fa and in V . By elementarity,

M |= ∀f ∈ j(A) ∃x ∈ dom(f) j(u)(f) E f(x)

Since (j�a)−1 ∈ j(A), there exists x ∈ j[a] with j(u)((j�a)−1) E (j�a)−1(x).
Define y = j(u)((j�a)−1), and put b = a∪{y}. Note that y E j−1(x) ∈ a hence
by transitivity of

⋃
C, {y} ∈ C. Define B = {f ∈ Ob : u(πba(f)) = f(y)}. Then

(j�b)−1 ∈ j(B), i.e. B ∈ Fb, since

(j�b)−1(j(y)) = y = j(u)((j�a)−1) = j(u)(πj(a)((j�b)
−1)).

Given a C-system of ultrafilters S derived from a generic embedding j, we can
factor out the embedding j through jS .

Definition 5.1.35. Let j : V →M ⊆W be a generic elementary embedding, C ∈ V
be a directed set of domains of length λ, S be the C-system of ultrafilters derived
from j. Then

k : Ult(V,S) −→ M

[u : Oa → V ]S 7−→ j(u)((j�a)−1)

is the factor map associated to S.

Proposition 5.1.36. Let j, C, λ, S, k be as in the previous definition. Then
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1. k is elementary;

2. k ◦ jS = j;

3. k�
⋃
C = id �

⋃
C hence crit(k) ≥ λ;

4. if λ = j(γ) for some γ, then crit(k) > λ.

Proof. 1. Let φ(x1, . . . , xn) be a formula, and for any i ∈ n let ui : Oai → V ,
ai ∈ C. Put b =

⋃
{ai : 1 ≤ i ≤ n} . Then Ult(V,S) |= φ([u1]S , . . . , [un]S) if

and only if (by  Loś Theorem)

B = {f ∈ Ob : φ(u1(πa1(f)), . . . , un(πan(f)))} ∈ Fb.

if and only if (j�b)−1 ∈ j(B) (by definition of Fb) i.e.

M |= φ(j(u1)(πj(a1)(j�b)
−1), . . . , j(un)(πj(an)(j�b)

−1))

if and only if (by definition of πj(ai))

M |= φ(j(u1)((j�ai)
−1), . . . , j(un)((j�an)−1)).

i.e. M |= φ(k([u1]S), . . . , k([un]S).

2. For any x ∈ V ,

k(jS(x)) = k([cx]S) = j(cx)(∅) = cj(x)(∅) = j(x).

3. Let x ∈
⋃
C. Then by Proposition 5.1.27 for some a ∈ C with x ∈ a,

k(x) = k([projx]S) = j(projx)((j�a)−1) = j−1(j(x)) = x.

4. If λ = j(γ), the following diagram commutes:

V M W

Ult(V,S) V [S]

j

jS
k

⊆

⊆

⊆

Thus crit(k) ≥ j(γ) and k ◦ jS(γ) = j(γ). Therefore j(γ) ∈ ran(k) hence
j(γ) cannot be the critical point of k, showing that the above inequality is
strict3.

Observe that in Definition 5.1.33 (j�a)−1 /∈ M would imply that the derived
filter Fa is empty. Thus, depending on the choice of C, there can be a limit on the
maximal length attainable for a C-system of ultrafilter derived from j. If C = [λ]<ω,
(j�a)−1 is always in M thus there is no limit on the length of the extenders derived
from j. If C = Vλ, the maximal length is the minimal λ such that j[Vλ] /∈M . These
bounds are relevant, as shown in the following proposition.

3Remark that in the above diagram V [S] is the smallest transitive model N of ZFC such that
V, {S} ⊆ N ⊆W .
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Proposition 5.1.37. Let T ∈ W be a tower of length a limit ordinal λ, j : V →
M ⊆W be the derived embedding. Then the tallest tower derivable from j is T .

Proof. Since domVα represents j[Vα] for all α < λ, j[Vα] ∈ M for all α < λ and we
only need to prove that j[Vλ] /∈ M . Suppose by contradiction that u : Oa → V is
such that [u]T = j[Vλ]. Let α < λ be such that a ∈ Vα, and let v : Oa → V be
such that v(x) = u(x) ∩ Vα+1. Thus [v]T = j[Vλ] ∩ j(Vα+1) = j[Vα+1], and by  Loś
Theorem

A =
{
f ∈ OVα+1 : v(πa(f)) = dom(f)

}
∈ FVα+1

Since |dom[A]| ≤ |ran(v)| ≤ |Oa| < |Vα+1|, dom[A] is a non-stationary subset of
Vα+1 by Lemma 1.2.13 contradicting Proposition 5.1.10.

We now consider the relationship between different C-systems of ultrafilters de-
rived from a single j.

Proposition 5.1.38. Let j : V → M ⊆ W be a generic elementary embedding
definable in W , C1 ⊆ C2 be directed sets of domains in V , Sn be the Cn-system
of V -ultrafilters derived from j for n = 1, 2. Then Ult(V,S2) can be factored into
Ult(V,S1), and crit(k1) ≤ crit(k2) where k1, k2 are the corresponding factor maps.

Proof. We are in the following situation:

V M

Ult(V,S1)

Ult(V,S2)

j

j1

j2

k1

k2

k

where k is defined as

k : Ult(V,S1) −→ Ult(V,S2)
[u]S1 7−→ [u]S2

Observe that j1, j2 and k commute. Moreover given u : Oa → V with a ∈ C1,

k2 ◦ k([u]S1) = j(u)
(

(j�a)−1
)

= k1([u]S1)

therefore the diagram commutes. Since k1 and k2 are elementary, k has to be
elementary as well and crit(k1) ≤ crit(k2).

Notice that the last proposition can be applied whenever S1 is an extender and S2

is a tower, both of the same length λ and derived from the same generic elementary
embedding j : V →M ⊆W . It is also possible for a “thinner” system of filters (i.e.
an extender) to factor out a “fatter” one.

Definition 5.1.39. Let F be an ultrafilter. We denote by non(F ) the minimum
of |A| for A ∈ F . Let S be a C-system of ultrafilters. We denote by non(S) the
supremum of non(Fa) + 1 for a ∈ C.
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If the length of S is a limit ordinal λ, non(S) is bounded by iλ. If E is a
γ-extender of regular length λ > γ, non(S) is also bounded by 2<λ + 1.

Theorem 5.1.40. Let C be a directed set of domains. Let j : V → M ⊆ W be a
generic elementary embedding definable in W , S be the C-system of filters derived
from j, E be the extender of length λ ⊇ j[non(S)] derived from j. Then Ult(V, E)
can be factored into Ult(V,S), and crit(kS) ≤ crit(kE).

Proof. Let ρa : [non(Fa)]
1 → Oa be an enumeration of an A ∈ Fa of minimum

cardinality, so that (j�a)−1 ∈ j(A) = ran(j(ρa)). Let k be defined by

k : Ult(V,S) −→ Ult(V, E)
[u : Oa → V ]S 7−→ [u ◦ ρa ◦ ran{β}]E

where β < j(non(Fa)) ≤ λ is such that j(ρa)({β}) = (j�a)−1. We are in the following
situation:

V M

Ult(V,S)

Ult(V, E)

j

jS

jE

kS

kE

k

Observe that jS , jE and k commute. Moreover given u : Oa → V with a ∈ C,

kE ◦ k([u]S) = j(u ◦ ρa ◦ ran{β})
(

(j� {β})−1
)

= j(u ◦ ρa)({β})

= j(u)
(

(j�a)−1
)

= kS([u]S)

therefore the diagram commutes. Since kS and kE are elementary, k has to be
elementary as well and crit(kS) ≤ crit(kE).

The last proposition with j = jS shows that from any C-system of filters S can
be derived an extender E of sufficient length such that Ult(V,S) = Ult(V, E). The
derived extender E might have the same length as S, e.g. when λ = iλ and j[λ] ⊆ λ.
In particular, this happens in the notable case when S is the full stationary tower
of length λ a Woodin cardinal.

5.2 Generic large cardinals

Generic large cardinal embeddings are analogous to classical large cardinal embed-
dings. The difference between the former and the latter is that the former is definable
in some forcing extension of V and not in V itself as the latter. An exhaustive sur-
vey on this topic is given in [16]. Most of the large cardinal properties commonly
considered can be built from the following basic blocks.

Definition 5.2.1. Let V ⊆ W be transitive models of ZFC. Let j : V → M ⊆ W
be a generic elementary embedding with critical point κ. We say that
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• j is γ-tall iff j(κ) ≥ γ4;

• j is γ-strong iff V W
γ ⊆M ;

• j is <γ-closed iff <γM ⊆M from the point of view of W .

