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Abstract. We study the approachability ideal I[κ+] in the context of large
cardinals properties of the regular cardinals below a singular κ. As a guiding
example consider the approachability ideal I[ℵω+1] assuming that ℵω is strong
limit. In this case we obtain that club many points in ℵω+1 of co�nality ℵn for
some n > 1 are approachable assuming the joint re�ection of countable families
of stationary subsets of ℵn. This re�ection principle holds under MM for all
n > 1 and for each n > 1 is equiconsistent with ℵn being weakly compact
in L. This characterizes the structure of the approachability ideal I[ℵω+1] in
models of MM. We also apply our result to show that the Chang conjectures
(κ+, κ) ³ (ℵ2,ℵ1) fails in models of MM for all singular cardinals κ.

1. The approachability ideal
In the course of development of the pcf-theory of possible co�nalities Shelah

has introduced several interesting stationary sets on the successor of a singular
cardinal1. Among these are the sets of approachable and weakly approachable
points in κ+, where κ is a singular cardinal. Given A = {aα : α < κ+} ⊆ [κ+]<κ, δ
is weakly approachable with respect to A if there is H unbounded in δ of minimal
order type such that {H ∩ γ : γ < δ} is covered2 by {aα : α < δ} and δ is
approachable with respect to A if there is H unbounded in δ of minimal order type
such that {H ∩ γ : γ < δ} ⊆ {aα : α < δ}.
De�nition 1.1. Let κ be a singular cardinal. S is (weakly) approachable if there
is a sequence A = {aα : α < κ+} ⊆ [κ+]<κ and a club C such that δ is (weakly)
approachable with respect to α for all δ ∈ S ∩ C. I[κ+] is the ideal generated by
approachable sets, I[κ+, κ] is the ideal generated by weakly approachable sets.
It is clear that I[κ+] ⊆ I[κ+, κ]. For many of the known applications of approacha-
bility, it is irrelevant whether we concentrate on the notion of weak approachability
or on the apparently stronger notion of approachability. Moreover in the case that
κ is strong limit and singular I[κ+] = I[κ+, κ] (section 3.4 and proposition 3.23 of
[3]). For this reason we feel free to concentrate our attention on the notion of weak
approachability which applies to a more general context. It is rather easy to show
that I[κ+, κ] is a normal κ+-closed ideal which extends the non-stationary ideal.
A main result of Shelah is that there is a stationary set in I[κ+] for any singular
cardinal κ (theorem 3.18 [3]). There are several applications of this ideal to the
combinatorics of singular cardinals, we remind the reader one of them and refer

The second author wishes to thank Boban Veli£kovi¢ for several useful hints and comments on
previous drafts. In particular the results in subsection 2.4 are due to him.

1[3] is our main reference source.
2I.e.: for every γ < δ there is α < δ such that H ∩ γ ⊆ aα.
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him to section 3 of [3] for a detailed account: the extent of this ideal can be used to
size the large cardinal properties of κ. I[κ+, κ] is trivial unless the cardinals below
κ+ have very strong combinatorial properties (in the range of supercompactness).
Thus for example if square at κ holds I[κ+] = I[κ+, κ] = P (κ+) (theorem 3.13 of
[3]). On the other hand if λ is strongly compact and κ > λ is singular of co�nality
θ < λ then there is a stationary subset of κ+ of points of co�nality less than λ which
is not in I[κ+, κ] (Shelah, theorem 3.20 of [3]). In the same spirit if MM holds there
is a stationary set of points of co�nality ℵ1 which is not in I[ℵω+1,ℵω] (Magidor,
unpublished). It is also consistent3 that for unboundedly many α < ω2 there is
a stationary set of points of co�nality ℵα not in I[ℵω2+1]. It is an open problem
whether it is consistent that there is a stationary set on ℵω+1 concentrating on
co�nalities larger than ℵ1 and not in I[ℵω+1] (see for example the introduction of
[5] or the end of section 3.5 in [3]). We will give a partial answer to this question
showing that this is not the case in models of MM. Our results have broader con-
sequences and give serious constraints to the possible scenarios where this problem
may have a positive solution. We brie�y introduce some relevant concepts in our
analysis. Sλ

θ denote the subset of λ of points of co�nality θ. A stationary subset of
λ re�ects on α if it intersects all the closed and unbounded subsets of α.

De�nition 1.2. Let θ < λ be regular cardinals.
R(λ, θ) holds for in�nite regular cardinals θ < λ if there is S stationary subset

of λ such that for all families {Si : i < θ} of stationary subsets of S there is δ < λ
such that Si re�ects on δ for all i.

R∗(λ) holds if if there is S stationary subset of λ such that for all families
{Si : i < λ} of stationary subsets of S there is δ < λ such that Si re�ects on δ for
all i < δ.

It is clear that R∗(λ) implies R(λ, ζ) which implies R(λ, θ) for all θ ≤ ζ < λ.
Moreover it is not hard to realize R∗(λ) and R(λ, θ) and we will substantiate this
in section 3. We now state one of our main result which gives rightaway a clear
picture of what we are aiming to. Given regular cardinals θ < λ, λ is θ-inaccessible
if ζθ < λ for all ζ < λ.

