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Abstract

In this thesis we analyse Whitehead’s conjecture, stating that a commutative group
A is free if and only if the associated group Ext1(A,Z) is trivial. First we introduce
the necessary background in homological algebra and logic needed to properly for-
mulate and tackle the conjecture. Then we present a characterization of the ranks
of Ext1(A,Z) for countable abelian groups A due to Chase (1963), which improves
the classical theorem of Stein (1951), and solves positively Whitehead’s conjecture
for the case of countable abelian groups. Finally we discuss the undecidability of
the conjecture with respect to the standard axioms of mathematics, focusing on its
instantiation for abelian groups of cardinality ℵ1.
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Introduction

In this thesis we analyse Whitehead’s conjecture, which states that a commutative
group A is free if and only if its associated group Ext1(A,Z) is trivial; groups
satisfying the latter property are called Whitehead’s groups, from here onwards W-
groups. Whitehead’s Problem appeared at the beginning of the fifties of the past
century. In 1951 it was proved by Stein that every countable W -group is free. For
uncountable W-groups only partial results have been obtained in ZFC until the early
seventies. In an unexpected turn of events in 1974 Saharon Shelah proved that, at
least for cardinality ℵ1, Whitehead’s Problem is undecidable on the basis of ZFC
set theory, by showing that there are distinct models of ZFC in one of which every
W-group of size ℵ1 is free, while in the other there are non-free W-groups of size ℵ1.
It follows that either the affirmative or the negative answer to Whitehead’s Problem
are both consistent with ZFC. We will retrace the history of the problem, presenting
the progress made over the years. We will follow an approach which was successive
to the first solutions, and which massively uses homological algebraic tools. The
thesis is organized as follows:

• In the first Chapter we introduce the necessary background in homological
algebra and logic needed to properly formulate and tackle the conjecture. We
also introduce basic set theoretic concepts, as well as the Diamond principle
and Martin’s axiom, two combinatorial assumptions which will be used in the
third chapter to establish the undecidability with respect to ZFC of White-
head’s problem.

• In the second Chapter we reduce Whitehead’s problem to the case of torsion-
free groups A having a divisible Ext1(A,Z). This result brings us to the
introduction of a set of invariants for divisible abelian groups: the torsion-free
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rank, and the p-torsion rank, as p ranges over the primes. Making use of the
Pontryagin’s Criterion, we present a characterization of the ranks of Ext1(A,Z)
for a countable abelian group A due to Chase (1963), which improves the
classical theorem of Stein (1951), and solves positively Whitehead’s conjecture
for the case of countable abelian groups.

• In the third Chapter we discuss the undecidability of Whitehead conjecture
with respect to the standard axioms of mathematics given by ZFC, focusing on
its instantiation for abelian groups of cardinality ℵ1. First we provide a gener-
alization of the Pontryagin’s Criterion to κ-free abelian groups of cardinality κ,
where κ is a regular uncountable cardinal, introducing the Chase(κ)-condition
for κ-free Z-modules. Then we prove that the Diamond Principle implies
that each W -group of cardinality ℵ1 satisfies Chase(ℵ1)-condition, and show-
ing (again by means of the Diamond principle) that this assertion brings an
affirmative answer to Whitehead’s Problem for abelian groups of cardinality
ℵ1. In the last section, we prove that Martin’s Axiom entails that there exists
W -groups of size ℵ1 which are not free.

The first two chapters can be read and followed by any reader with a basic
acquaintance with the notions of algebra taught in undergraduate courses. The
third chapter requires the reader to have some familiarity with basic properties of
cardinals and ordinal numbers, and with the basic results regarding stationary sets
and Cubs.



1
Background

In this Chapter, we introduce the definitions and theorems needed to understand the
work presented in this thesis. In the following sections we recall basic definitions as
well as deep theorems. If proofs are omitted, proper references are given. Our main
reference text for what concerns homological algebra is the book An Introduction
to Homological Algebra of Joseph Rotman and for what concerns set theory is Set
Theory of Thomas Jech.

1.1 Algebraic Prerequisites

1.1.1 Rings and modules

Definition 1.1.1. Let (R,+R, ·R, 0R, 1R) be a unitary ring. A left R-module (M,+M , 0M )
is an abelian group, together with an operation · : R ×M → M such that for all
a, b ∈ R and x, y ∈M we have

1. a · (x+M y) = a · x+M a · y;
2. (a+R b) · x = a · x+M b · x;
3. (a ·R b) · x = a · (b · x);
4. 1R · x = x.

Similarly, one defines a right R-module. If R is commutative, then left R-modules
are the same as right R-modules and we will refer to them as R-module. Unless
otherwise specified in what follows“ring” will be a shorthand for “commutative ring
with identity” and “group” will be a shorthand for “commutative group”.

Remark 1. Any commutative group (A,+) can be endowed of the structure of a
Z-module posing n · a = a+ · · ·+ a︸ ︷︷ ︸

n

.

Definition 1.1.2. Given an R-module M , and a submodule N of M , the quotient
R-module is the set of all equivalence classes [m] = {m+ n : n ∈ N} defined by the
equivalence relation m ∼ m′ if and only if m′ +M (−m) ∈ N for any m,m′ ∈ M .

3



4 CHAPTER 1. BACKGROUND

The sum of two equivalence classes [m] and [m′] is the equivalence class [m+m′] and
the multiplication by r ∈ R of [m] is defined as [r ·m]. In this way the set becomes
itself a module over R.

Definition 1.1.3. Let R be a ring, and {Mi : i ∈ I} a family of R-modules indexed
by the set I. The direct sum of {Mi}i∈I is then defined to be the set of all sequences
(αi)i∈I where αi ∈ Mi for all i ∈ I and αi = 0 for cofinitely many indices i. The
direct product is analogous but the indices do not need to cofinitely vanish. In
both cases, the set inherits the R-module structure via component-wise addition
and scalar multiplication. They are respectively denoted by ⊕

i∈I
Mi and

∏
i∈I
Mi.

Definition 1.1.4. A free R-module is the direct sum of modules isomorphic to R. If
these modules are generated by elements xi (i ∈ I), the free R-module F is denoted
by

F =⊕
i∈I
〈xi〉.

The generators {xi}i∈I form a free set of generators or a basis of F .

Remark 2. In case R is a PID, a domain in which every ideal is principal, following
the notation used in the previous definition, we remark that F is, up to isomor-
phism, uniquely determined by the cardinality of the index set I, which is called the
dimension of F : given a prime element p ∈ R, observe that F/pF is a vector space
over the field R/pR, whose R/pR-dimension is exactly the cardinality of I.

We will make use of the following:

Theorem 1.1.5. [10, Thm. 7.1] Let R be a commutative PID, M a free R-module
and N a submodule of M . Then N is free and its dimension is less than or equal to
the dimension of M .

Definition 1.1.6. Given an R-module M , a ∈ M is a torsion element of M if
n · a = 0 for some n ∈ Z. In this case, the least n ∈ N such that n · a = 0 is called
the order of a, ord(a).

The set given by the torsion elements of M is a submodule of M , the torsion
part T (M) of M . If T (M) is trivial, M is a torsion-free module.

Proposition 1.1.7. For any R-module M , M/T (M) is torsion-free.

Proposition 1.1.8. [5, Thm. 15.5] A finitely generated torsion-free group is free.

Definition 1.1.9. A torsion group is a group where each element has finite order
and, similarly, a p-group is a group in which the order of each element is a some
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power of a prime number p ∈ N. Given a group (A, ·), for each prime number p ∈ N

Ap = {a ∈ A : ∃k ∈ N s.t. ord(a) = pk}.

Ap is a subgroup of A and a p-group, it is called the p-component of A.

Theorem 1.1.10. [5, Thm. 8.4] An abelian torsion group (A,+) is representable
as Z-module as the direct sum of its p-components:

A =⊕
p
Ap.