Notice that the definition of a large cardinal property through the existence of
an embedding j with (some version of) the above properties is not a first-order
statement, since it quantifies over a class object. In the theory of large cardinals in
V , this problem is overcome by showing that an extender E of sufficient length is able
to capture all the aforementioned properties of j in jE . For generic large cardinals
the same can be done with some additional limitations, as shown in Section 5.2.1.

In contrast with the classical case, this process requires the use of C-systems of
ultrafilters in some generic extension. However, it would be a desirable property to
be able to obtain a description of such generic elementary embeddings from objects
living in V . Natural intuition suggest the feasibility of this option (see e.g. [33]).
We thus introduce the following definition schema (already suggested in [9]).

Definition 5.2.2 (Claverie). Let P be a large cardinal property of an elementary
embedding5, κ be a cardinal. We say that κ has property P iff there exists an
elementary embedding j : V →M ⊆ V with critical point κ and satisfying property
P .

We say that κ has generically property P iff there exists a forcing extension
V [G] and an elementary embedding j : V →M ⊆ V [G] definable in V [G] and with
critical point κ satisfying property P .

We say that κ has ideally property P iff there exist a C-system of filters S in V
such that the corresponding generic ultrapower embedding jḞ(S) satisfies property
P in the corresponding generic extension.

Observe that for any κ, P (κ)⇒ ideally P (κ)⇒ generically P (κ). On the other
side, it is not clear whether generically P (κ)⇒ ideally P (κ) as pointed out in [9, 10].
In Section 5.3 an example is given suggesting that the natural procedure of inducing
a C-system of filters in V from a generic elementary embedding might fail to preserve
large cardinal properties, thus giving some hints against the equivalence of these two
concepts.

Furthermore, having ideally property P can be much weaker than having prop-
erty P in V : e.g. the consistency of an ideally I1 cardinal follows from the consis-
tency of a Woodin cardinal [33]. Nonetheless, upper bounds on the consistency of
generic large cardinals similar to those for classical large cardinals can be proven (see
[25, 39]), e.g. the inconsistency of a set-generic Reinhardt cardinal. Since from a sta-
tionary tower of height a Woodin cardinal we can obtain a class-generic Reinhardt
cardinal, it is clear that the strength of a generic large cardinal very much depends
on the nature of the forcing allowed to obtained it. In fact, the strength of a generic

4We remark that the present definition of γ-tall for an embedding does not coincide with the
classical notion of γ-tall for cardinals, which is witnessed (in the present terms) by a γ-tall and κ-
closed embedding with critical point κ. We believe that the present definition is more convenient to
our purposes since it avoids overlapping of concepts and simplifies the corresponding combinatorial
version for C-systems of filters.

5More precisely, we can assume that P is a first-order property in the class parameter j.
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5.2 Generic large cardinals

large cardinal hypothesis depends on the interaction of three parameters, as outlined
in [16]: the size of the critical point, the closure properties of the embedding, and
the nature of the forcing used to define it. We shall not expand on the impact of the
nature of forcing, while we shall spend some time on the size of the critical point.
In this setting, the trivial observation that P (κ)⇒ ideally P (κ)⇒ generically P (κ)
is not really satisfying, since we are interested in the consistence of small cardinals
κ having ideally (or generically) property P . However, it is sometimes possible to
collapse a large cardinal in order to obtain a small generic large cardinal. Examples
of positive results on this side can be found in [9, 10, 17, 28, 35], we present and
generalize some of them in Section 5.2.2.

Notice that having ideally property P is inherently a statement on the structure
of the relevant C-system of filters S in question. In Section 5.2.3 we provide a
characterization of these properties as combinatorial statements on S.

Since having a generic large cardinal property is possibly weaker than having the
same property in V , two large cardinal properties which are inequivalent for classical
large cardinals may turn out to be equivalent for their generic counterparts. In
Section 5.2.4 we show some examples of embeddings separating different generic large
cardinal properties. These examples are an application of the techniques introduced
throughout all this section.

5.2.1 Deriving large cardinal properties from generic systems of
filters

All over this section G is V -generic for some forcing B and j : V → M ⊆ V [G] is a
generic elementary embedding definable in V [G] with some large cardinal property
P and critical point κ. We aim to approximate j via a suitable C-system of V -
ultrafilters S in V [G] (with C ∈ V ) closely enough so as to preserve the large cardinal
property in question.

Proposition 5.2.3. Let j be γ-tall, C ∈ V be a directed set of domains with λ ⊆
⋃
C,

S be the C-system of ultrafilters of length λ ≥ j(κ) derived from j. Then jS is γ-tall.

Proof. By Proposition 5.1.36, crit(k) > j(κ) hence jS(κ) = k(jS(κ)) = j(κ) > γ.

Proposition 5.2.4. Let j be γ-strong and λ be such that either λ > γ or λ = j(µ) =
γ for some µ. Let C ∈ V be a directed set of domains with λ ⊆

⋃
C, and S be the

C-system of ultrafilters derived from j. Then jS is γ-strong; i.e. V
Ult(V,S)
γ = V

V [S]
γ =

V
V [G]
γ .

Proof. By Proposition 5.1.36 we have that crit(k) > γ. Thus

V Ult(V,S)
γ = k(V Ult(V,S)

γ ) = VM
γ = V V [G]

γ .

Furthermore, since V
Ult(V,S)
γ ⊆ V V [S]

γ ⊆ V V [G]
γ they must all be equal6.

While tallness and strongness are easily handled, in order to ensure preservation
of closure we need some additional technical effort.

6Once again V [S] is the minimal transitive model N of ZFC such that V, {S} ⊆ N ⊆ V [G].
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5 Systems of filters and generic large cardinals

Definition 5.2.5. A boolean algebra B is <λ-presaturated is for any γ < λ and
family A = 〈Aα : α < γ〉 of maximal antichains of size λ, there are densely many
p ∈ B+ such that

∀α < γ |{a ∈ Aγ : a ∧ p > 0}| < λ.

Proposition 5.2.6. Let λ be a regular cardinal. A boolean algebra B is <λ-presat-
urated if and only if it preserves the regularity of λ.

Lemma 5.2.7. Let S be a C-system of ultrafilters in V [G] and N = Ult(V,S) be
such that:

• V [G] is a <λ+-cc forcing extension for some λ regular in V [G];

• V V [G]
λ = V N

λ and C has length at least λ;

• N is closed for <λ-sequences in V .

Then N is closed for <λ-sequences in V [G].

Proof. Let ṡ be the name for a sequence of length γ < λ of elements of N . Since λ
is regular in V [G], the forcing C which defines V [G] is <λ-presaturated. Moreover,
C is <λ+-cc hence for any α < γ there are at most λ-many possibilities for ṡ(α).
Therefore we can apply presaturation and find a condition p ∈ G such that

p 
 ṡ =
{
〈〈α, [uαβ ]Ṡ〉, q

α
β 〉 : α < γ, β < µ

}
,

for some µ < λ.
Let 〈xα : α < λ〉 be a (partial) enumeration of C ∩ Vλ. Define t : γ × µ → V

so that t(α, β) = 〈uαβ , ran{xα}, ran{xβ}〉 is a sequence in V . Since N is closed for

sequences in V , the sequence represented by t is in N ; i.e.

X =
{
〈[uαβ ]S , 〈{xα} , {xβ}〉〉 : α < γ, β < δ

}
∈ N.

Moreover, Y ∈ V [G] where Y =
{
〈{xα} , {xβ}〉 : qαβ ∈ G

}
. Since Y ∈ V V [G]

λ = V N
λ ,

inside N we can define valG(ṡ) =
{
〈α, [uαβ ]S〉 ∈ N : ∃y ∈ Y 〈uαβ , y〉 ∈ X

}
.

Theorem 5.2.8. Let j be <λ-closed with λ regular cardinal, V [G] be a <λ+-cc
forcing extension. Let C ∈ V be a <λ-directed set of domains in V , let S be the
C-system of filters derived from j. Then jS is <λ-closed.

Proof. Let uα : Oaα → V for α < γ be a sequence of length γ < λ in V of elements
of Ult(V,S). Since C is <λ-directed, there is a b ⊇

⋃
{aα : α < γ} ∈ C such that

|b| ≥ γ. Let 〈xα : α < γ〉 be a (partial) enumeration of b. Define

v : Ob → V

f 7→ {uα(f) : xα ∈ dom(f)}

so that by fineness and normality [v]S = {[uα]S : α < γ}. Thus Ult(V,S) is closed
under <λ-sequences in V and is λ-strong by Proposition 5.2.4. We can apply Lemma
5.2.7 to obtain that jS is <λ-closed.
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5.2 Generic large cardinals

Note that since in the hypothesis of the previous theorem j is <λ-closed, it is
always possible to derive a system of filters with a <λ-directed set of domains. In
particular, it is possible to derive towers of length λ and λ-extenders of any length.
Thus the only significant limitation is the hypothesis that V [G] is <λ+-cc where λ is
the amount of closure required for M . However, this hypothesis is satisfied in most
classical examples of generic elementary embeddings with high degrees of closure,
as e.g. the full stationary tower of length a Woodin cardinal.