Theorem 1. Assume:
• κ is singular of co�nality θ and ν = κ+,
• λ < κ is either θ-inaccessible or in [θ+, θ+ω),
• R(λ, θ) holds.

Then Sν
λ ∈ I[ν, κ].

Immediate applications of theorem 1 are the following:

Corollary 2. Assume λ is weakly compact κ > λ is singular co�nality θ < λ and
ν = κ+. Then Sν

λ ∈ I[ν, κ].

Proof. λ is θ-inaccessible and satisfy R(λ, θ) (see fact 3.1). Now apply theorem
1. ¤

The re�ection hypothesis of the main theorem holds in models of strong forcing
axioms, for example we can prove:

3See for example [7] where this is achieved in the presence of a very good scale on Q
α<ω2 ℵα.
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Corollary 3. Assume Martin's maximum MM holds. Then club many points in
S
ℵω+1
>ℵ1

are approachable.

Proof. MM implies R(ℵn,ℵ1) holds as witnessed by Sℵn
ω for all n > 1 (see [6]). Now

apply theorem 1. ¤

We will also be able to obtain by a slight variation of the proof of theorem 1:

Theorem 4. Assume the proper forcing axiom PFA. Then club many points in
S
ℵω+1
>ℵ2

are approachable.

Proof. By theorem 2.15 and theorem 2.8. ¤

Finally in section 4 we will apply these results to the study of Chang conjecture
and prove for example:

Theorem 5. Assume R(ℵ2,ℵ0). Then (ℵω+1,ℵω) ³ (ℵ2,ℵ1) fails.

1.1. Notation and de�nitions. The paper aims to be accessible and self-contained
for any reader with a strong background in combinatorial set theory. While no
familiarity with forcing is required, a basic acquaintance with large cardinals com-
binatorics is assumed. When not otherwise explicitly stated [8] is the standard
source for notation and de�nitions. For a regular cardinal θ, we use H(θ) to denote
the structure 〈H(θ),∈, < 〉 whose domain is the collection of sets whose transitive
closure is of size less than θ and where < is a predicate for a �xed well ordering
of H(θ). For cardinals λ ≤ κ we let [κ]λ be the family of subsets of κ of size λ.
In a similar fashion we de�ne [κ]<λ, [κ]≤λ, [X]λ, where X is an arbitrary set. If
X is an uncountable set and θ a regular cardinal, E ⊆ [X]θ is unbounded if for
every Z ∈ [X]θ, there is Y ∈ E containing Z. E is bounded otherwise. For a set
of ordinals X, X denotes the topological closure of X in the order topology. For
regular cardinals λ < ν, Sν

λ denotes the subset of ν of points of co�nality λ. In
a similar fashion we de�ne Sν

<λ, Sν
>λ, etc... For the ease of the reader we will let

θ < λ < ν range over regular cardinals and κ range over singular cardinals in most
cases of co�nality θ, moreover unless otherwise stated the reader may safely assume
that ν = κ+. We say that a family D is covered by a family E if for every X ∈ D
there is a Y ∈ E such that X ⊆ Y .

2. Covering matrices and the approachability ideal
Shelah provides a characterization of the ideal I[κ+, κ] which is suitable for our

analysis. Let κ be singular and let:
d : [κ+]2 → cof(κ).

• d is normal if D(i, β) = {α < β : d(α, β) ≤ i} has size less than κ for all i
and β,

• δ is d-approachable if there is H unbounded in δ such that d[[H]2] is
bounded in cof(κ).

The following is an equivalent de�nition of I[κ+, κ] (theorem 3.28 [3]):

Property 2.1. Let κ be singular of co�nality θ. S ∈ I[κ+, κ] if and only if there
are a normal coloring d and a club C ⊆ κ+ such that δ is d-approachable for all
δ ∈ S ∩ C.
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Proof. We prove only the backward direction which is the one that we need. So
assume X is a subset of κ+ such that for some normal d any δ ∈ X is d-approachable.
Let D(i, β) = {α < β : d(α, β) ≤ i}. We want to de�ne a family E = {eα : α < κ+}
such that every point in X is weakly approachable with respect to E . To this aim
�x a bijection φ : θ → θ2 and let π0 and π1 be the projection maps of θ2 onto
θ. Notice that every ordinal δ below κ+ can be decomposed uniquely as the sum
δ = α + i where i < θ and α is divisible by θ. Now for every α < κ+ divisible by θ
and for every i < θ set eα+i = D(π0 ◦ φ(i), α + π1 ◦ φ(i)). It is not hard to check
that if δ is d-approachable, then it is weakly approachable with respect to E . ¤