Moreover if A is isomorphic to ⊕
p
Bp with Bp ⊆ A, a p-group, then Bp = Ap for all

primes p.

Definition 1.1.11. Let p a prime number. The Prüfer p-group or the group of type
p∞, here denoted by Z(p∞), is the (unique up to isomorphism) group whose set of
generators are non-null elements {cn}n∈N uniquely characterized by the property
that (viewing Z(p∞) as a Z-module)

p · c1 = 0 and p · cn+1 = cn for all n ∈ N.

Remark 3. Equivalently, Z(p∞) may be defined as the p-component of the quotient
group Q/Z (using addition of rational numbers as group operation). Alternatively it
could be identified with the subgroup of C∗ = C \ {0} consisting of all pn-th roots of
unity for all n ∈ N (the group operation on C∗ being the multiplication of complex
numbers).

Definition 1.1.12. Let R be a ring. We say that an R-module (M,+, ·) is divisible
if M = r ·M = {r ·m : m ∈M} for all r ∈ R \ {0}.

Example. Both Q and Q/Z are divisible Z-modules. Also the groups Z(p∞) (as p
ranges over the primes) are other examples of divisible Z-modules.

Lastly we introduce a group we will make use of in Chapter 2.

Definition 1.1.13. A p-adic integer is a formal series α =
∑
n∈N

aip
i with 0 ≤ ai < p,

i.e. a sequence in {0, . . . , p− 1}N. The set of p-adic integers is denoted by Ẑp.

Ẑp can be endowed of the structure of a commutative group as follows: Assume
α = (ai)i∈N and β = (bi)i∈N are two p-adic integers, we define their sum according
to the following procedure: by induction we define a sequence (ci)i∈N with 0 ≤ ci < p
and a sequence (εi)i∈N of elements of {0, 1} as follows: ε0 = 0 and

ci =

{
ai + bi + εi if 0 ≤ ai + bi + εi < p

ai + bi + εi − p if 0 ≤ ai + bi + εi − p < p.
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In the former case, εi+1 = 0 and in the latter, εi+1 = 1. We let α+ β = (ci)i∈N
1.

If we cut an element α ∈ Ẑp at its i-th term αi = a0 + a1p+ ...+ ai−1p
i−1 we get a

well defined element of Z/piZ. This yields to a map from Ẑp to Z/piZ.

A sequence {αi}i>0 such that αi ≡ αj mod (pj) for all j < i defines a unique p-adic

integer α ∈ Ẑp. This is a bijection which define an isomorphism between Ẑp and the
inverse limit of {Z/piZ}i∈N∗ which is

lim
←−

Z/piZ := {(xi)i∈N∗ ∈
∏
i∈N∗

Z/piZ : xi ≡ xj mod (pj) ∀ j < i}.

Proposition 1.1.14. Ẑp is torsion-free.

Proof. We can identify Ẑp as a subgroup of
∏
i∈N

Z/piZ appealing to the isomorphism

between Ẑp and lim
←−

Z/piZ. Now given a non-zero element (xi)i∈N, suppose there

exists n ∈ Z such that n · xi ≡ 0 mod (pi) for all i ∈ N. Let xj be the least
coordinate which is not zero: since xi ≡ xj mod (pj) for all i ≥ j the maximum
power of p that divides xi is at most pj−1. However n · xi ≡ 0 for all i ∈ N and this
means pi−j+1 divides n for all i ∈ N, a contradiction.

Theorem 1.1.15. [14, Prop. 5.26 - Ex. 5.20] The group of endomorphisms of
Z(p∞) is isomorphic to the group of p-adic integers, i.e. EndZ(Z(p∞)) ∼= Ẑp.

1.1.2 Homological Algebra

Definition 1.1.16. Let R be a ring and suppose M,N and P are R-modules: the
sequence of homomorphisms

M
α−→ N

β−→ P

is exact at N if Im(α) = ker(β). A longer sequence

· · · −→Mi −→Mi+1 −→Mi+2 −→ · · ·

is exact if it is exact at each term. An exact sequence 0 −→M −→ N −→ P −→ 0
is a short exact sequence.

Remark 4. By this definition, α : M −→ N is injective if and only if 0 −→M
α−→ N

is exact and is surjective if and only if M
α−→ N −→ 0 is exact.

1Note that we can identify N with the series
∑
i∈N ai whose terms ai are eventually null, by

mapping (a0, . . . , an, 0, 0, 0, . . . ) to the natural number
∑n
i=0 ai · p

i. Observe that for such series
the above map is an homomorphism, i.e. (a0, . . . , an, 0, 0, 0, . . . ) + (b0, . . . , bn, 0, 0, 0, . . . ) is mapped

to
∑max{m,n}
i=0 (ai + bi)p

i. Restricted to these p-adic numbers, the rules described above are exactly
the rules used for adding natural numbers represented in base p.
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Fact 1.1.17. Assume

0 −→ G′ −→ G −→ G/G′ −→ 0

is an exact sequence of groups such that G′ and G/G′ are torsion-free. Then G is
torsion-free as well.

Proof. Suppose that there exists g ∈ G such that ng = 0 for some n > 0; then
consider g ∈ G/G′; we have ng = 0 in G/G′, which means that g ∈ G′, a contradic-
tion.

Proposition 1.1.18. [2, Question 1] Let R be a ring and 0 −→ M
α−→ N

β−→
P −→ 0 be a short exact sequence of R-modules. The following are equivalent:

1. there exists a section of β, that is, a map s : P −→ N such that β ◦ S = idP ;
2. there exists a retraction of α, that is, a map r : N −→M such that r◦α = idM ;
3. there exists an isomorphism N ∼= M ⊕ P such that the following diagram

commutes.

M ⊕ P

0 M N P 0

π

α

i

β

If one of the above conditions is true we say that the sequence splits.

Definition 1.1.19. Let R be a ring. I is an injective R-module if to each diagram
of R-modules with exact row

0 M N

there exists f : N −→ I making the diagram commute.

I

f
f

This means that every homomorphism from a submodule M of N into I can always
be extended to a homomorphism from the module N into I.

The definition of projective module is the dual notion obtained by reversing the
direction of all the arrows:

Definition 1.1.20. Let R be a ring. P is a projective R-module if to each diagram
of R-modules with exact row
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M N 0

there exists f : P −→M making the diagram commute.

P

f
f

Proposition 1.1.21. [10, Ch. XX, §4 - Ch. III, §4] Let R be a ring and suppose
M and N are R-modules. I is an injective R-module if and only if each short exact
sequence

0 −→ I −→M −→ N −→ 0

splits. Dually, P is a projective R-module if and only if each short exact sequence

0 −→M −→ N −→ P −→ 0

splits.

Proposition 1.1.22. [14, Thm. 3.5 - Lemma 3.33] Let R be a commutative PID
and suppose I and P are R-modules. Then P is projective if and only if it is free
and I is injective if and only if it is divisible.

Remark 5. A free R-module is always projective, even if R is not a PID. Instead,
assuming again that R is not a PID, there are R-modules which are divisible but
not injective.2 Moreover, there are no relations between injective modules and free
modules. Z is free but not injective and Q is injective but not free.

Proposition 1.1.23. [14, Cor. 3.35] Assume R is a commutative PID. Then any
quotient of a divisible R-module is divisible.

Definition 1.1.24. Let M be a Z-module and let I0 and I1 be injective Z-modules.
Assume the following sequence

0 −→M −→ I0
d0−→ I1 −→ 0

is exact. Then the (non-exact) sequence

0 −→ I0
d0−→ I1 −→ 0

is an injective resolution of M .