It is also possible to ensure the same closure properties with non-directed system
of filters, as e.g. extenders. This can be done by means of Theorem 5.1.40 and the
following remarks.

5.2.2 Consistency of small generic large cardinals

In this section we shall prove that in most cases the assertion that a small cardinal
(e.g. ω1) has generically or ideally property P consistently follows from the existence
of any such cardinal (Corollary 5.2.13). Similar results were proved independently
in [28, 35] and echoed by [9]; we generalize them to C-system of filters, obtaining a
simpler proof.

In the following we shall need to lift embeddings and systems of filters in forcing
extensions. We refer to [13, Chp. 9] for a complete treatment of the topic. Recall
that if j : V → M is an elementary embedding and B ∈ V is a boolean algebra,
j is also an elementary embedding of the boolean valued model V B into M j(B).
Furthermore, j can be lifted to the generic extensions V [G] and M [H] where G is
V -generic for B and H is j(B)-generic for M whenever j[G] ⊆ H.

For sake of simplicity, we shall focus on the boolean valued models approach
and avoid explicit use of generic filters. This will be convenient to handle several
different forcing notions at the same time. All the proofs will then be carried out in
V using names and explicitly mentioning in which boolean valued model V B every
sentence is to be interpreted. We recall the following definition of two-step iteration.

Definition (2.3.1). Let B be a complete boolean algebra, and Ċ be a B-name for
a complete boolean algebra. We denote by B ∗ Ċ the boolean algebra defined in V
whose elements are the equivalence classes of B-names for elements of Ċ (i.e. ȧ ∈ V B

such that
r
ȧ ∈ Ċ

z

B
= 1) modulo the equivalence relation ȧ ≈ ḃ ⇔

r
ȧ = ḃ

z

B
= 1.

We refer to [44, 45] for further details on two-step iterations and iterated forcing.

Definition 5.2.9. Let S be a C-system of filters, C be a cBa. Then SC =
{
FCa : a ∈ C

}
where FCa =

{
A ⊆ (Oa)

V C
: ∃B ∈ F̌a A ⊇ B

}
.

We remark that the following theorem is built on the previous results by Kakuda
and Magidor [28, 35] for single ideals and by Claverie [9] for ideal extenders.

Theorem 5.2.10. Let j : V → M ⊆ V B be elementary with critical point κ, and
C ∈ V be a <κ-cc cBa. Then B ∗ j(C) factors into C, and the embedding j lifts to
jC : V C →M j(C).
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5 Systems of filters and generic large cardinals

V M V B

V C M j(C) V B∗j(C)

j

jC

⊆ ⊆⊆ ⊆

⊆

Furthermore, if B = S = 〈Fa : a ∈ C〉 is a 〈κ, λ〉-system of filters and j = jḞ(S),

then C ∗ SC is isomorphic to S ∗ j(C) and jC is the embedding induced by SC.

V M V S

V C M j(C) V S∗j(C) V C∗S
C

jḞ(S)

jḞ(SC)

⊆ ⊆
=

⊆ ⊆

⊆

Proof. For the first part, consider the embedding:

i1 : C −→ B ∗ j(C)
p 7−→ j(p)

By elementarity of j, i1 must preserve ≤, ⊥. Given any maximal antichain A, C is
<κ-cc hence j[A] = j(A) which is maximal again by elementarity of j. Then i1 is a
complete embedding hence B ∗ j(C) is a forcing extension of C. Thus we can lift j
to a generic elementary embedding jC.

For the second part, consider the embedding:

i2 : C ∗ SC −→ S ∗ j(C)

Ȧ ⊆ Oa 7−→
r

[ida]Ḟ(S) ∈ j(Ȧ)
z

S∗j(C)

This map is well-defined since the set of Ȧ ∈ C ∗ SC such that Ȧ ⊆ Oa for some
fixed a ∈ C is dense in C ∗ SC. Suppose now that Ȧ ≤C∗SC Ḃ with Ḃ ⊆ Ob, b ∈ C,
c = a ∪ b. Then,

1 
C
(
π−1
c [Ȧ] \ π−1

c [Ḃ]
)
∈ ICc ⇒

1 
C ∃C ∈ Ic
(
π−1
c [Ȧ] \ π−1

c [Ḃ]
)
⊆ C

and we can find a maximal antichain A ⊆ C such that p 
C
(
π−1
c [Ȧ] \ π−1

c [Ḃ]
)
⊆ Čp

for every p ∈ A and corresponding Cp ∈ Ic ⇒ 1 
C [idc]Ḟ(S) /∈ j(Cp). Thus by
elementarity of j, for all p ∈ A we have that

j(p) 
j(C)

(
π−1
c [j(Ȧ)] \ π−1

c [j(Ḃ)]
)
⊆ j(Čp) 63 [idc]Ḟ(S)

and since j[A] is maximal in j(C),

1 
j(C) [ida∪b]Ḟ(S) /∈
(
π−1
c [j(Ȧ)] \ π−1

c [j(Ḃ)]
)
⇒

1 
j(C) [idb]Ḟ(S) ∈ j(Ḃ) ∨ [ida]Ḟ(S) /∈ j(Ȧ) ⇒

i2(Ḃ) ∨ ¬i2(Ȧ) = 1⇒ i2(Ȧ) ≤ i2(Ḃ)
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5.2 Generic large cardinals

Thus i2 preserves ≤. Preservation of ⊥ is easily verified by a similar argument,
replacing everywhere Ȧ \ Ḃ with Ȧ ∩ Ḃ.

We still need to prove that i2 has a dense image. Fix [up]Ḟ(S) ∈ S ∗ j(C), so that

up : A→ C, A ∈ I+
a , a ∈ C. Let Ḃ =

{
x ∈ Ǎ : ǔp(x) ∈ ĠC

}
be in V C. Then,

i2(Ḃ) =
r

[ida]Ḟ(S) ∈ j(Ǎ) ∧ j(ǔp)([ida]Ḟ(S)) ∈ j(ĠC)
z

S∗j(C)

=
r
Ǎ ∈ Ḟ(S) ∧ [ǔp]Ḟ(S) ∈ Ġj(C)

z

S∗j(C)
= [up]Ḟ(S)

hence V S∗j(C) = V C∗S
C

is the forcing extension of V C by SC.
Finally, we prove that jC is the generic ultrapower embedding derived from

SC. We can directly verify that SC satisfies filter property, fineness and compat-
ibility. This is sufficient to define an ultrapower N = Ult(V C, Ḟ(SC)) and prove
 Loś Theorem for it. The elements of N are represented by C-names for functions
v̇ : OV

C
a → V C. Since FCa concentrates on OVa for all a ∈ C, we can assume that

v̇ : Ǒa → V C. Furthermore, we can replace v̇ by a function u : Oa → V C in V
mapping f ∈ Oa to a name for v̇(f̌). These functions can then represent both all
elements of N and all elements of M j(C). Furthermore, N and M j(C) must give
the same interpretation to them. In fact, given un : Oa → V C for n = 1, 2 and
Ȧ ∈

(
ICa
)+

:

Ȧ 
C∗SC [u1]Ḟ(SC) = [u2]Ḟ(SC) ⇐⇒

1 
C
{
f ∈ Ȧ : u1(f) 6= u2(f)

}
∈ ICa ⇐⇒

∃B ∈ Ia 1 
C ∀f ∈ Ȧ \ B̌ v̇1(f) = v̇2(f) ⇐⇒
∃B ∈ Fa 1 
C ∀f ∈ Ȧ ∩ B̌ v̇1(f) = v̇2(f) ⇐⇒
∃B ∈ Fa ∀f ∈ B 1 
C f ∈ Ȧ→ u1(f) = u2(f) ⇐⇒{
f ∈ Oa : 1 
C f ∈ Ȧ→ u1(f) = u2(f)

}
∈ Fa ⇐⇒

1 
S∗j(C) [ida]Ḟ(S) ∈ j(Ȧ)→ [u1]Ḟ(S) = [u2]Ḟ(S) ⇐⇒

i2(Ȧ) =
r

[ida]Ḟ(S) ∈ j(Ȧ)
z

S∗j(C)

S∗j(C) [u1]Ḟ(S) = [u2]Ḟ(S)

and the above reasoning works also replacing = with ∈. The second passage uses
essentially that C is <κ-cc and S is a 〈κ, λ〉-system of filters. In fact, in this setting
given Ȧ ∈ ICa there are less than κ possibilities for a B ∈ Ia, p 
 B̌ ⊇ (Ȧ∩Ǒa), hence
we can find a single such B by <κ-completeness of Ia (see Proposition 5.1.12).