The coloring d is determined by the matrix D(d) = {D(i, β) : i < cof(κ), β <
κ+} where D(i, β) = {α < β : d(α, β) ≤ i}. It will be convenient for us to treat such
matrices instead that the related coloring. Our aim is to show that mild re�ection
properties of a regular λ < κ entail that for a suitably chosen normal coloring d
all points in κ+ of co�nality λ are d-approachable. This leads us to introduce and
analyze the notion of a covering matrix.
2.1. Covering matrices. The reader is referred to [15] for a detailed account of
the results that are mentioned here without proof.
De�nition 2.2. For regular cardinals θ < λ, D = {D(i, β) : i < θ, β < λ} is a
θ-covering matrix for λ if:

(i) β =
⋃

i<θ D(i, β) for all β,
(ii) D(i, β) ⊆ D(j, β) for all β < λ and for all i < j < θ,
(iii) for all β < γ < λ and for all i < θ, there is j < θ such that D(i, β) ⊆

D(j, γ).
A θ-covering matrix D is transitive if α ∈ D(i, β) implies D(i, α) ⊆ D(i, β).
A θ-covering matrix D is closed if supX ∈ D(i, β) for all X ∈ [D(i, β)]≤θ.
A θ-covering matrix D is uniform if for all β < λ, D(i, β) contains a club subset of
β for eventually all i < θ.
βD ≤ λ is the least β such that for all i and γ, otp(D(i, γ)) < β. D is normal if
βD < λ.
Example 2.3. d : [κ+]2 → cof(κ) is normal if D(d) is a normal cof(κ)-covering
matrix on κ+ with βD = κ.

We will be interested in the matrices produced by the following lemma:
Lemma 2.4. For every singular cardinal κ, there is a uniform, closed, transitive
cof(κ)-covering matrix D on κ+ with βD = κ.
Proof. Let κ be singular of co�nality θ. Fix {κi : i < θ} increasing sequence of
regular cardinals converging to κ. Let φα : κ → α be a surjection for all α < κ+

such that φα[κi] contains a club subset of α whenever α is limit of co�nality smaller
than κi. Now set D0(i, β) = φβ [κi] for all i < θ and β < κ+. De�ne by recursion
over ξ ≤ θ+ and limit and n < ω:

• Dξ+2n+1(i, β) = Dξ+2n(i, β),
• Dξ+2n+2(i, β) =

⋃{Dξ+2n+1(i, α) : α ∈ Dξ+2n+1(i, β)},
• Dξ(i, β) =

⋃{Dη(i, β) : η < ξ}.
Now set D(i, β) = Dθ+(i, β) and check that D = {D(i, β) : i < θ, β < κ+} is a
uniform, closed, transitive cof(κ)-covering matrix D on κ+ with βD = κ. ¤
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De�nition 2.5. Let D = {D(j, β) : j < θ, β < λ} be a θ-covering matrix on λ.
CP(D) holds if there is A unbounded subset of λ such that [A]θ is covered by D.
S(D) holds if there is S stationary subet of λ such that for all families {Si : i < θ}

of stationary subsets of S there are j < θ and β < λ such that Si ∩D(j, β) is non-
empty for all i < θ.

We will come back to the relation between approachability and covering matrices
at the end of this section, we now aim to investigate the consistency of S(D) and
CP(D) for a large variety of covering matrices D.
2.2. Consistency of CP(D) and S(D).
Fact 2.6. Assume R(λ, θ) holds and D is a uniform θ-covering matrix on λ. Then
S(D) holds.
Proof. Let D be a uniform θ-covering matrix on λ and {Si : i < θ} be a family of
stationary subsets of S. By R(λ, θ) �nd δ such that Si re�ects on δ for all i < θ.
Now D is uniform, so there is a j < θ such that D(j, δ) contains a club subset of
δ. Thus Si ∩ D(j, δ) is non-empty for all i < θ. Since the family {Si : i < θ} is
arbitrary S(D) holds as witnessed by S. ¤

Corollary 2.7. MM implies S(D) for all uniform θ-covering matrices D on λ
whenever λ > ℵ1 is a regular cardinal and ℵ1 ≥ θ.
Proof. MM implies R(λ,ℵ1) holds as witnessed by Sλ

ω for all regular λ > ℵ1. ¤

In [15] it is shown the following:
Theorem 2.8. PFA implies CP(D) for all ω-covering matrix D on a regular λ > ℵ2.

We now investigate the relation between CP(D) and S(D) and show that they
are equivalent whenever D is transitive and closed.

2.3. When are CP(D) and S(D) equivalent?
Proposition 2.9. Let D be a θ-covering matrix on λ. The following holds:

(i): CP(D) implies S(D) whenever D is closed,
(ii): S(D) implies CP(D) whenever D is transitive.

Proof. We �rst show (i). We will actually show that CP(D) implies S(D) is wit-
nessed by Sλ

θ . So let {Si : i < θ} be a family of stationary subsets of Sλ
θ . By

CP(D), there is X unbounded in λ such that [X]θ is covered by D. We claim that
[X ∩ Sλ

θ ]θ is covered by D. To see this, let Z be in this latter set and �nd Y ⊆ X

of size θ such that Z ⊆ Y . Now �nd i and β such that Y ⊆ D(i, β). Since D(i, β)
is closed under sequences of size at most θ, Z ⊆ Y ⊆ D(i, β).