Definition 1.1.25. Let M be a Z-module and let P0 and P−1 be projective Z-
modules. If the following sequence

0 −→ P−1
d−1−→ P0 −→M −→ 0

2 For example consider R = Z[t], the ring of polynomials over the integers Z and its field
of fractions K (the smallest field in which it can be embedded): then K/R is divisible, seen as
R-module, but it is not injective.
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is exact, then the (non-exact) sequence

0 −→ P−1
d−1−→ P0 −→ 0

is called a projective resolution of M .

Theorem 1.1.26. Each Z-module M is both a quotient of a projective Z-module
and a submodule of an injective Z-module.

Proof. Let M∗ be the set M \ {0}. Consider the free Z-module ⊕
m∈M∗

〈em〉, where

〈em〉 ∼= Z, and define

ϕ : ⊕
m∈M∗

〈em〉 −→M as n1em1 + ...+ nkemk 7→ n1m1 + ...+ nkmk,

where n1, ... , nk ∈ Z and m1, ... ,mk ∈M . This is a group homomorphism onto M ,

and therefore M ∼=
(
⊕

m∈M∗
〈em〉

)
/ ker(ϕ). Since free modules are projective, M is a

quotient of a projective Z-module.

To prove that each Z-module is a subgroup of an injective one, we need a lemma.

Lemma 1.1.27. Let {Iα}α∈A be a family of injective Z-modules. Then
∏
α∈A

Iα is

injective too.

Proof. We recall that the direct product is characterized by the following universal
property: for each group N and each indexed family of group homomorphisms
{ψα : N −→ Iα}α∈A there exists a unique group homomorphism ψ : N −→

∏
α∈A

Iα

that makes the following diagram commute for all β ∈ A

Iβ N

∏
α∈A

Iα

ψβ

∃!ψ
πβ

where πβ :
∏
α∈A

Iα −→ Iβ is the β-th coordinate projection.

Let M and N be two groups and f : M −→ N be an injective group homomor-
phism and consider the following diagram.

0 M N

∏
α∈A

Iα Iβ

f

πβ◦ϕϕ

πβ
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Since Iβ is injective for all β ∈ A, there exists ϕβ : N −→ Iβ which extends
πβ ◦ ϕ. Thus we have a family of group homomorphisms {ϕα}α∈A and therefore
there exists ϕ : N −→

∏
α∈A

Iα such that πβ ◦ ϕ = ϕβ for all β ∈ A. Moreover,

πβ ◦ϕ ◦ f = ϕβ ◦ f = πβ ◦ϕ for all β ∈ A. Thus, for universal property of the direct
product, ϕ ◦ f = ϕ and so

∏
α∈A

Iα is injective.

Given m ∈ M∗, if m is a torsion element, then 〈m〉 ∼= Z/ord(m)Z. Hence, defin-
ing ψm(m) = [ 1

ord(m) ], ψm : 〈m〉 −→ Q/Z is a group homomorphism such that

ϕm(m) 6= [0]. Otherwise, 〈m〉 ∼= Z and, posing ϕm(m) different from [0], one gets a
group homomorphism such that ϕm(m) 6= [0]. In both cases, by injectivity of Q/Z
the inclusion map 〈m〉 ⊆ M induces an extension of ψm to ϕm : M −→ Q/Z: in
particular ϕm(m) 6= [0] for all m ∈M∗.

Consider the family {ϕm}m∈M∗ . By universal property of the direct product, there
exists a unique group homomorphism

ϕ : M −→
∏

m∈M∗
Q/Z such that ϕ(x) = (ϕm(x))m∈M∗ for all x ∈M.

Moreover, ϕ is injective, since ϕm(m) 6= 0 for all m ∈M∗. By the previous lemma,∏
m∈M∗

Q/Z is injective. Therefore M is a subgroup of an injective Z-module.

Corollary 1.1.28. Every Z-module M admits injective and projective resolutions.

Proof. Since there exists an injective homomorphism between M and I, an injective
group, we have the exact short sequence

0 −→M
i−→ I −→ I/i(M) −→ 0.

By Proposition 1.1.23,
0 −→ I −→ I/i(M) −→ 0

is an injective resolution of M . Similarly, we have an exact sequence

0 −→ ker(ϕ) −→ P
ϕ−→M −→ 0,

where P is projective, thus free; hence also ker(ϕ) is free by Theorem 1.1.5. Therefore

0 −→ ker(ϕ) −→ P −→ 0

is a projective resolution for M .

Definition 1.1.29. Fix Z-modules M and N . Using the notation of the previous
proof, let 0 −→ I

π−→ I/i(N) −→ 0 be an injective resolution for N . One defines

Ext1(M,N) ∼=
HomZ(M, I/i(N))

π∗(HomZ(M, I))
,
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where π∗ : HomZ(M, I) −→ HomZ(M, I/i(N)) is defined as π∗(f) = π ◦ f with
f ∈ HomZ(M, I).

The above definition is well posed, i.e. it is independent of the injective resolution
of N one chooses:

Theorem 1.1.30. [14, Prop. 6.40] Let M,N be Z-modules. Fix

0 −→ N
i0−→ I0

π0−→ I0/i0(N) −→ 0 and 0 −→ N
i1−→ I1

π1−→ I1/i1(N) −→ 0

short exact sequences such that I0, I1 are injective, and let

0 −→ I0
π0−→ I0/i0(N) −→ 0 and 0 −→ I1

π1−→ I1/i1(N) −→ 0

be the respectively injective resolutions for N . Then

HomZ(M, I0/i0(N))

π0∗(HomZ(M, I0))
∼=
HomZ(M, I1/i1(N))

π1∗(HomZ(M, I1))
.

Definition 1.1.31. Fix Z-modules M and N . With the notation used in the proof

of the Corollary 1.1.28, let 0 −→ ker(ϕ)
i−→ P −→ 0 be a projective resolution for

M . One defines

Ext1(M,N) ∼=
HomZ(ker(ϕ), N)

i∗(HomZ(P,N))
,

where i∗ : HomZ(P,N) −→ HomZ(ker(ϕ), N) is defined as i∗(f) = f ◦ i with
f ∈ HomZ(P,N).

As before, Ext1(M,N) does not depend on the projective resolution for M chosen.
Indeed:

Theorem 1.1.32. [14, Prop. 6.20] Let M,N be Z-modules. Fix

0 −→ ker(ϕ0)
i0−→ P0

ϕ0−→M −→ 0 and 0 −→ ker(ϕ1)
i1−→ P1

ϕ1−→M −→ 0

short exact sequences such that P0, P1 are projective, and let

0 −→ ker(ϕ0)
i0−→ P0 −→ 0 and 0 −→ ker(ϕ1)

i1−→ P1 −→ 0

be the respectively projective resolutions for M . Then

HomZ(ker(ϕ0), N)

i∗0(HomZ(P0, N))
∼=
HomZ(ker(ϕ1), N)

i∗1(HomZ(P1, N))
.

We now present a result which is a particular case of a deep theorem in Homological
Algebra, which will be frequently used in this thesis: in the most general formula-
tion the setting is that of Abelian Categories, but the simplified assertion is all we
need in this thesis. For a detailed discussion, see Chapter 6 of An Introduction of
Homological Algebra, book of Joseph J. Rotman.
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Theorem 1.1.33. [14, Thm. 6.27 and 6.43] Let 0 −→ X
α−→ Y

β−→ Z −→ 0 be
an exact sequence of Z-modules,and let M,N be Z-modules. There is a long exact
sequence

0 −→ HomZ(Z,N)
β∗−→ HomZ(Y,N)

α∗−→ HomZ(X,N) −→

−→ Ext1(Z,N)
β∗−→ Ext1(Y,N)

α∗−→ Ext1(X,N) −→ 0,

where the maps β∗ and α∗ are defined as the right composition by respectively β
(− ◦ β) and α (− ◦ α) and the maps β∗ and α∗ are always defined as the right
composition by respectively β and α, but passed to the quotient. Moreover, there is
a long exact sequence

0 −→ HomZ(M,X)
α∗−→ HomZ(M,Y )

β∗−→ HomZ(M,Z) −→
−→ Ext1(M,X) −→ Ext1(M,Y ) −→ Ext1(M,Z) −→ 0,

where the maps β∗, α∗, β∗ and α∗ are defined as before, but this time as the left
composition.