Corollary 5.2.11. Let S be a 〈κ, λ〉-system of filters, C be a <κ-cc cBa. Then SC
is a C-system of filters.

Proof. Since SC is the CS-system of filters in V derived from jC
Ḟ(S), it is a C-system

of filters by Propositions 5.1.34 and 5.1.24.

Proposition 5.2.12. Let j : V → M ⊆ V B be elementary with critical point κ,
γ < κ be a cardinal, and jC : V C →M j(C) be obtained from j and C = Coll(γ,<κ).
Suppose that j(κ) is regular in V B.
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5 Systems of filters and generic large cardinals

If j is <δ-closed with δ ≥ j(κ), then jC is <δ-closed. If j is δ-strong with
δ ≥ j(κ), then jC is δ-strong.

Proof. Since j(κ) is regular in V B, Coll(γ,<j(κ)) is <j(κ)-cc in V B. Moreover,
the order on the Lévy collapse is absolute between transitive models thus j(C) =
Coll(γ,<j(κ))M is a suborder of Coll(γ,<j(κ)). Hence j(C) is also <j(κ)-cc in V B.

First, suppose that j is <δ-closed and let σ be a j(C)-name for a sequence of
ordinals of size µ < δ. Since σ(i) for i < µ is decided by an antichain of size less
than j(κ), the whole σ is coded by a subset of M of size less than δ + j(κ) = δ.
Thus σ ∈M hence is evaluation is in M j(C).

Suppose now that j is δ-strong and let σ be a j(C)-name for a subset of µ < δ.
Then σ is coded by a subset of M of size less than δ + j(κ) = δ as before, hence σ
is in M and its evaluation in M j(C).

Corollary 5.2.13. Let P be a property among (n)-huge, almost (n)-huge (for n >
0), α-superstrong (for α > κ), (n)-superstrong (for n > 1).

If κ is generically (resp. ideally) P , then it is so after Coll(γ,<κ) for any γ < κ.
Thus the existence of a generically (resp. ideally) P cardinal is equiconsistent with
ω1 being such a cardinal.

Note that the previous corollary applies only to generically and ideally P : the
existence of a large cardinal with property P in V is usually stronger than ω1 being
generically P . Due to the fact that a generically superstrong cardinal does not guar-
antee that j(κ) is regular in V B, the previous result does not apply to superstrong
cardinals. We recall that the case of a strong cardinal was already treated in [9,
Corollary 4.14], which showed the following.

Theorem 5.2.14. The existence of a strong cardinal is equiconsistent with ω1 being
ideally strong.

As in Proposition 5.2.12, it is possible to prove that forcing with Coll(γ,<κ)
with κ a strong cardinal preserves the ideally strongness of κ. However, starting
with an ideally strong cardinal would not suffice in this case. In order to get a jC

with strength γ we need an embedding j : V → M ⊆ V B with enough strength so
as to contain in M a name for V Bγ . Although, since the complexity of such a name
depends on B, and B depends on the amount of strength that we wish to achieve,
there is no hope to sort out this circular reference. On the other hand, a generically
strong cardinal is preserved under Cohen forcing under some assumptions [10].

Notice that the previous corollary does not apply also to generically supercom-
pact cardinals. However, this is not surprising since κ = γ+ being generically super-
compact is equivalent to being generically almost huge: in fact, if j : V →M ⊆ V [G]
is a γ-closed embedding obtained by γ-supercompactness, it is also almost huge since
j(κ) = (γ+)V [G]. Thus such a preservation theorem for supercompactness would in
turn imply the equiconsistency of generically supercompactness and generically al-
most hugeness, which is not expected to hold. However, if we restrict the class of
forcing to proper forcings, is possible to obtain a similar preservation theorem [17].
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5.2.3 Combinatorial equivalents of ideally large cardinal properties

The ideal properties of cardinals given in Definition 5.2.2 are inherently properties
of a C-system of filters, it is therefore interesting to reformulate them in purely
combinatorial terms. In this section we review the main results on this topic present
in literature, adapted to the paradigm introduced in Section 5.1; and we integrate
them with a characterization of strongness that, to our knowledge, is not yet present
in literature.

Critical point and tallness

In order to express any large cardinal property, we need to be able to identify the
critical point of an embedding jḞ(S) derived from some C-system of filters S.

Definition 5.2.15. Let S be a C-system of filters in V . The completeness of S is
the minimum of the completeness of Fa for a ∈ C, i.e. the unique cardinal κ such
that every Fa is <κ-complete and there is an Fa that is not <κ+-complete.

We say that S has densely completeness κ iff it has completeness κ and there
are densely many B ∈ S+ disproving <κ+-completeness (i.e. that are the union of
κ sets in the relevant ideal).

Proposition 5.2.16. Let S be a C-system of filters in V . Then the following are
equivalent:

1. the ultrapower map k̇ = jḞ(S) has critical point κ with boolean value 1;

2. S is a 〈κ, λ〉-system of filters;

3. S has densely completeness κ;

Moreover, if κ ∈ C then the statements above are also equivalent to

4. {id �α : α < κ} ∈ Fκ.

Proof. (1)⇔ (2): has already been proved in Proposition 5.1.30.

(2)⇒ (3): By Proposition 5.1.12, we know that Fa is <κ-complete for all a ∈ C.
Let u̇ be a name for a function representing κ in Ult(V, Ḟ(S)). Then there are densely
many B ∈ I+

b deciding that u̇ = v̌, for some v : B → κ. Since

r
[v]Ḟ(S) 6= α = [domα]Ḟ(S)

z

S
≥ B

for all α < κ, Bα = B ∧ v−1[{α}] ∈ Ib for any such B hence B =
⋃
α<κBα disproves

<κ+-completeness.

(3)⇒ (1): We prove by induction on α < κ that 1 
S j(α̌) = α̌. Let u : A→ α
with A ∈ I+

a be representing an ordinal smaller than j(α) in the ultrapower, and let
Aβ = u−1 [{β}] for β < α. Since A =

⋃
β<αAβ and S is <κ-complete, the conditions

Aβ form a maximal antichain below A hence [u]Ḟ(S) is forced to represent some

β < α. Furthermore, there are densely many B ∈ I+
b that are a union of κ-many

sets Bα ∈ Ib. From any one of them we can build a function u : B → κ, u(f) = αf

97
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where f ∈ Bαf , so that B forces that [u]Ḟ(S) < j(κ) and [u]Ḟ(S) > α for all α < κ.

Thus B 
S j(κ) > κ for densely many B.
Assume now that κ ∈ C. Then (1) ⇔ (4) follows from Proposition 5.1.27 and

 Loś theorem, since {id �α : α < κ} is equal to∧
α<κ

r
[ranα]Ḟ(S) = j(α)

z

S
∧

r
[ranκ]Ḟ(S) < j(κ)

z

S
= Jj[κ] = κ ∧ j(κ) > κKS .

A similar approach can apply also to tallness-related properties.

Proposition 5.2.17. Let S be a 〈κ, λ〉-system of filters in V . The ultrapower map
j = jḞ(S) is γ-tall for γ < λ iff

{
f ∈ O{x} : rank(f(x)) ≤ κ

}
∈ F{x} for some x ∈

⋃
C

with rank(x) = γ.

Proof. By Proposition 5.1.27 and  Loś theorem the above set is equal to

r
γ = rank(x) = rank([projx]Ḟ(S)) ≤ j(κ)

z

S
.

Measurability

We say that a cardinal is measurable iff there is an elementary embedding j : V →M
with critical point κ such that the image is well-founded. Its generic counterpart
can be characterized for C-systems of filters by means of the following definition.

Definition 5.2.18. Let S be a C-system of filters in V . We say that S is precipitous
iff for every B ∈ S+ and sequence 〈Aα : α < ω〉 ∈ V of maximal antichains in <S
below B, there are Āα ∈ Aα, Āα ∈ I+

āα and h :
⋃
α āα → V such that πāα(h) ∈ Āα

for all α < ω.

This definition is equivalent to [9, Def. 4.4.ii ] for ideal extenders, and to <ω-
closure for extenders in V (see [31]), while being applicable also to other systems of
filters. The results relating these definitions with well-foundedness are subsumed in
the following.