Now pick M ≺ H(λ) with λ large enough such that |M | = θ ⊆ M and θ, X, {Si :
i < θ} ∈ M . Now Si ∩X is non-empty for all i < θ. By elementarity, M sees this
and so M ∩ Si ∩X is non-empty for all i < θ. However M ∩X ∩ Sλ

θ has size θ so
there are j and β such that M ∩X ∩ Sλ

θ ⊆ D(j, β). So Si ∩D(j, β) is non-empty
for all i < θ. This proves the �rst implication.

We now show (ii). So assume S(D) holds for a transitive θ-covering matrix D
on λ. Let S witness S(λ, θ) and Ti be the set of α ∈ S such that

Si
α = {β ∈ S \ α : α ∈ D(i, β)}
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is stationary. It is straightforward to see that for some i < θ, Ti is stationary. We
aim to show that [Ti]θ is covered by D: let X ∈ [Ti]θ and consider the family of
stationary sets {Si

α : α ∈ X}. Since X has size θ, by S(D) there are some j < θ and
δ < λ such that Si

α ∩D(j, δ) is non-empty for all α ∈ X. W.l.og. we can suppose
that j ≥ i. Now for any α ∈ X ⊆ Ti, there is βα ∈ D(j, δ)∩Si

α, i.e. βα is such that
α ∈ D(i, βα). Since D is a transitive covering matrix and j ≥ i,

α ∈ D(i, βα) ⊆ D(j, βα) ⊆ D(j, δ).

This means that X ⊆ D(j, δ). Since X is arbitrary we can conclude that [Ti]θ is
covered by D. ¤
2.4. A weak form of diagonal re�ection. We aim to show that CP(D) or S(D)
strongly limits the kind of behavior a θ-covering matrix D on λ may have. We
shall now see that CP(D) plus suitable assumptions on the proportion between the
width θ and the height λ of D imply that there is an unbounded subset of λ such
that all its initial segments are covered by D. Once this is achieved, it will be easy
to conclude that R(λ, θ) implies that all points of co�nality λ below κ+ are weakly
approachable whenever κ > λ is a singular cardinal of co�nality θ. We now prove
that a weak form of diagonal re�ection of stationary sets on many covering matrices
D follows from S(D) or CP(D).
Lemma 2.10. Assume D is a θ-covering matrix on λ, S(D) holds as witnessed
by S and that either λ is θ-inaccessible or λ ∈ (θ, θ+ω). Then for all families
{Sβ : β < λ} of stationary subsets of S there are δ < λ and i < θ such that
Sα ∩D(i, δ) is non-empty for all α < δ.
Lemma 2.11. Assume D is a θ-covering matrix on λ. CP(D) holds as witnessed
by T and that either λ is θ-inaccessible or λ ∈ (θ, θ+ω). Then there are stationarily
many δ < λ such that T ∩ δ ⊆ D(i, δ) for some i < θ.

We give a detailed proof of the �rst lemma. The second lemma is proved by a
self evident step by step modi�cation of this argument.
Fact 2.12. Let θ < λ < ν be regular cardinals such that λθ < ν, D = {D(j, β) :
j < θ, β < ν} a θ-covering matrix on ν and assume S(D) holds as witnessed by S.
Let {Si : i < λ} be a family of stationary subsets of S. Then there are j < θ and
β < ν such that Si ∩D(j, β) is non-empty for all i < λ.
Proof. Assume not and let {Si : i < λ} contradict the fact. We need to �nd j < θ
and β < ν such that Si ∩ D(j, β) is non empty for all i < λ. For X ∈ [λ]θ let
by S(D), kX < θ and βX < ν be such that Si ∩ D(kX , βX) is non-empty for all
i ∈ X. By our assumptions, λθ < ν. For this reason β = supX∈[λ]θ βX < ν. Now
by property (ii) of D, we have that for all X ∈ [λ]θ, D(kX , βX) ⊆ D(jX , β) for
some jX < θ. Let Cj be the set of X such that jX = j. Now notice that for at least
one j, Cj must be unbounded in [λ]θ, otherwise [λ]θ would be the union of θ-many
bounded subsets, which is not possible since λ has co�nality di�erent from θ. Then
Si ∩D(j, β) is non-empty for all i < λ, since every i ∈ λ is in some X ∈ Cj , as Cj

is unbounded. This completes the proof of the fact. ¤
Fact 2.13. Assume λ ∈ (θ, θ+ω), ν > λ is regular and S(D) holds for some θ-
covering matrix D on ν and is witnessed by S. Let {Si : i < λ} be a family of
stationary subsets of S. Then there are j < θ and β < ν such that Si ∩D(j, β) is
non-empty for all i < λ.
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Proof. Proceed by induction on n so assume the claim holds for θ+n and let λ =
θ+(n+1) and {Si : i < λ} be a family of stationary subsets of S. By the inductive
assumption for all i < λ, there are ki < θ and βi < ν such that Sj∩D(ki, βi) is non-
empty for all j < i. Since λ < ν there is β < ν larger than all βi. Now by property
(ii) of D we have that for all i < λ there is ji < θ such that D(ki, βi) ⊆ D(ji, β).
Find U unbounded subset of λ such that for all i ∈ U , ji = j. We can conclude that
Sl ∩D(j, β) is non-empty for all l < λ, since Sl ∩D(ki, βi) is non-empty provided
l < i and i ∈ U and D(ki, βi) ⊆ D(j, β). ¤