Theorem 1.1.34. (Balance for Ext) [10, Cor XX.8.5] Let M,N be Z-modules.
Then

Ext1(M,N) ∼= Ext1(M,N).

Example. Let us consider M = Z/mZ and N = Z/nZ, where m,n and positive
integers. A projective resolution for Zm could be obtained by the exact sequence

0 −→ Z ·m−→ Z −→ Z/mZ −→ 0,

where the first map is the multiplication by m. Therefore

Ext1(Z/mZ,Z/nZ) ∼=
HomZ(Z,Z/nZ)

(·m)∗ (HomZ(Z,Z/nZ))
∼= Z/ gcd(m,n)Z.

Taking instead an injective resolution from the exact sequence

0 −→ Z/nZ −→ Q/Z
1 7−→ 1

n

·n−→ Q/Z −→ 0,

we obtain Ext1(Z/mZ,Z/nZ) ∼=
HomZ(Z/mZ,Q/Z)

(·n)∗ (HomZ(Z/mZ,Q/Z))
∼= Z/ gcd(m,n)Z. As

expected, we have Ext1(Z/mZ,Z/nZ) ∼= Ext1(Z/mZ,Z/nZ).

Keeping in mind the previous isomorphism, from here onwards we will identify the
two groups and write Ext1 instead of Ext1. The Balance for Ext allows us to
use injective resolution for N as well as projective resolution for M to compute
Ext1(M,N).

Lastly, we remind the behaviour of the group of homomorphisms HomZ(A,B) to-
ward direct sums and products and, consequently, Ext1(A,B).
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Theorem 1.1.35. [5, Thm.s 43.1 and 43.2] Let A,B, {Ai}i∈I , {Bi}i∈I be all Z-
modules. Then

HomZ

(
⊕
i∈I
Ai, B

)
∼=
∏
i∈I
HomZ(Ai, B) (1.1)

HomZ

(
A,
∏
i∈I
Bi

)
∼=
∏
i∈I
HomZ(A,Bi) (1.2)

Proof. Let ϕ : ⊕
i∈I
Ai −→ B be a homomorphism and consider the map ϕ 7→ (ϕ|Ai)i∈I

of HomZ

(
⊕
i∈I
Ai, B

)
into

∏
i∈I
HomZ(Ai, B). It is left to the reader to check that the

map is an isomorphism.

Similarly, if πj :
∏
i∈I
Bi −→ Bj is the j-th coordinate projection, given a homo-

morphism ψ : A −→
∏
i∈I
Bi, one conclude that ψ 7→ (πi ◦ ψ)i∈I is an isomorphism

too.

Corollary 1.1.36. [5, Cor. 43.4] Let T (A) be the torsion subgroup of a group A.

HomZ(T (A),Q/Z) ∼=
∏
p

HomZ(Tp(A),Z(p∞))

where Tp(A) and Z(p∞) are respectively the p-components of T (A) and Q/Z as p
ranges over the primes.

1.2 Logical Prerequisites

1.2.1 Basic set theoretic notions

Like any other mathematical theory, Set Theory has a universe and the axioms and
theorems have to hold within the universe. Informally, the objects in the universe of
Set Theory are called sets, but we talk also about collections of elements from that
universe. More formally, any collection of the form {x : φ(x)}, where φ is a formula,
is a class. We allow φ to have free variables other then x, which are thought of as
parameters upon which the class depends.

A set is a class which belongs to another class. A class is not necessarily a set and
the class of all sets V = {x : x = x}, called the universal class or the universe, is an
example.

Definition 1.2.1. A total order < of a set P is a well-ordering if every non-empty
subset of P has a least element.

Definition 1.2.2. A set T is transitive if x ⊆ T for each element x ∈ T . A set is
an ordinal number (simply an ordinal) if it is transitive and well-ordered by ∈.
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The class of all ordinal numbers is denoted by Ord. Unless otherwise specified, when
we talk about ordinals by β < α we will mean β ∈ α.

By Axiom of Union, for any set X there exists a set Y = ∪X, the union of all
elements of X. In symbols, Y = {x : x ∈ y for some y ∈ X}.

Definition 1.2.3. Given a partially ordered class (C,≤) and X a non-empty subset
of C, then c ∈ C is a upper bound of X if for all x ∈ X we have x ≤ c. c is the
supremum of X if c is the least upper bound of X. The supremum of X (if it exists)
is denoted by supX.

Lemma 1.2.4. [7, Lemma 2.3] If X is a non-empty set of ordinals, then ∪X is
an ordinal, and ∪X = supX.

Definition 1.2.5. A transfinite sequence is a function whose domain is an ordinal
α, and it is denoted by 〈aξ : ξ ∈ α〉. It is also called a sequence of lenght α. Given
a sequence 〈βξ〉ξ∈α of ordinals indexed by α, we define the sup

ξ∈α
βξ as the supremum

of the set {βξ : ξ ∈ α}, which is an ordinal by Lemma 1.2.4.

We define α+ 1 = α ∪ {α} (the successor of α). If α = β + 1, then α is a successor
ordinal. Otherwise α = sup{β : β ∈ α} = ∪α and α is called a limit ordinal.

We denote the least non-zero limit ordinal ω (which is N): the ordinals less than ω
are called finite ordinals, or natural numbers.

We recall that between linearly ordered set an isomorphism is a one-to-one order
preserving function.

Proposition 1.2.6. [7, Thm. 2 and 15] Every set can be well-ordered and each
well-ordered set is isomorphic to a unique ordinal number.

The Induction Principle and the Recursion Theorem are common tools for proving
theorems about natural numbers: now we present their generalizations for ordinal
numbers that we will use in the third Chapter.

Theorem 1.2.7 (Transfinite Induction). [1, Thm. 40.1] Let P (x) be a property.
Assume that, for all ordinal numbers α,

if P (β) holds for all β ∈ α, then P (α).

Then P (α) holds for all ordinals α.

Theorem 1.2.8 (Transfinite Recursion, Definition by Transfinite Induction). [1,
Thm. 30.2] Let H : Ord × V −→ V be a class function (a class function is a
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class which is a relation with the property that if both (x, y) and (x, y′) belong to
it then y = y′.). Then there exists a unique function F : Ord −→ V such that
F (α) = H(α, F |β:β∈α) for all ordinals α.

Definition 1.2.9. An ordinal α is called a cardinal number, or a cardinal, if |α| 6= |β|
for all β ∈ α.

If X is a well-ordered set, by 1.2.6 there exists an ordinal α such that |X| = |α|.
Thus we let |X| be the least ordinal such that |X| = |α|, which is obviously a car-
dinal. For every α ∈ Ord, we let α+ denote the least cardinal greater than α (the
cardinal successor of |α|). We will use ℵ0 to denote |ω| and ℵ1 for |ω|+ when we
want to underline the cardinality of those sets.

We briefly report the arithmetic operations on cardinals: it is defined as follows:

κ+ λ = |A∪B| where |A| = κ, |B| = λ and A,B are disjoint,

κ · λ = |A×B| where |A| = κ, |B| = λ,

κλ = |BA| where |A| = κ, |B| = λ and BA is the set of all function from A to B.

Naturally, the above definition is meaningful only if it does not depend on the
choice of the sets A and B. However, addition and multiplication of infinite cardinal
numbers is a trivial matter.

Theorem 1.2.10. Let κ and λ be infinite cardinals. Then we have κ+ λ = κ · λ =
max(κ, λ).

For the exponentiation of cardinals we have the following theorem.

Theorem 1.2.11. [7, Thm. 6] (Cantor’s Theorem) For every cardinal κ, κ < 2κ.