Theorem 5.2.19. Let S be a C-system of filters in V . The ultrapower map j = jḞ(S)
is well-founded iff S is precipitous.

Proof. First, suppose that S is precipitous and assume by contradiction that B
forces the ultrapower to be ill-founded. Let 〈u̇n : n < ω〉 be S-names for func-

tions u̇n : Oȧn → V in US such that
r

[u̇n+1]Ḟ(S) ∈ [u̇n]Ḟ(S)

z

S
≥ B. Define ḃn =⋃

{ȧm : m ≤ n}, Ḃ0 = Oḃ0 , and

Ḃn+1 =
{
x ∈ Oḃn+1

: u̇n+1(πȧn+1(x)) ∈ u̇n(πȧn(x))
}

so that
r
Ḃn ∈ Ḟ(S)

z

S
≥ B. Fix n < ω. By the forcing theorem there is a dense

set of A in S below B deciding the values of u̇n, Ḃn; and every such A 
 Ḃn = B̌n
must force that B̌n ∈ Ḟ(S) hence satisfy A <S Bn. It follows that the set of A ∈ I+

a

deciding u̇n, Ḃn and with the additional property that every such A satisfy a ⊇ bn,
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A ⊆ π−1
a [Bn], is also dense below B. Let An be a maximal antichain below B in

this set.
Let Ān, ān, h : ā = ∪nān be obtained from 〈An : n < ω〉 by precipitousness of

S. Let also un, Bn be such that Ān 
 u̇n = ǔn ∧ Ḃn = B̌n. Then πāān(h) ∈ Ān ⊆
π−1
ān [Bn] and πābn(h) ∈ Bn for all n < ω. Thus, un+1(πan+1(h)) ∈ un(πan(h)) is an

infinite descending chain in V , a contradiction.
Suppose now that S is not precipitous, and fix B, 〈An : n < ω〉 witnessing

it. Define a tree T of height ω consisting of couples of sequences 〈B, f〉 such that
Bn ∈ An for all n < |B| < ω and f ∈

∧
B, ordered by member-wise inclusion.

Since 〈An : n < ω〉 contradicts precipitousness, the tree T has no infinite chain and
we can define a rank-like function r : T → ON by well-founded recursion on T as
r(x) =

⋃
{r(y) + 1 : y <T x}. Notice that y <T x implies r(y) < r(x).

Let B be as above, and define uB :
∧
B → V by uB(f) = r(〈B, f〉). Let u̇n be the

S-name defined by u̇n = {〈ǔB,
∧
B〉 : B ∈ Πm≤nAm}. Then any B ∈ Πm≤n+1Am

forces u̇n+1 to be uB, u̇n to be uB�n, and u̇n+1 ∈ u̇n since for all f ∈
∧
B,

uB(f) = r(〈B, f〉) < r(〈B�n, f ′〉) = uB�n(f ′)

where f ′ = f�dom(
∧

(B�n)). Since {
∧
B : B ∈ Πm≤n+1Am} forms a maximal an-

tichain below B for every i, B forces that 〈u̇n : n < ω〉 is a name for an ill-founded
chain.

Strongness

In this section we cover large cardinal properties defined in terms of the existence
of elementary embeddings j : V →M ⊆ V [G] with certain degree of strongness (i.e.

such that V
V [G]
γ ⊆ M for some appropriate γ). Main examples of such properties

are strongness, superstrongness and variants of them. We now present a criterion to
characterize γ-strongness for an elementary embedding jḞ(S), which can in turn be
applied in order to characterize all of the aforementioned large cardinal properties.
To our knowledge, there is no equivalent version of the content of this section in the
classical tower or extender setting.

Definition 5.2.20. Let S be a C-system of filters, A0 ∪ A1 be an antichain in S+.
We say that 〈A0,A1〉 is split by S iff there exist a b ∈ C and B0, B1 disjoint in P(Ob)
such that A ≤S Bn for all A ∈ An, n < 2.

We say that a family of antichains 〈Aα0 ∪ Aα1 : α < µ〉 is simultaneously split
by S iff there is a single b ∈ C witnessing splitting for all of them.

Definition 5.2.21. Let S be a C-system of filters. We say that S is <γ-splitting
iff for all sequences 〈Aα0 ∪ Aα1 : α < µ〉 of maximal antichains with µ < γ, there
are densely many B ∈ S+ such that the antichains 〈Aα0�B,Aα1�B〉 for α < µ are
simultaneously split by S.

Theorem 5.2.22 (A., Viale). Let S be a <γ-directed C-system of filters. Then the

ultrapower Ult(V, Ḟ(S)) contains PV S
(µ) for all µ < γ iff S is <γ-splitting.

Proof. Let a ∈ C, uα : Oa → ON be such that
r

[ǔα]Ḟ(S) = α̌
z

S
= 1 for all α < γ.

First, suppose that S is <γ-splitting and let Ẋ be a name for a subset of µ < γ.
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5 Systems of filters and generic large cardinals

Let Aα0 ∪ Aα1 for α < µ be a maximal antichain deciding whether α̌ ∈ Ẋ and S
be generic for S. By <γ-splitting let B ∈ S be such that a ⊆ b ∈ C, B ⊆ Ob and
〈Aα0�B,Aα1�B〉 is split by S in Bα0, Bα1 partitioning B for all α < µ. Then we can
define

v : B −→ P(ON)
f 7−→ {uα(πba(f)) : f ∈ Bα1, α ∈ µ}

Then B forces that [v]Ḟ(S) = Ẋ, and B ∈ S so val(Ẋ,S) = [v]S is in Ult(V,S).

Suppose now that Ult(V, Ḟ(S)) contains PV [Ḟ(S)](µ) for all µ < γ, and let 〈Aα0∪
Aα1 : α < µ〉 be maximal antichains with µ < γ. Let Ẋ = {〈α̌, A〉 : A ∈ Aα1} be
the corresponding name for a subset of µ, and let B, v : B → P(ON) be such that
B 
 [v]Ḟ(S) = Ẋ. Let Bα0 = {f ∈ B : uα(πba(f)) ∈ v(f)}, Bα1 = B \ Bα0. Then

〈Aα0�B,Aα1�B〉 is split by Bα0, Bα1 partitioning B for all α < µ.

Corollary 5.2.23. Let γ be a limit ordinal, S be a <iγ-directed C-system of filters.
Then the ultrapower Ult(V, Ḟ(S)) is γ-strong iff S is <iγ-splitting.

Proof. If follows by Theorem 5.2.22, together with the observation that in every
ZFC model there is a bijection between elements of Vγ and subsets of iα for α < γ.
Such bijection codes x ∈ Vγ as the transitive collapse of a relation on |trcl(x)| ≤ iα
for some α < γ, which in turn is coded by a subset of iα.

Closure

In this section we cover large cardinal properties defined in terms of the existence
of elementary embeddings j : V → M ⊆ V [G] with certain degree of closure (i.e.
such that <γM ⊆ M for some appropriate γ). Main examples of such properties
are supercompactness, hugeness and variants of them. We now present a criterion
to characterize <γ-closure for an elementary embedding jḞ(S), which can in turn be
applied in order to characterize all of the aforementioned large cardinal properties.

Definition 5.2.24. Let S be a C-system of filters, A = {Aα : α < δ} be an antichain
in S+. We say that A is guessed by S iff there exist a b ∈ C and B = {Bα : α < δ}
antichain in P(Ob) such that Aα =S Bα for all α < δ.

We say that a family of antichains 〈Aα : α < µ〉 is simultaneously guessed by S
iff there is a single b ∈ C witnessing guessing for all of them.

Definition 5.2.25. Let S be a C-system of filters. We say that S is <γ-guessing iff
for all sequences 〈Aα : α < µ〉 of maximal antichains with µ < γ, there are densely
many B ∈ S+ such that the antichains Aα�B for α < µ are simultaneously guessed
by S .

Notice that if an antichain is guessed by S, every partition of it is split by
S. It follows that <γ-guessing implies <γ-splitting. Furthermore, if T is a tower of
inaccessible length λ, <λ-guessing as defined above is equivalent to <λ-presaturation
for the boolean algebra 〈T+,≤T〉.

Theorem 5.2.26. Let λ be an inaccessible cardinal, S be a <λ-directed C-system
of filters of length λ, γ < λ be a cardinal. Then the ultrapower Ult(V, Ḟ(S)) is
<γ-closed iff S is <γ-guessing.
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Proof. Let a ∈ C, uα : Oa → ON be such that
r

[ǔα]Ḟ(S) = α̌
z

S
= 1 for all α < γ.