We are now ready to prove lemma 2.10.
Proof. Assume not and let {Sβ : β < ν} contradict the lemma. For each δ of
co�nality larger then θ, let γδ < δ be the least such that for all i < θ there is
γδ

i < γδ such that Sγδ
i
∩ D(i, δ) is empty. Find A stationary subset of ν such

that γδ = γ for all δ ∈ A. By our assumption on ν and facts 2.12 and 2.13, we
know that there are i < θ and δ0 < ν such that Sα ∩D(i, δ0) is non empty for all
α < γ. Pick δ ∈ A \ δ0 and j < θ such that D(i, δ0) ⊆ D(j, δ). Then we get that
Sγδ

j
∩D(j, δ) is non-empty since Sγδ

j
∩D(i, δ0) is non-empty and D(i, δ0) ⊆ D(j, δ).

This contradicts the very de�nition of γδ
j . ¤

In particular we have shown the following:
Fact 2.14. Assume λ is either θ-inaccessible or λ ∈ (θ, θ+ω) and S(D) holds for a
transitive θ-covering matrix D on λ. Then there is A unbounded subset of λ such
that [A]<λ is covered by D.
2.5. Main result. We are now in the position to state our main result:
Theorem 2.15. Assume κ is singular of co�nality θ and a regular λ < κ is either
θ-inaccessible or in (θ, θ+ω) and such that S(D) (or equivalently CP(D)) holds for
all uniform, closed and transitive θ-covering matrices D on λ. Then club many
points in κ+ of co�nality λ are approachable.
Proof. Fix d : [κ+]2 → θ such that D(d) = {D(i, β) : i < θ, β < κ+} is a normal,
uniform, closed and transitive θ-covering matrix on κ+, where D(i, β) = {α < β :
d(α, β) ≤ i}. Such a d exists by lemma 2.4. By property 2.1 it is enough to show
that all points of co�nality λ are d-approachable. Let β be such that cof(β) = λ.
Find A = {δξ : ξ < λ} closed and unbounded subset of β of minimal order-type.
Let π be the transitive collapse of A on λ and E = {E(i, ξ) : i < θ, ξ < λ} be the
matrix whose entries are the sets π[D(i, δξ) ∩ A]. Then E is a uniform, closed and
transitive θ-covering matrix on λ. By S(E) and fact 2.14, there is B unbounded
subset of λ such that [B]<λ is covered by E . Thus B ∩ η ⊆ E(iη, ξη) for some
iη < θ and ξη ∈ B \ η for all η ∈ B. Re�ne {ξη : η ∈ B} to un unbounded subset
C such that ξη < γ for all ξη < ξγ ∈ C. Thus ξη ∈ B ∩ γ ⊆ E(iγ , ξγ) for all
ξη < ξγ ∈ C. Let D be an unbounded subset of C such that for some �xed j,
iη = j for all ξη ∈ D. Now if ξη < ξγ ∈ D we have that ξη ∈ B ∩ γ ⊆ E(j, ξγ) i.e.
d(π−1(ξη), π−1(ξγ)) ≤ j, i.e π−1[D] witnesses that β is d-approachable. ¤

3. Joint reflection of stationary sets
We brie�y analyze the consistency strength of the hypothesis of theorem 1.

Fact 3.1. R∗(λ) holds if λ is weakly compact.
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Proof. Recall the following characterization of weak compactness: λ is weakly com-
pact if for every transitive model M of ZFC minus the powerset axiom such that M
has size λ and H(λ) ⊆ M , there is an elementary embedding of M into a transitive
structure N with critical point λ. Now let {Si : i < λ} be any family of stationary
subsets of λ. To prove R∗(λ) we must �nd a δ < λ such that Sα re�ects on δ
for all α < δ. Let M be a structure as above such that {Si : i < λ} ∈ M . Let
j : M → N be elementary with N transitive and critical point of j = λ. Then
j({Sα : α < λ}) = {Tα : α < j(λ)} and j(Sα) ∩ λ = Sα for all α < λ. Thus N
models that there is δ < j(λ) (namely δ = λ) such that for all α < δ, Tα re�ects on
δ. By elementarity of j there is δ < λ such that Sα re�ects on δ for all α < δ and
we are done. ¤
Larson (unpublished) has proved that MM implies R∗(ℵ2) while it is apparent
already in the paper of Foreman, Magidor and Shelah [6] that MM implies R(λ,ℵ1)
for all regular λ > ℵ1. On the other hand Magidor [11] has shown that R∗(ℵn) is
equiconsistent with ℵn being weakly compact in L. Notice however that a model of
R(ℵn,ℵ0) and R(ℵn+1,ℵ0) subsume already very large cardinal assumptions since
it can be seen that R(ℵn,ℵ0) implies failure of4 ¤(ℵn) and Schimmerling has shown
that failure of ¤(ℵn) for two consecutive cardinals implies projective deteminacy
[12]. Another scenario suggested by Foreman to obtain R∗(λ) is the following:
Lemma 3.2. Assume that I is a λ-complete, �ne ideal which concentrates on [κ]<λ