Definition 1.2.12. Let α and β be two ordinals. A function f : α −→ β is cofinal
in β if its range is not limited, i.e. sup

ξ∈α
f(ξ) = β. The cofinality of β, denoted by

cf(β), is the least ordinal α such that there exists a cofinal function from α into β.
An ordinal β is regular if cf(β) = β.

Unless otherwise specified, κ will be a regular uncountable cardinal.

Definition 1.2.13. We say that a set C ⊆ κ is closed unbounded (Cub) in κ if

1. for every increasing sequence {αδ}δ∈γ∈κ, sup
δ∈γ

αδ ∈ C (closed);

2. for every α ∈ κ, there is a β > α such that β ∈ C (unbounded).
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Lemma 1.2.14. [7, Lemma 7.3] If C and D are closed unbounded, then C ∩D is
closed unbounded.

Definition 1.2.15. A function f : κ −→ κ is normal if it is increasing and contin-
uous or, equivalently, if f(α) = sup

δ∈α
f(δ) for each limit ordinal α ∈ κ.

Remark 6. A range of a normal function on κ is a Cub on κ. Conversely, if C is a
Cub there is a unique normal function that enumerates C (i.e. such that its range
is exactly C).

Definition 1.2.16. A set S ⊆ κ is said stationary if S ∩ C 6= ∅ for every Cub
C ⊆ κ.

Definition 1.2.17. Let A be a set of cardinality ≤ κ. A κ-filtration of A is an
ascending chain

A0 ⊆ A1 ⊆ · · · ⊆ Aα ⊆ · · ·

where α belongs to κ such that:

1. |Aα| < κ for each α ∈ κ;
2. Aλ =

⋃
α∈λ

Aα for each limit ordinal λ ∈ κ (continuity);

3. A =
⋃
α∈κ

Aα.

The κ-filtration is said strictly increasing if the containments are all strict. When A
is a group for a κ-filtration of A we mean a κ-filtration of A as a set and such that
Aα is a group for all α ∈ κ.

The statements and theorems of Chapter 2 are framed in the standard context of
ZFC set theory. However the problem we will discuss is connected with questions
of provability and consistency: so now we introduce the additional axioms which we
will make use in Chapter 3.

1.2.2 Diamond

A principle we will see is a combinatorial consequence of the Axiom of Constructibil-
ity (denoted by V=L). Kurt Gödel introduced the Axiom of Constructibility in con-
nection with his prof that the Axiom of Choice and the Continuum Hypothesis (i.e.
ℵ1 = 2ℵ0) are relatively consistent with ZF ([7, Thm. 32 and 33]).
As mentioned, in the second section of Chapter 3 we will work in the framework of
ZFC plus the additional axiom V = L but actually we will make use only of the
following ”prevision” property.

Definition 1.2.18. Let E be a stationary subset of a regular uncountable ordinal
κ: ♦κ(E) (the Diamond Principle for E) holds if there exists a sequence of sets
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{Xα}α∈E such that

1. Xα ⊆ α for all α ∈ E;

2. the set {α ∈ E : Xα = X ∩ α} is stationary in κ for all X ⊆ κ.

Remark 7. Remark that if E ⊆ F are stationary sets and ♦κ(E) holds, ♦κ(F )
holds as well.

♦κ holds if ♦κ(E) holds for all stationary sets E. The consistence of this property
follows from the next theorem proved by Jensen.

Theorem 1.2.19. [8, Lemma 6.5] ZFC + V = L implies that ♦κ holds for all
regular uncountable cardinal κ. Hence ♦κ is consistent with ZFC.

Now we present some convenient consequences of the Diamond Principles for κ-
filtrations.

Theorem 1.2.20. Let A be a set of cardinality κ and {Aα}α∈κ a κ-filtration strictly
increasing of A. Let E be a stationary subset of κ. If ♦κ(E) holds then:

1. there exists a family {Yα}α∈E such that for each α ∈ E, Yα ⊆ Aα, and for all
X ⊆ A the set {α ∈ E : Yα = X ∩Aα} is stationary in κ;

2. let B be a set of cardinality ≤ κ and let {Bα}α∈κ a κ-filtration of B: there
is a family {gα}α∈E such that for each α ∈ E, gα is a function between Aα
and Bα, and for every function f : A −→ B the set {α ∈ E : f |Aα = gα} is
stationary in κ.

First of all, we need a lemma.

Lemma 1.2.21. Given {Aα}α∈κ as above there exists a Cub C ⊆ κ such that for
all β ∈ C, |Aβ+ \Aβ| = |β+ \ β|, where β+ = inf{γ ∈ C : β ∈ γ}.

Proof. Since the κ-filtration is strictly increasing |Aγ \Aβ| ≥ |γ \β| for all β ∈ γ ∈ κ.
Fixed β, we have

|γ0 \ β| ≤ |Aγ0 \Aβ| ≤ |Aγ0 | < κ,

thus there exists a γ1 ∈ κ such that |Aγ0 | ≤ |γ1 \ β| (for istance, one can define
γ1 = β + |Aγ0 | ∈ κ). In this way, by induction, one can build {γn}n∈ω ⊆ κ so that:

· · · ≤ |γn \ β| ≤ |Aγn \Aβ| ≤ |γn+1 \ β| ≤ · · · .

If γ(β) = sup
n∈ω

γn (which still belongs to κ, since κ is regular and uncountable), then

|Aγ(β) \Aβ| = |γ(β) \ β|.

Therefore given β ∈ κ, set γ(β) equal to an ordinal such that |Aγ(β)\Aβ| = |γ(β)\β|,
and define γµ(β) by transfinite induction as follows:
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If µ = δ + 1, then set γµ(β) = γ(γδ(β)) ∈ κ.

If µ is a limit ordinal, then set γµ(β) = sup
δ∈µ

γδ(β) which belongs to κ always by

regularity of κ.
This construction gives rise to a function f : κ −→ κ which maps µ into γµ(β). This
is a normal function by how we have defined γµ(β). Therefore f [κ] = C is a Cub
and it has the required properties.

Proof of 1. Now consider the Cub C foreseen by Lemma 1.2.21: since |Aβ+ \Aβ| =
|β+ \ β| for all β ∈ C, then one could define by transfinite induction a bijective
function F : κ −→ A such that F [β] = Aβ for all β ∈ C. Consider the sequence of
sets {Xα}α∈E , whose existence is guaranteed by ♦κ(E), and define Yα = F [Xα] if
α ∈ E ∩ C and Yα = ∅ if α /∈ E ∩ C. First of all we notice that Yα = F [Xα] ⊆
F [α] = Aα for all α ∈ E ∩ C, since Xα ⊆ α. On the other hand, ∅ ⊆ Aα always,
and so Yα ⊆ Aα for each α ∈ E. Now consider X ⊆ A. We have the following set
relations:

{α ∈ E : Yα = X∩Aα} ⊇ {α ∈ E∩C : Yα = X∩Aα} = {α ∈ E∩C : F [Xα] = X∩F [α]}.

Define X = F−1(X). Then the set {α ∈ E : Xα = X ∩ α} is stationary in κ.
However, if S is stationary and C is a Cub, S ∩ C is stationary. Thus the set

{α ∈ E : Xα = X ∩ α} ∩ C = {α ∈ E ∩ C : Xα = X ∩ α}

is stationary. If Xα = X ∩ α, then F [Xα] = F [X ∩ α] = F [X] ∩ F [α] = X ∩ F [α]
since F is a bijection. Hence

{α ∈ E ∩ C : Xα = X ∩ α} ⊆ {α ∈ E : Yα = X ∩Aα}

and the set {α ∈ E : Yα = X ∩Aα} is stationary too.