First, suppose that S is <γ-guessing and let ṡ be a name for a sequence ṡ : µ →
Ult(V, Ḟ(S)) for some µ < γ. Let Aα for α < µ be a maximal antichain deciding the
value of ṡ(α̌), so that given any A ∈ Aα, A 
 ṡ(α̌) = [v̌A]Ḟ(S) for some vA : OaA → V .
Let S be generic for S. Then by <γ-guessing there is a B ∈ S such that Aα�B is
guessed by S in Bα ⊆ P(Ob) for all α < µ. Furthermore, there can be only |b| < λ
elements A ∈ Aα such that the corresponding A′ ∈ Bα is not empty. Since S is
<λ-directed, there is a single c ∈ C, c ⊇ a, b, such that aA ⊆ c for any A ∈ Aα that
is guessed in an A′ 6= ∅.

Let Bf
α denote the unique element of Bα such that πb(f) ∈ Bf

α, and vfα : Oaxα → V

be such that Bf
α 
 ṡ(α̌) = [v̌fα]Ḟ(S). Then for any α < µ we can define

v′α : Oc −→ V

f 7−→ vfα(π
afα

(f))

so that B 
 [š]Ḟ(S)(α̌) = [v̌′α]Ḟ(S). Since all the v′α have the same domain Oc, we can
glue them together forming a single function

v′ : Oc −→ V
f 7−→ {〈ui(πa(f)), v′α(f)〉 : α < uµ(πa(f))}

Then B forces that [v′]Ḟ(S) = ṡ, and B ∈ S so val(ṡ,S) = [v′]S is in Ult(V,S).

Suppose now that S is <γ-closed and let 〈Aα : α < µ〉, Aα = 〈Aαβ : β < ξα〉 be
as in the definition of <γ-guessing. Let ḟ be a name for a sequence ṡ : jḞ(S)[µ]→ ON

such that
r
ṡ(jḞ(S)(α̌)) = jḞ(S)(β̌)

z

S
= [Aαβ]S. Since jḞ(S) is <γ-closed, we can find

densely many B ⊆ Ob for b ∈ C, v : B → ONµ such that B 
 ṡ = [v̌]Ḟ(S). Then

given any α < µ, β < ξi we can define Bαβ = {f ∈ B : v(f)(α) = β} witnessing
guessing for 〈Aα�B : α < µ〉.

The above result gives a good characterization of <γ-closure for ideal towers,
since ideal towers T of inaccessible height λ are always <λ-directed. On the other
hand, this result does not apply to ideal extenders since their associated system
of domains is never <ω1-directed. Since it is not known whether there is such a
characterization of <γ-closure for extenders in V , we cannot expect to have one in
the more general case of ideal extenders.

We can also determine an upper bound to the amount of closure that a system
of filters might possibly have.

Definition 5.2.27. Let S be a C-system of filters of length λ, α < λ be an ordinal.
We say that S�α does not express S iff 1 
S M ) Mα where M = Ult(V, Ḟ(S)),
Mα = Ult(V, Ḟ(S�α)).

Notice that 1 
S M )Mα is equivalent to 1 
S M ) kα[Mα]. In fact, M = Mα

implies that kα = id �M by Kunen’s inconsistency, and M = kα[Mα] implies that
kα has no critical point thus is the identity.

Theorem 5.2.28. Let S be a C-system of filters of length λ such that S�α does
not express S for any α < λ. Then M = Ult(V, Ḟ(S)) is not closed under cof(λ)-
sequences.
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Proof. Let 〈ξα : α < γ = cof(λ)〉 be a cofinal sequence in λ. For all α < γ, let u̇α
be a name for an element of M \ kξα [Mξα ], Mξα = Ult(V, Ḟ(S�ξα)). Let ṡ be a name
such that r

ṡ(jḞ(S)(α)) = [u̇α]Ḟ(S)

z

S
= 1

for all α < γ, i.e. ṡ is a name for a γ-sequence of elements of M indexed by jḞ(S)[γ].
Suppose by contradiction that M is closed under γ-sequences, so that 1 
S ṡ ∈

Ṁ , then there is an A ∈ S+, v : A → V such that A 
S ṡ = [v̌]Ḟ(S). Let ᾱ < γ be

such that A ∈ (S�ξᾱ)+. Let v′ : A→ V be such that v′(f) = v(f)(ᾱ) if ᾱ ∈ dom(f).
By fineness A 
S [v′]Ḟ(S) = [u̇ᾱ]Ḟ(S) for all α < γ. Thus A 
S [u̇ᾱ]Ḟ(S) ∈ kξᾱ [Mξᾱ ], a
contradiction.

The situation described in the previous theorem occurs in several cases, as shown
by the following proposition.

Proposition 5.2.29. Let T be an ideal tower of height λ limit ordinal, α < λ be an
ordinal. Then T�α does not express T.

Proof. Suppose by contradiction that there is an A ∈ T+ such that A 
T M ⊇
kα[Mα]. Then in particular A 
T [idVα+1 ]Ḟ(T) ∈ kα[Mα] hence let A′ ∈ T+, A′ ≤ A

be such that A′ 
T [idVα+1 ]Ḟ(T) = [u]Ḟ(T) for some u : Oa → V , a ∈ C�α. Thus by
 Loś Theorem,

B =
{
f ∈ OVα+1 : f = u(πa(f))

}
∈ T+

Since |B| ≤ |ran(u)| ≤ |Oa| ≤ |iα| < |Vα+1|, dom[B] is a non-stationary subset of
Vα+1 by Lemma 1.2.13 contradicting Proposition 5.1.10.

Lemma 5.2.30. Let S be a C-system of filters of length λ, γ be a cardinal such that
|a| ≤ γ for all a ∈ C. Then jḞ(S)(γ) < ((iλ · 2γ)+)

V
.

Proof. Consider the set U of functions u : a→ γ for some a ∈ C. The total number
of such functions is bounded by

|C| · γsupa∈C |a| ≤ iλ · γγ = iλ · 2γ = δ

Let U = 〈uα : α < δ〉, Aα be the maximal antichain in S+ deciding the value

of [uα]Ḟ(S), and let Xα =
{
ξ : ∃A ∈ Aα A 
 [ǔα]Ḟ(S) = ξ̌

}
, X =

⋃
α<δXα. Since

|Xα| ≤ |Aα| ≤ iλ, we have that |X| ≤ δ · iλ = δ. Let now v̇ be such that
[v̇]Ḟ(S) < jḞ(S)(γ). Then there is a dense set of A ∈ S+ such that A 
 [v̇]Ḟ(S) =

[ǔα]Ḟ(S) ⇒ A 
 [v̇]Ḟ(S) ∈ X̌. Thus jḞ(S)(γ) ⊆ X (actually, jḞ(S)(γ) = X) and

|X| ≤ δ, hence jḞ(S)(γ) < (δ+)V .

Proposition 5.2.31. Let E be a 〈κ, λ〉-ideal extender such that λ = iλ. Suppose
that 1 
 jḞ(E)(γ) ≥ λ for some γ < λ. Then E�α does not express E for any α < λ.

Proof. Since jḞ(E)(γ) ≥ λ, κ{α} ≤ γ for any α < λ hence we can apply Lemma

5.2.30 to obtain jḞ(E�α)(γ) < ((iα · 2γ)+)
V

which is smaller than λ since α, γ < λ
and λ is a i-fixed point. It follows that the critical point of kα : Mα → M is at
most jḞ(E�α)(γ) and in particular kα[Mα] 6= M .
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We remark that the conditions of the previous proposition are often fulfilled.
In particular they hold whenever E is the 〈κ, λ〉-ideal extender derived from an
embedding j and the length λ is a i-fixed point but not a j-fixed point.

5.2.4 Distinction between generic large cardinal properties

Let j : V → M ⊆ M [G] be a generic elementary embedding with critical point κ.
In this section we provide examples separating the following generic large cardinals
notions at a successor cardinal κ = γ+.

• j is almost superstrong if VM
j(κ) ≺ V

V [G]
γ+ ;

• j is superstrong if it is j(κ)-strong;

• j is almost huge if it is <j(κ)-closed.

These examples will all be obtained by collapsing with C = Coll(γ,<κ) a suitable
large cardinal embedding in V , so that by Theorem 5.2.10 a generic large cardinal
embedding jC is obtained with the desired properties.

Proposition 5.2.32. Let κ be a 2-superstrong cardinal. Then there is a generic
elementary embedding on κ = γ+ that is almost superstrong and not superstrong.