for some κ ≥ λ and such that PI = P ([κ]<λ)/I is a proper forcing. Then R∗(λ)
holds.
Proof. First of all I is precipitous since PI is proper ([4] Proposition 4.10). Let G

be a generic �lter for PI . Then the ultrapower M = V ([κ]<λ)∩V/G de�ned in V [G]
is well-founded. Let j : V → M be the associated generic elementary embedding.
Since I is λ-complete and �ne, we have that the critical point of j is λ. Now let
{Sα : α < λ} ∈ V be a family of stationary subsets of Sλ

ℵ0
. It is clear that M

models that j({Sα : α < λ}) = {Tα : α < j(λ)} is a family of stationary subset of
S

j(λ)
ℵ0

. Now Tα = j(Sα) and j(Sα) ∩ λ = Sα for all α < λ. Since P is proper, Sα

is a stationary subset of λ in V [G] so it is certainly a stationary subset of λ in M .
Then M models that j(Sα) re�ects on λ for all α < λ. Now the argument to show
that S∗(λ) holds in V is as in fact 3.1. ¤

Notice that we've hidden a large cardinal assumption in the requirement that P
is proper. The hypothesis of the lemma are satis�ed by the non-stationary ideal
on ℵ2 in the generic extension by a Levy collapse of a measurable λ to ℵ2. In this
case the quotient algebra is even countably complete. [4] is a survey on generic
large cardinals. We now turn to an application of the main theorems 1 and 2.15 to
Chang conjectures.

4. R(ℵ2,ℵ1) denies (κ+, κ) ³ (ℵ2,ℵ1) for all singular κ.
Recall that the Chang conjecture (λ, κ) ³ (θ, ν) holds for λ > κ ≥ θ > ν if for

every structure 〈Y, λ, κ, ...〉 with predicates for λ and κ there is X ≺ Y such that
|X ∩λ| = θ and |X ∩κ| = ν. We will also be interested in the principles of the form

4For example Jensen produces from ¤(λ) a transitive and closed ω-covering matrix D on λ
such that CP(D) cannot hold. A proof of this result by Todor£evi¢ can be found in Todor£evi¢'s
book [14] or in section 2.2.1 of [16].
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(κ, λ) ³ (θ,< θ) which are likewise de�ned. It is known that (ℵ2,ℵ1) ³ (ℵ1,ℵ0) as
well as many other Chang conjectures are consistent relative to appropriate large
cardinals assumptions. For example it is possible to see that (j(κ+θ), j(κ+γ)) ³
(κ+θ, κ+γ) whenever κ is the critical point of a 2-huge embedding and γ < θ < κ.
Developing on this, Levinsky, Magidor and Shelah in [10] showed that (ℵω+1,ℵω) ³
(ℵ1,ℵ0) is consistent relative to the existence of a 2-huge cardinal. However all the
known examples of a consistent (κ+, κ) ³ (θ+, θ) where κ is singular and θ regular
are such that θ = cof(κ). Thus a folklore problem in this �eld is the following:
Problem 4.1. Is it consistent that (κ+, κ) ³ (θ+, θ) for some regular θ and sin-
gular κ of co�nality smaller than θ?

First of all it is a simple fact that such Chang conjectures a�ect cardinal arith-
metic:
Fact 4.2. Assume (κ+, κ) → (θ+, θ) for some singular κ. Then θ+ ≤ θcof(κ).

Proof. Notice that κcof(κ) > κ. Now assume (κ+, κ) → (θ+, θ). Fix λ > κ+ regular
and large enough and let H(λ) denotes the family of sets whose transitive closure
has size less than θ. Fix M ≺ 〈H(λ), κ+, κ, ....〉 with |M∩κ+| = θ+ and |M∩κ| = θ.
Pick a family {Xα : α < κ+} ∈ M of distinct elements of [κ]cof(κ). By elementarity
of M , Xα ∩ M 6= Xβ ∩ M for all α, β ∈ M ∩ κ+. Thus we have a family of θ+

distinct elements of [M ∩κ]M∩cof(κ). Now |M ∩κ| = θ and |M ∩cof(κ)| ≤ cof(κ).
Thus θ+ ≤ |[M ∩ κ]M∩cof(κ)| ≤ θcof(κ). ¤