Proof of 2. Define Z as A×B and {Zα}α∈κ as {Aα ×Bα}α∈κ. Observe that Z has
still cardinality equal to κ and {Zα}α∈κ is an increasing κ-filtration of Z. By the
first part of this theorem, there exists a family {Yα}α∈E such that for each α ∈ E,
Yα ⊆ Aα × Bα, and for all X ⊆ A × B, the set {α ∈ E : Yα = X ∩ (Aα × Bα)}
is stationary in κ. For each α define gα = Yα if Yα is a function, and gα being an
arbitrary function otherwise.

Pick a function f ⊆ A × B; then S = {α ∈ E : Yα = f ∩ (Aα × Bα)} is stationary.
Now define Bα = Bα ∩ f [A]. {Bα}α∈κ is a κ-filtration for f [A]. Finally consider
B′α = f [Aα]; since f [

⋃
i∈I
Ai] =

⋃
i∈I
f [Ai], then also {B′α}α∈κ is a κ-filtration of f [A].

By Lemma 3.1.1 we have that the set C = {α ∈ κ : Bα ∩ f [A] = f [Aα]} is a Cub. If
Bα ∩ f [A] = f [Aα], then f [Aα] ⊆ Bα. Hence we have the following relations:

S ∩ C ⊆ {α ∈ E : Yα = f ∩ (Aα ×Bα)} ∩ {α ∈ κ : f [Aα] ⊆ Bα}.

The right-side set is equal to {α ∈ E : Yα = f |Aα}. It follows that for all α ∈ S ∩C,
Yα = f |Aα , a function and so gα = f |Aα . Since S ∩ C is stationary, the family
{gα}α∈E is the desired one.
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1.2.3 Martin’s axiom

Let (P,<) be a partially ordered set (also called a poset).

Definition 1.2.22. A set D ⊆ P is dense in P if for every p ∈ P there exists q ∈ D
such that q ≤ p.

Definition 1.2.23. A set F ⊆ P is a filter on P if it satisfies the following requests:

1. F is non-empty;
2. if p ≤ q and p ∈ F , then q ∈ F ;
3. if p, q ∈ F , there exists an r ∈ F such that r ≤ p and r ≤ q.

Definition 1.2.24. Consider a set D ⊆ P(P ). A subset G ⊆ P is a D-generic filter
on P if:

1. G is a filter;
2. G ∩D 6= ∅ for each dense subset of P contained in D.

Definition 1.2.25. Given a poset (P,<) two elements p1 and p2 are compatible
(p1 ‖ p2), if there exists q ∈ P such that both q ≤ p1 and q ≤ p2. Otherwise they
are incompatible (p1 ⊥ p2).

Definition 1.2.26. A poset (P,<) satisfies the countable chain condition (ccc) if
every collection of pairwise incompatible elements of P is at most countable, i.e. for
each subset {pα}α∈ℵ1 there exist γ ∈ β ∈ ℵ1 such that pγ ‖ pβ.

Lemma 1.2.27. If (P,<) is a poset and D is a countable collection of dense subsets
of P , then there exists a D-generic filter on P .

Proof. Let {Dn}n∈ω be an enumeration of the sets in D. Define by induction a family
{dn}n∈ω as follows: let d0 be a generic element of D0. Let dn ∈ Dn be such that
dn ≤ dn−1 (a such defined dn exists since Dn is dense). Then the set G = {p ∈ P :
there is n ∈ ω such that dn ≤ p} is a filter on P , and G ∩ Dn 6= ∅. Thus G is a
D-generic filter on P .

Remark 8. If D is an uncountable collection of dense subsets of (P,<) it is not
always true that there exists a D-generic filter on P .

Proof. Consider the set P = {f : F −→ ω1 : F ⊆ ω and |F | < ℵ0} ordered by
reversed inclusion. For each α ∈ ℵ1 define Dα = {f ∈ P : α ∈ ran(f)}, where
ran(f) is the range of f . If g : G −→ ω1 is an element of P \ Dα, we choose an
integer which does not belong to the domain of g and define g̃ : G∪{n} −→ ω1 as
the map which extends g letting g̃(n) = α. It follows that g̃ ∈ Dα, and so Dα is
dense for each α ∈ ω1. Thus the set D = {Dα : α ∈ ℵ1} is an uncountable collection
of dense subsets of P .
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Suppose by way of contradiction that there exists a D-generic filter G on (P,<).
If f and g belong to G then they have to coincide over the intersection of their
domains, since there exists a function which extends both of them. It follows that,
taking only the functions in G, each non-negative integer can be mapped at most in
one element of ω1. Thus the union of the ranges of the functions in G is a function
g with countable domain (being a subset of N). However the condition for G to be
D-generic grants that the range of g is the whole ω1 which is uncountable. This is
a contradiction.

Martin’s Axiom springs from a generalization of Lemma 1.2.27.

Definition 1.2.28 (Martin’s Axiom, MA). If (P,<) is a poset that satisfies the
ccc and D is a collection of less than 2ℵ0 dense subsets of P , then there exists a
D-generic filter on P .

The consistency of MA with ZFC follows from the following theorem:

Theorem 1.2.29 (Solovay, Tennenbaum). [7, Thm. 51] Martin’s Axiom plus the
negation of the Continuum Hypothesis (ℵ1 < 2ℵ0) is consistent with ZFC.

The particular consequence of Martin’s axiom we will use is given by the following:

Lemma 1.2.30. Assume MA. Let A and B be two sets of cardinality < 2ℵ0, and
let P be a family of functions with the following properties:

1. if f ∈ P , then f is a function f : A′ −→ B where A′ ⊆ A;

2. for every a ∈ A and every f ∈ P , there exists g ∈ P such that f ⊆ g and
a ∈ dom(g);

3. for each uncountable P ′ ⊆ P , there exists f1, f2 ∈ P ′ and f ∈ P such that
f1 6= f2 and f1 ⊆ f and f2 ⊆ f .

Then there exists a function g : A −→ B defined on all of A such that for each finite
F ⊆ A there exists f ∈ P such that F ⊆ dom(f) and f �F= g �F .

Proof. Consider P ordered by reversed inclusion, i.e. f1 ≤ f2 if and only if f1 extends
f2. For every F ⊆ A of finite cardinality, let DF be the set {f ∈ P : F ⊆ dom(f)},
where dom(f) is the domain of f , and let D be the collection of the DF . The
cardinality of D is less than 2ℵ0 since

|D| ≤ |{F ⊆ A : |F | < ℵ0}| ≤
∑
n∈ω
|A|n = ℵ0 · |A| < 2ℵ0 .

By the second property of P each DF is dense. The third property is exactly the
ccc for the order defined on P . Therefore by Martin’s Axiom, it follows that there
exists a D-generic filter G on P .
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For each F ⊆ A of finite cardinality let gF be an element of G∩DF . Define
g : A −→ B as

⋃
G. Since G is a filter, g is a function. Clearly for any F finite

subset of A, g � F = gF . In particular since G ∩DF is dense for any finite subset of
A, for any a ∈ A g(a) = gF (a) for some F 3 a with gF ∈ G.
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2
ZFC results

In this Chapter we give a variety of results on the structure of Ext1(A,Z) which
can be proved in ZFC. First of all we prove that if A is torsion free Ext1(A,Z) is
divisible and draw some elementary but very useful consequences from this fact.

Lemma 2.0.1. Assume A is a Z−module such that T (A) = 0, where T (A) denote
the torsion subgroup of A. Then Ext1(A,M) is injective for any Z−module M .

Proof. Consider an injective resolution of M

0 −→M
i−→ I

π−→ I/i(M) −→ 0.

Then we have

Ext1(A,M) =
HomZ(A, I/i(M))

π∗(HomZ(A, I))
.

By Remark 1.1.23, in order to see that Ext1(A,M) is divisible it is enough to prove

this for HomZ(A, I/i(M)). Consider the map A
·n−→ A given by the multiplication

by a non-zero integer n: A torsion-free implies ·n in injective. Since I/i(M) is
injective any map between A and I/i(M) factorizes through ·n.