Proof. Let j be a 2-superstrong embedding with critical point κ, and let E be the
〈κ, j(κ)〉-extender derived from j. Since V models that E is a superstrong 〈κ, j(κ)〉-
extender, by elementarityM models that j(E) is a superstrong 〈j(κ), j2(κ)〉-extender.
Thus

jj(E) : M −→ N = Ult(M, j(E)) ⊇Mj2(κ) = Vj2(κ)

j(κ) 7−→ j2(κ)

Since M ⊆ V , also Ult(V, j(E)) ⊇ Ult(M, j(E)) ⊇ Vj2(κ) hence j(κ) is superstrong
as witnessed by j(E) also in V .

Consider now C = Coll(γ,<κ), j1 induced by C and jE , j2 induced by j(C) and
jj(E). By Proposition 5.2.12, j1 and j2 are still superstrong and we get the following
diagram, where all the inclusions are superstrong:

j0 :

j1 :

V C M j(C)

V j(C) N j2(C)

V j2(C)

⊆

⊆

Thus j0 considered as a generic elementary embedding in V j2(C) is almost super-
strong:

M
j(C)
j(κ) = V

j(C)
j(κ) ≺ N

j2(C)
j2(κ)

= V
j2(C)
j2(κ)

= V
j2(C)
γ+

but not superstrong, since V
j(C)
γ+1 has cardinality δ ∈ (γ, j2(κ)) in V j(C) hence in

V j2(C) its cardinality is collapsed to γ and bijection between γ and V
j(C)
γ+1 is added.
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5 Systems of filters and generic large cardinals

Proposition 5.2.33. Let κ be a 2-huge cardinal. Then there is a generic elementary
embedding on κ = γ+ that is superstrong and not <ω-closed.

Proof. Let j be a 2-huge embedding in V with critical point κ. Then we can derive
a 〈κ, j(κ) +ω〉-tower T from j, so that jT is still κ+ω-superstrong but by Theorem
5.2.28 is not closed under ω-sequences.

Let jC : V C →M j(C) be derived from jT as in Theorem 5.2.10. Since jT is κ+ω-
superstrong, by Proposition 5.2.12 jC is still κ+ω-superstrong (hence superstrong).
Moreover jC is not <ω-closed. In fact given any A ∈ ωM \M , j(C) cannot add A
since it is a set of size ω and C is closed under ω-sequences.

5.3 Derived ideal towers in V failing preservation of
large cardinal properties

In this section we shall present an example of a tower T (of maximal length) derived
from a generically superstrong embedding j : V → M ⊂ V B, such that the natural
embedding of T into B is densely incomplete (even though T could still induce a
superstrong embedding). The construction will be built on Foreman and Woodin’s
work on self-genericity for towers (see e.g. [16, Sec. 9.4]). The superstrong embed-
ding j will be obtained as the restriction of the huge embedding induced by a full
stationary tower of length a Woodin cardinal.

Definition 5.3.1. We say that Tδ = 〈NSa : a ∈ Vδ〉 is the full stationary tower
of length δ. We denote by Tδ�A with A ∈ Tδ the tower of ideals NSa �A =
{B ∈ NSa : A ∧B is stationary}.

We say that Tγδ = 〈NSγa : a ∈ Vδ〉 is the γ-stationary tower of length δ where
NSγa = {A : A ∩ [a]<γ ∈ NSa}.

By the results of Appendix 5.1.2, we can identify Tδ with a C-system of fil-
ters. Filter property and fineness can be directly verified, compatibility follows from
Lemma 1.2.11 and normality from Lemma 1.2.5. If δ attains sufficient large cardinal
properties, these towers provably induce embeddings with strong closure properties.

Theorem 5.3.2 (Woodin [33, Thm. 2.5.8]). Let δ be a Woodin cardinal, j : V →
M ⊆ V [G] be induced by Tδ. Then j is <δ-closed.

We shall follow the following procedure:

• carefully choose a T ∈ NS+
Vλ

such that T 
Tδ j(crit(j)) ≤ λ < δ;

• consider the huge embedding j : V →M ⊆ V [G] induced by Tδ�T ;

• consider the reduced superstrong embedding jλ induced by Ḟ(Tδ�T )�λ;

• derive a tower Tγλ�S
′ from jλ (of maximal height λ by Proposition 5.1.37);

• show that the natural immersion of Tγλ�S
′ into Tδ�T is densely incomplete.
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Definition 5.3.3. Let λ < δ be ordinals, M ⊆ Vδ, and

GM =
{
A ∈ Tλ ∩M : M ∩

⋃
A ∈ A

}
We say that GM is M -generic for Tλ iff for every A ∈ M predense subset of Tλ,
A ∩GM 6= ∅7.

We aim to prove that

S =
{
M ∈ [Vλ+2]<γ : GM not M -generic for Tλ

}
is stationary and compatible with every A ∈ Tγλ, for appropriately chosen γ, λ. This
will be done by showing that S has the end-extension property.

Definition 5.3.4. We say thatM is a rank initial segment ofN iffN∩Vrank(M) = M .
We say that N ≺ Vδ is a λ-end-extension of M ≺ Vδ iff N ⊇M and M ∩Vλ is a rank
initial segment of N∩Vλ. We say that an end-extension is proper iff N∩Vλ )M∩Vλ,
and that is sup-preserving iff sup(N∩α) = sup(M∩α) for all α ∈M with cof(α) > λ.

We say that A ⊆ [Vδ]
<γ has the λ-end-extension property iff for club many

M ∈ [Vδ+2]<γ there is N ∈ A ↑ Vδ+2 that is a λ-end-extension of M .

Proposition 5.3.5. Suppose that A ⊆ [Vδ]
<γ has the λ-end-extension property.

Then it is stationary and compatible with every B ∈ Tγλ.

Proof. Fix B ∈ Tγλ and Cf any club on Vδ. We prove that A ∧ B ∧ Cf 6= ∅. Let D
be the club witnessing the end-extension property of A, and let M ≺ Vδ+2 be such
that A,B, f ∈ M and M ∈ B ∧D. Let N be a λ-end extension of M in A ↑ Vδ+2.
Then N ∩ Vλ ∈ A ∧B ∧ Cf as required.

Using a measurable cardinal, it is possible to produce end-extensions satisfying
many requirements. The main building block is the following.

Theorem 5.3.6. Let M ≺ Vδ be such that |M | < λ ∈ M with λ a measurable
cardinal. Then there exists an N proper sup-preserving λ-end-extension of M such
that |N | = |M |.

Proof. Let F ∈M be a <λ-complete ultrafilter on λ, so that
⋂

(F ∩M) ∈ F hence
it is unbounded. Let γ be in

⋂
(F ∩M) \ sup(M ∩ λ), and let

N = {f(γ) : f : λ→ Vδ ∧ f ∈M} .

Then N is a λ-end-extension of M as shown in [33, Lemma 1.1.21], and it is proper
since γ = id(γ) and id �λ ∈M thus γ ∈ N .

We now prove that it is also sup-preserving. Suppose by contradiction that there
is an α ∈M , cof(α) > λ and ξ ∈ N ∩α such that ξ ≥ sup(M ∩α). Let f : λ→ α in
M be such that f(γ) = ξ. Since Vδ models that f is bounded below α, so does M
hence let β = sup(ran(f)) < α be in M . Then β ∈ (M ∩α) \ ξ, a contradiction.

7Notice that GM ⊆M hence GM = GM ∩M and the present definition coincides with the usual
notion of M -genericity.
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End-extensions are powerful in capturing the following type of stationary sets.

Definition 5.3.7. Let A ⊆ λ be stationary in the classical sense. Then,

Ā = {M ≺ Vλ : sup(M ∩ λ) ∈ A}

is the corresponding generalized stationary set on Vλ.

Lemma 5.3.8. Let M ≺ Vδ be such that |M | < γ < λ ∈ M with λ measurable
cardinal, A ⊆ {α < λ : cof(α) < γ} be stationary in the classical sense. Then there
exists an N sup-preserving λ-end-extension of M such that |N | < γ and N ∈ Ā ↑ Vδ.

Proof. Define Mα for any α < λ as follows.

• M0 = M

• Let Mα+1 ⊇Mα be the witness provided by Theorem 5.3.6 for M, δ, λ. Hence
sup(Mα+1∩λ) > sup(Mα∩λ), Mα+1∩η = Mα∩η = M ∩η for η = sup(M ∩λ)
and all sups of cofinality greater than λ are preserved.

• If α is a limit ordinal, Mα =
⋃
{Mβ : β < α}.