Cummings in [2] has shown that these Chang conjectures can be studied by
means of pcf-theory and has obtained several other restrictions on the combinatorics
of the singular cardinals κ which may satisfy an instance of the above problem. For
example he has shown that these Chang conjectures subsume the existence of very
strong large cardinals, i.e. out of the scope of analysis of the current inner model
theory: it can be argued by the analysis brought up in [2] that (ℵω+1,ℵω) ³
(ℵn,ℵn−1), then ¤ℵω fails and SCH holds at ℵω. Moreover a result by Shelah
shows that n cannot be greater than5 3. We can decrease 3 down to 1 and greatly
simplify their argument avoiding any mention of scales in the case that R(ℵ2,ℵ1)
holds:
Theorem 4.3. Assume R(ℵ2,ℵ1) holds. Then (κ+, κ) ³ (ℵ2,ℵ1) fails for all
singular κ.
Proof. Towards a contradiction let κ be a counterexample to the theorem.

Fix M ≺ H(Γ) structure containing all relevant information and such that |M ∩
κ| < ℵ2 and |M ∩ κ+| = ℵ2. First of all:
Claim 4.4. otp(M ∩ κ+) = ℵ2.

Suppose otherwise and let γ ∈ M be such that otp(M ∩ γ) = ℵ2. Then γ ∈
M ∩ (κ, κ+). We claim that M models that γ is a cardinal, which gives the desired

5Cummings' analysis relies on the notion of good (or in Kojamn's notation [9] �at) points for
a scale on Q

n ℵn and his main observation (Lemma 3.1 of [2]) is that if (ℵω+1,ℵω) ³ (ℵn,ℵn−1)
holds, then there are stationarily many non-good points of co�nality ℵn. On the other hand
Shelah has shown that club many points of co�nality ℵn are good (or �at) for a scale on Q

n ℵn

if either ℵn > 2ℵ0 (Exercise 2.9-2, Lemma 2.12 and Theorem 2.13 of [1]) or n > 3 (Theorem 2.13
and Lemmas 2.12 and 2.19 of [1]).
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contradiction since by elementarity γ would be in the universe a regular cardinal
in (κ, κ+) which is impossible. So suppose M models γ is not a cardinal, then in
M there is a bijection φ of γ onto κ. If we take the transitive collapse πM of M ,
πM (φ) is now a bijection of πM (γ) = ℵ2 onto πM (κ) which is an ordinal of size less
than ℵ2. This contradiction proves the claim. ¤

Fix in M a transitive and uniform cof(κ)-covering matrixD on κ+ where βD = κ.
Let X = M ∩ κ+ and δM = otp(M ∩ κ). This is one key observation:

Fact 4.5. If C ∈ M is a closed set of ordinals and πM is the transitive collapse of
M , then πM (C) is a closed set of ordinals. ¤

Now let αM = sup(M ∩ cof(κ)) and ℵi = cof(αM ) for some i < 2, �x φ : ωi →
αM ∩M strictly increasing and co�nal and set

E = {πM (D(φ(j), α)) : j < ωi, α ∈ M ∩ κ+}.
Claim 4.6. E is a transitive and uniform ωi-covering matrix on ℵ2 with βD ≤ δM .

Proof. Transitivity of E is immediate to check. E is uniform due to the above fact
and the elementarity of M : for every β ∈ M ∩ κ+, cof(β) ∈ M by elementarity
of M . Since D is uniform D(ξ, β) contains a club subset Cβ of β for eventually all
ξ < cof(κ). By elementarity of M the least such ξ < cof(κ) is in M and there
is such a club Cβ ∈ M . Now πM (Cβ) is a club subset of πM (D(φ(j), β)) for all j
such that φ(j) > ξ. The bound on the order type of the entries on E follows by
the fact that M |= otp(D(ξ, β)) < κ for all ξ ∈ M ∩ cof(κ) and β ∈ M ∩ κ+, so
πM [M ] |= otp(πM (D(φ(j), β))) < δM for all j < ωi. ¤

Now E = {E(j, β) : j < ℵi, β < ℵ2} is a transitive, uniform, ℵi-covering matrix
on ℵ2 with βE ≤ δM < ℵ2. By R(ℵ2,ℵi), S(E) holds, so there is A unbounded in
ℵ2 such that [A]ℵi is covered by E . By lemma 2.11 [A]ℵ1 is covered by D. So �nd γ
such that A ∩ γ has order type bigger than δM . Now there are j < ℵi and β < ℵ2

such that A ∩ γ ⊆ E(j, β), then:
δM < otp(A ∩ γ) ≤ otp(E(j, β)) < δM .