0 A A

I/i(M)

·n

φ
ψ

Or rather HomZ(A, I/i(M)) is divisible, and so injective.

Let A be a group: consider the short exact sequence

0 −→ T (A) −→ A −→ A/T (A) −→ 0.

Applying HomZ(−,Z), by Theorem 1.1.33, we obtain the long exact sequence

0 −→ HomZ(A/T (A),Z) −→ HomZ(A,Z) −→ HomZ(T (A),Z) −→
−→ Ext1(A/T (A),Z) −→ Ext1(A,Z) −→ Ext1(T (A),Z) −→ 0.

23
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Since HomZ(T (A),Z) = 0 (given that the unique element of finite order of Z is 0)
we get the following short exact sequence:

0 −→ Ext1(A/T (A),Z) −→ Ext1(A,Z) −→ Ext1(T (A),Z) −→ 0. (2.1)

Since A/T (A) has no torsion part, Ext1(A/T (A),Z) is injective and so the sequence
2.1 splits by Proposition 1.1.21 and Lemma 2.0.1. Hence we obtain:

Proposition 2.0.2. Let A be any commutative group. Then:

Ext1(A,Z) ∼= Ext1(T (A),Z)⊕Ext1(A/T (A),Z).

2.1 Ext1(A,Z) for torsion groups A

We briefly describe how to characterize Ext1(A,Z) for torsion groups A. Take the
injective resolution of Z given by

0 −→ Q −→ Q/Z −→ 0.

Since HomZ(T (A),Q) is trivial, we get that

Ext1(T (A),Z) ∼=
HomZ(T (A),Q/Z)

π∗(HomZ(T (A),Q))
∼= HomZ(T (A),Q/Z).

By Corollary 1.1.36, HomZ(T (A),Q/Z) ∼=
∏
p
HomZ(Tp(A), (Q/Z)p), where Tp(A)

and (Q/Z)p ∼= Z(p∞) are respectively the p-components of T (A) and Q/Z, as p
ranges over the primes. For a torsion group A a complete description of the ho-
momorphism groups HomZ(A,Z(p∞)) and its structure is given in [5, Thm. 47.1].
In the next sections of this Chapter we give a thorough and detailed analysis of
the structure of Ext1(A,Z) for A torsion free and countable. Instead in the next
Chapter we will discuss the possible structure of Ext1(A,Z) for uncountable groups
A.

2.2 The ranks of a group

Every abelian group A contains subgroups that are direct sums of cyclic groups. We
will use those which are, in a certain sense, maximal among them to define cardinal
numbers depending only on A. This leads to the definition of ranks of A, which
extend to groups the notion of dimension for vector spaces.

Definition 2.2.1. A system {a1, ..., ak} of non-zero elements of a group A is called
independent if

k∑
i=1

niai = 0 (ni ∈ Z) =⇒ niai = 0 ∀i ∈ {1, ... , k}.

This means that ni = 0 if ord(ai) /∈ N and ord(ai)|ni otherwise.
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Definition 2.2.2. A system L = {ai}i∈I of non-zero elements of A is independent
if each finite subsystem of L is independent (remark that I could be infinite). An
independent system M of A is maximal if there is no independent system in A
containing M properly.

An independent system cannot contain equal elements, hence it is a set.

Definition 2.2.3. Given an independent system L, an element g ∈ A is dependent
on L if there exist m,n1, ... , nk ∈ Z and a1, ... , ak ∈ L such that

mg =
k∑
i=1

niai 6= 0.

Definition 2.2.4. Given a group A, let M0 be an independent system of A con-
taining only elements of infinite order maximal with respect to this property1. The
torsion-free rank of A, denoted by r0(A), is the cardinality of M0.
Analogously, for p ranging over the prime numbers, we define the p-rank rp(A) of A
as the cardinality of an independent system Mp which contains only elements whose
orders are powers of p rather than infinite.

We will argue that for any group A the cardinals r0(A) and rp(A) are independent
respectively of the maximal systems M0 and Mp chosen to compute them.

Theorem 2.2.5. For any group A r0(A) and rp(A) do not depend on the chosen
independent systems M0 and Mp, for any p, hence it gives well defined notions of
torsion-free rank and p-ranks for A.

We start with the torsion-free rank.

Proof. We first prove the theorem assuming A is torsion-free.

Let M be an independent maximal system for A. Since A is torsion-free,
every element of M has infinite order. For g ∈ A \ {0}, {M, g} is no longer
independent, which means that there exist n, n1, ... , nk ∈ Z and a1, ... , ak ∈M
such that

ng =
k∑
i=1

niai.

Assume ng′ = ng, then n(g′ − g) = 0, giving that g′ = g (since A is torsion-
free). So one can injectively associate a tuple {n, n1, ... , nk, a1, ... , ak} to each
element of A. It follows that

|A| ≤ |
⊔
k∈N

Zk+1 ×Mk| =
∑
k∈N
|M | · ℵ0 = max{|M |,ℵ0}.

1Zorn’s Lemma ensures its existence.
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Since |M | ≤ |A| always, if |M | ≥ ℵ0, then |A| = |M |. Hence in this case the
rank is well defined. Suppose now that M = {a1, . . . , an} is finite. Assume
{b1, ... , bm} is an independent system then

〈bi〉∩
∑
j 6=i
〈bj〉 = {0} =⇒ 〈b1, ... , bm〉 =

m

⊕
i=1

bi ∼= Zm.

By maximality of M , for all j ∈ {1, ... ,m} there exists mj ∈ Z such that
0 6= mjbj ∈ 〈a1, ... , an〉. Observe that if {b1, ... , bm} is an independent system

then {m1b1, ... ,mmbm} is also independent. Thus
m

⊕
i=1
mibi ⊆

n

⊕
j=1

aj . Since Z is

a PID, by Theorem 1.1.5 we obtain m ≤ n. We conclude that every maximal
independent system in A has the same cardinality also in case M is finite.

Now we assume A has torsion and we fix M independent system for A maximal with
respect to the property of containing only elements of infinite order. We will show
that |M | = r0(A/T (A)), yielding that r0(A) = |M | = r0(A/T (A)) is well defined.

Assume a ∈ M then a 6= 0 in A/T (A), since a /∈ T (A). Now pick a subset
{a1, ... , am} ⊆M :

n1a1 + ...+ nmam = 0 =⇒ n1a1 + ...+ nmam = b ∈ T (A).

If b = 0, then ni = 0 for all i = 1, ... ,m (since M is an independent system of

torsion-free elements 〈b1, ... , bm〉 =
m

⊕
i=1

bi ∼= Zm).

Otherwise, multiplying by the order of b, we obtain

ord(b)n1 · a1 + ...+ ord(b)nm · am = 0,

which (by the same argument) holds only if ord(b)ni = 0 for all i = 1, ... ,m,
whence ni = 0 for all i = 1, ... ,m.

Vice versa, if {a1, ... , am} ⊆ A/T (A) is an independent system for A/T (A)
and ai = bi + T (A) for all i, we get that

n1b1 + ...+ nmbm = 0 =⇒ n1a1 + ...+ nmam = 0,

giving once again that ni = 0 for all i ∈ {1, ... ,m}. This proves that r0(A) =
r0(A/T (A)), and it is well defined also in this case.

We now prove the theorem for p an arbitrary prime.

Definition 2.2.6. We recall that the socle S(A) of a group A is the subgroup
consisting of all a ∈ A whose order is a square-free integer.

Proof. The proof is an immediate corollary of the following remark.
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Remark 9. Let A be a group. M = {ai}i∈I is an independent system of A, con-
taining only elements whose orders are powers of a fixed prime p, if and only if
M ′ = {po(ai)−1ai}i∈I is an indepedent system of S(Ap), where ord(ai) = po(ai) for
i ∈ I.