Therefore C = {sup(Mα ∩ λ) : α < λ} is a club such that there exists ᾱ > γ with
sup(Mᾱ ∩ λ) ∈ A. Let X ⊆ Mᾱ ∩ λ be minimal and cofinal. Hence |X| < γ.
Define N = SkHMᾱ(M ∪ X). Then N ≺ Mᾱ ≺ Vδ. Hence N is a sup-preserving
λ-end-extension in Ā ↑ Vδ such that |N | < γ.

In presence of a limit of measurable cardinals, this process can be iterated in
order to capture simultaneously a sequence of stationary sets.

Lemma 5.3.9. Let s = 〈λα : α < ξ〉 be an increasing sequence of measurable
cardinals such that s ∩ lim(s) = ∅ and α < λα for all α < ξ. Let M ≺ Vδ be such
that |M | < γ < λ0 and s ∈ M . Let Aα ⊆ {β < λα : cof(β) < γ} be stationary in
the classical sense for all α < ξ. Then there exists a λ0-end-extension N of M such

that |N | < γ and N ∈
(a

α<ξ Āα

)
↑ Vδ.

Proof. For any i ∈ ω define M i by induction over i. Put M0 = M . Let M i ∩ ξ ={
αiβ : β < νi

}
where νi = otp(M i ∩ ξ) < γ. Let M i+1 =

⋃{
M i
β : β < νi

}
, where

M i
β are defined by induction as follows.

• M i
0 = M i.

• If M i
β /∈ Āαiβ ↑ Vδ, define M i

β+1 ⊇ M i
β given by Lemma 5.3.8 applied to Aαiβ

.

Otherwise let M i
β+1 = M i

β.

• If β is a limit ordinal, M i
β =

⋃{
M i
j : j < β

}
.

Let Mω =
⋃{

M i : i < ω
}

. Hence for any ν ∈Mω ∩ γ, there exists i such that
ν ∈M i. Thus there exists β such that ν = αiβ. It follows that sup(M i+1∩λν) ∈ Aν ,

and by Lemma 5.3.8 for any j > i, sup(M j ∩ λν) = sup(M i+1 ∩ λν). Hence it holds
also for j = ω.
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Let now δ be a Woodin cardinal, κ < δ be regular. Let µ < δ be such that

S′ = {X ⊆ µ : X ∩ κ ∈ κ ∧ otp(X) ≥ κ}

is stationary. Notice that S′ forces the critical point of j to be κ and j(κ) ≤ µ. Let
λ ∈ (µ, δ) be a limit of measurable cardinals, and s = 〈λα : α < ξ〉 be a cofinal
sequence of measurable cardinals as in the hypothesis of the previous lemma and
such that λ0 > µ. Let γ ∈ (µ, λ0) be a cardinal, let Aα, Bα be disjoint stationary
subsets of {β < λα : cof(β) < γ} for all α < ξ by Ulam’s Theorem 1.2.12, and let
Cα = {M ≺ Vλα : |M | ≥ γ} for α < ξ.

Lemma 5.3.10. The set Aα =
{
Āβ, Cβ : β ∈ [α, ξ)

}
is predense in Tλ for all α < ξ.

Proof. Let D ∈ Tλ be arbitrary, and β ∈ [α, ξ) be such that D ∈ Vλβ . Partition D
in D1, D2 such that D1 = {M ∈ D : |M | < γ}, D2 = D \D1. At least one among
D1, D2 is stationary. If D2 is stationary it is compatible with Cβ (since D2 < Cβ),
otherwise D1 is compatible with Āβ. In fact, given any club Cf on Vλβ and M ≺ Vλ
such that |M | < γ, D1, Āβ, f ∈ M , M ∈ D1 ↑ Vλ, by Lemma 5.3.8 we can find an
N ∈ Āβ ↑ Vλ so that N ∩ Vλβ ∈ D1 ∧ Āβ ∧ Cf .

Theorem 5.3.11. Let γ, s, λ, δ be as above. Then,

S =
{
M ∈ [Vλ+2]<γ : GM not M -generic for Tλ

}
is stationary and compatible with any A ∈ Tγλ.

Proof. We show that S has the λα-end-extension property for any α < ξ, the thesis
will then follow by Proposition 5.3.5. Let M ≺ Vλ+4 be such that |M | < γ, Aα, s ∈
M . Let N be a λα-end-extension of M in

(a
β∈[α,ξ) B̄β

)
↑ Vλ+4 by Lemma 5.3.9

(considering the sequence s after α). Then GN is not N -generic for Tλ, since β ∈
N ∩ [α, ξ)⇒ N ∈ B̄β ↑ Vλ+4 ⇒ N /∈ Āβ ↑ Vλ+4 ⇒ Āβ /∈ GN hence Aα∩GN = ∅.

Let j be the generic elementary embedding derived from Tδ�T , T = S ∧ S′,
and consider the reduced embedding jλ derived from Ḟ(Tδ�T ) ∩ Vλ. By Theorem
5.3.11 the elements of Tγλ which are compatible with T are exactly the elements of
Tγλ�S

′. Furthermore, no element A ⊆ P(X) of Tλ which concentrates on [X]≥γ can
be compatible with S (thus with T ). It follows that the tallest tower derivable from
jλ is Tγλ�S

′, and the corresponding embedding i : Tγλ�S
′ → Tδ�T is the inclusion

map.

Theorem 5.3.12. The embedding i : Tγλ�S
′ → Tδ�T is densely incomplete.

Proof. Let B ∈ Tγλ�S
′ be arbitrary. Since T ∧B is stationary, consider the function

f : T ∧B −→ Vλ+2

M 7−→ A ∈M such that GM ∩ A = ∅

By Fodor’s Lemma 1.2.5 there is a stationary set C ⊆ T ∧B such that f [C] = {A}.
Then A�B is maximal below B in Tγλ�S

′, but is not maximal in Tδ�T as witnessed
by C.

Corollary 5.3.13. Let δ be a Woodin cardinal. Then for any κ ∈ [ω1, δ) there is a
generically superstrong embedding j with critical point κ such that the tallest tower
derivable from j embeds in the original forcing in a densely incomplete way.
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5 Systems of filters and generic large cardinals

5.4 Conclusions and open problems

In the last chapter we investigated some topics related to the definability of generic
large cardinal properties. We gave a unified treatment of extenders and towers, and
some partial results on how generic large cardinal embeddings are induced by set-
sized objects. However, many questions remain open. We list them according to the
ordering of sections of this chapter.

Question 5.4.1. Is (jS�a)−1 the unique element of
⋂
jS [Fa]?

Question 5.4.2. Assume that j is a <γ-closed embedding in V [G], with G V -
generic for B. Can this be witnessed by a generic γ-extender of sufficient length
independently of the chain condition satisfied by B?

In Theorem 5.1.40, we showed that a generic extender can have enough expressive
power to approximate any other generic C-system of ultrafilters. This observation
suggests the following question.

Question 5.4.3. Assume κ has ideally property P , can this be witnessed by an
extender in the ground model V ?

Since κ has ideally property P , there is a C-system of filters S in V which witness
property P for κ. However, in general S might not be an extender (e.g. a tower or a
γ-extender). We already know that a generic extender E is able to fully approximate
S, is this possible also for an ideal extender E in V ? We believe that this question
could be an important cornerstone to uncover the following.

Question 5.4.4. Is having ideally property P equivalent to having generically prop-
erty P?

A final question arises from inspecting the machinery used in Section 5.3.

Question 5.4.5 (Cox). What is the consistency strength of self-genericity with
respect to towers?

More precisely, let T be a tower of inaccessible height λ, ST be the set of self-
generic M ≺ Hλ+ for T, and consider the following two versions of self-genericity
(inspired by the analogous definitions for ideals introduced in [12]):

• StatCatch(T) abbreviates the statement: ST is stationary;

• ProjectiveCatch(T) abbreviates the statement: ST is stationary and compati-
ble with all A ∈ T.

What is the consistency strength of these properties holding for a tower T with
critical point ω1 (or ω2)? A similar problem was inspected in [12] for single ideals,
but it is not at all clear whether a similar argument can be applied to towers.
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[37] Itay Neeman and Jindřich Zapletal, Proper forcings and absoluteness in L(R),
Comment. Math. Univ. Carolin. 39 (1998), no. 2, 281–301. MR 1651950
(2000d:03117)

[38] Saharon Shelah, Infinite abelian groups, whitehead problem and some construc-
tions, Israel Journal of Mathematics 18 (1974), no. 3, 243–256.

[39] Akira Suzuki, Non-existence of generic elementary embeddings into the ground
model, Tsukuba J. Math. 22 (1998), no. 2, 343–347. MR 1650737 (2000a:03087)

[40] Konstantinos Tsaprounis, On resurrection axioms, The Journal of Symbolic
Logic 80 (2015), no. 02, 587–608.
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