This is the desired contradiction which proves the theorem. ¤

4.1. MM denies many other instances of (κ+, κ) ³ (ℵ2,ℵ1). We brie�y re-
call an argument presumably due to Silver that implies under PFA the failure of
(κ+, κ) ³ (ℵ2,ℵ1) for all κ such that there is a special Aronszjain tree on κ+,
which is the case for any κ such that κ<κ = κ (for example under our assumption
for κ = ℵ2). The following de�nitions and results are well known:

De�nition 4.7. (T, <) is a tree if < is a well founded partial order with a least
element (called the root of T ) and such that if a, b are such that for some c a < c
and b < c then a ≤ b or b ≤ a (in such a case we say that a and b are compatible).
A ⊆ T is an antichain if for no a, b ∈ A we have that a and b are compatible.

• htT (a) = β i� otp({b : b < a}) = β,
• LevT (α) = {a : htT (a) = α} is the α-th level of T ,
• htT = sup(htT (a) : a ∈ T ) is the height of T ,
• B ⊆ T is an α-branch i� all , b ∈ B are compatible and sup(htT (a) : a ∈

B) = α,



SOME CONSEQUENCES OF REFLECTION ON THE APPROACHABILITY IDEAL 11

• T is special if there is f : T → T such that f(a) < a for all a above the
root and such that f−1(a) is the union of less than |htT |-many antichains
for all a. In the case that htT is a successor cardinal κ+ this reduces to
the existence of a map f : T → κ such that f−1(α) is an antichain for all
α < κ.

• T is a κ-tree if htT = κ and all its levels have size less than κ.
• T is Aronszjain if it is a κ-tree with no κ-branch. Note that a special κ-tree
is Aronszjain.

• κ has the tree-property i� there is no Aronszjain tree of height κ.
Theorem 4.8 (Specker). Assume κ is regular and κ<κ = κ. Then there is a special
κ+-tree.
Theorem 4.9. Assume PFA for posets of size continuum. Then ℵ2 has the tree
property.

Now assume (κ+, κ) ³ (ℵ2,ℵ1) for some κ such that κ<κ = κ and let M ≺ H(θ)
be a structure such that otp(M ∩ κ+) = ℵ2. Pick T ∈ M special κ+-tree and a
specializing function f ∈ M for this tree. It is possible to check that πM (T ) is a
special ℵ2-tree as witnessed by the specializing function πM (f), where πM is the
transitive collapse of M . This contradicts the tree property on ℵ2 which follows
from PFA.

5. Some open questions and some comments
The original question by Magidor and Foreman [5] remains open:

Problem 5.1. Is it consistent that S
ℵω+1
ℵ2

6∈ I[ℵω+1]?
Foreman and Cummings have indipendently shown that it is possible to force

rightaway in ZFC by a cardinal preserving forcing a transitive, uniform ω-covering
matrix on ℵ2 such that S(D) fails. Veli£kovi¢ noticed that it is possible to obtain
further counterexamples to S(D) using Todor£evi¢'s techniques of minimal walks
over a ¤(ℵ2)-sequence6. So the re�ection hypothesis on ℵ2 are needed to obtain
that S(D) holds for all uniform and transitive ω-covering matrix D on ℵ2. On the
other hand no strategy to force S

ℵω+1
ℵ2

6∈ I[ℵω+1] seems currently available.
A negative answer to the above problem would entail also a negative answer to

question 4.1, i.e.:
Problem 5.2. Is it consistent that (ℵω+1,ℵω) ³ (ℵ2,ℵ1)?

It seems fruitful to attack this problem directly by means of Shelah's analysis of
the existence of exact upper bounds for families of ordinal functions in Ordω (see
[2] and section 2 of [1]). For example using these techniques we can already prove
that (ℵω+1,ℵω) ³ (ℵn,ℵn−1) fails if n > 3.

A comment on our main theorem 1 is in order: the theorem entails that in a
model of MM Sκ+

λ ∈ I[κ+, κ] for all κ of countable co�nality and for all regular
λ < κ which are ω-inaccessible i.e. which are not the successor of a cardinal of
countable co�nality. We expect this to be close to the best possible result for
models of MM. For example consider the following scenario: κ is a supercompact

6Todor£evi¢'s book [14] gives a complete account of the method of minimal walks and of its
applications.
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cardinal and (λ+ω+1, λ+ω) ³ (ν+ω+1, ν+ω) for some ν > κ holds as witnessed
by structures M such that Mκ ⊆ M . This occurs if there is a 2-huge cardinal
larger than κ. Now force MM collapsing κ to ℵ2. In the resulting generic extension
MM holds and the chain condition of the forcing is small enough to preserve the
truth of (λ+ω+1, λ+ω) ³ (ν+ω+1, ν+ω). This Chang conjecture already implies that
Sλ+ω+1

ν+ω+1 6∈ I[λ+ω+1].
The results of the last sections suggest also the following problem:

Problem 5.3. Is it at all possible that (κ+, κ) ³ (ℵ2,ℵ1) is consistent with MM
for some regular κ?

Note that if we assume GCH above ℵ2, which is certainly consistent with MM,
we have that κ<κ = κ for all regular κ > ℵ1 and thus in any such model of MM
(κ+, κ) ³ (ℵ2,ℵ1) fails for all κ > ℵ1.
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