Proof. Let {a1, ... , ak} be an independent system. If there exists aj whose order is
greater that p, it is clear that {a1, ... , p · aj , ... , ak} is independent too.
Vice versa, if {p·a1, a2, ... , ak} is independent, then from n1a1+...+nkak = 0 follows
that p · n1a1 + ... + p · nkak = 0 or p · niai = 0 for all i ∈ {1, ... , k}. In particular
ord(a1)|p·n1 and, since ord(a1) ≥ p2, p|n1. By the independence of {p·a1, a2, ... , ak}
we can conclude that niai = 0 for all i ∈ {1, ... , k}, which is exactly the independence
of {a1, ... , ak}.

Therefore for any group A and any independent system M for A containing only
elements of order a power of p and maximal with this property we get that M has
the same cardinality of M ′ = {po(ai)−1ai}i∈I , a maximal independent system for
S(Ap). Hence rp(A) = rp(S(Ap)). In this case we note that M ′ ⊆ S(Ap) = {a ∈
Ap : ord(a) = p}, and S(Ap) can be naturally seen as a vector space over the field Fp.
By its very definition M ′ is Fp-linearly independent and maximal with this property,
and so |M ′| = dimFp(S(Ap)). Hence rp(A) is equal to the Fp-dimension of the vector
space S(Ap), which means that the p-rank of A is well defined for any p.

Corollary 2.2.7. If A is torsion-free then |A| ≤ max{r0(A),ℵ0}.

Proof. It is a direct consequence of the previous proof.

Lemma 2.2.8. Let A and B be two groups. If there exists f : A −→ B surjective
map or g : B −→ A injective map, then r0(A) ≥ r0(B).

Proof. Let f : A −→ B be a surjective map and let M = {bj}i∈J be an independent
system of B, maximal with respect to the property of containing only elements
of infinite order. By taking the preimages of the elements we obtain a system
M ′ = {aj}j∈J such that bj = f(aj) for all j ∈ J . If n1aj1 + ... + nkajk = 0, then
n1bj1 + ... + nkbjk = 0 and, by the independence of M , we have that nhbjh = 0,
giving that nh = 0 for all h = 1, ... , k, since ord(bjh) is not finite. Hence M ′ is
an independent system containing only elements of infinite order. The proof of the
second part of the assumption is analogous.

Theorem 2.2.9. (Pontryagin’s Criterion) A countable torsion-free group A is free
if and only if every finite rank subgroup is free.

Proof. A subgroup of a free group is always free. Therefore the necessity is clear.
Let us prove the sufficiency. List the element of A, {an}n∈N, and define

An = {a ∈ A \ {0} : a depends on {a0, ... , an}} ∪ {0}.
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Since T (A) = 0, An is a subgroup: indeed, if a, b ∈ An \{0} then there exist na, nb ∈
Z \ {0} such that {naa, nbb} ⊆ 〈a0, ... , an〉 \ {0}. If a + b 6= 0 then nanb · (a + b) ∈
〈a0, ... , an〉 \ {0}. The torsion-free rank of An is not greater than n+ 1, considering
that {a0, ... , an, g} is a dependent system for all g ∈ An. By well definition of the
rank, r0(An) ≤ n + 1. Clearly r0(An+1) ≤ r0(An) + 1: because

⋃
n∈N

An = A, and so

either A has finite rank, in which case the assertion is obvious, or for each n there is
a subgroup between the Am whose rank is exactly n+ 1. Let Bn be a subsequence
of An such that r0(Bn) = n+ 1.

Notice that we still have A =
⋃
n∈N

Bn. Now consider Bn+1/Bn. If Bn+1/Bn has a

torsion part then there exists a ∈ Bn+1\Bn such that na ∈ Bn, but if na is dependent
on {a0, ... , ak}, then also a depends on them. Thus Bn+1/Bn is torsion-free of rank
1; therefore Bn+1/Bn = 〈bn+1〉 ∼= Z and is projective. Hence Bn+1

∼= Bn⊕〈bn+1〉
and we obtain A ∼= ⊕

n∈N
bn.

2.3 Classification of divisible groups

We now provide a complete classification of divisible groups, in terms of the torsion-
free rank and p-ranks. We will distinguish our analysis in two cases, according to
whether the divisible group has torsion or not.

Theorem 2.3.1. Any divisible group A is isomorphic to

⊕
p
Z(p∞)γp⊕Qδ (2.2)

where p runs over the primes and γp and δ are cardinals; moreover, these cardinals
define a complete and independent system of invariants for A.

Proof. First of all one observes that T (A) is divisible. Indeed, for all a ∈ A and for
all n ∈ Z there exists x ∈ A such that nx = a. If a ∈ T (A) then ord(x)|n · ord(a),
thus it is finite. Therefore x ∈ T (A). Similarly, one proves that A/T (A) is divisible
too.

Owing to the divisibility (and thus the injectivity) of T (A), the following exact
sequence

0 −→ T (A) −→ A −→ A/T (A) −→ 0

splits. If Tp(A) denotes the p-component of T (A), by Theorem 1.1.10 we have

A =⊕
p
Tp(A)⊕A/T (A).

Hence it is enough to prove the theorem for p-groups and torsion-free groups.

If A is a p-group, pick a maximal independent system {ai}i∈I of S(A), the socle
of A. For each i ∈ I consider a countable set {ai,n}n∈N∗ , where ai,1 = ai and
ai,n+1 is such that p · ai,n+1 = ai,n.
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By the divisibility of A, the previous sets are well-defined. Furthermore Ai =
〈ai,1, ... , ai,n, ...〉 is isomorphic to Z(p∞). Now observe that Ai ∩ (Aj1 + ... +
Ajk) = 0, since each element of Aj is a multiple of aj,mj for mj great enough
and {ai, aj1 , ... , ajk} is independent if and only if {ai,mi , aj1,mj1 , ... , ajk,mjk} is
independent.
Define B = ⊕

i∈I
Ai ⊆ A: it is divisible, hence A = B⊕A/B. At the same time

S(A) = S(B), thus A = ⊕
i∈I
Ai ∼= ⊕

i∈I
Z(p∞) where |I| = rp(A).

If A is torsion-free, choose a maximal independent system {ai}i∈I of A. A is
divisible, thus for every n ∈ N∗ there is x ∈ A such that nx = ai. Actually if
nx = ny, then (x− y) has finite order, which means x = y. Hence there exists
exactly one x ∈ A that satisfies nx = ai, which means that every ai can be
embedded in a subgroup Ai ∼= Q of A. Similarly to the previous case, the Ai
are in direct sum. The direct sum ⊕

i∈I
Ai is a direct summand of A containing

a maximal independent system of A and thus we have

A =⊕
i∈I
Ai ∼=⊕

i∈I
Q where |I| = r0(A).

Consequently, for a divisible group A there is the decomposition

A ∼=⊕
p
Z(p∞)rp(A)⊕Qr0(A).

By Theorem 2.2.5, the cardinal numbers of the sets of components Z(p∞) and Q are
uniquely determined by A. Thus they form a complete and independent system of
invariants for A.

2.4 The torsion-free rank of Ext1(A,Z)

Theorem 2.4.1. Let {Ai}i∈I , B be all Z−modules. Then

Ext1
(
⊕
i∈I
Ai, B

)
∼=
∏
i∈I
Ext1(Ai, B).

Proof. We recall that the direct sum is characterized by the following universal
property: for each group B and each indexed family of group homomorphism {φi :
Ai −→ B}i∈I there exists a unique group homomorphism φ : ⊕

i∈I
Ai −→ B making

the following diagram commute for all j ∈ I

Aj B

⊕
i∈I
Ai

φj

ij ∃!φ
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where ij : Aj −→ ⊕
i∈I
Ai is the j-th coordinate immersion.

Take an injective resolution for B, 0 −→ J
π−→ J/B −→ 0. Then we have

Ext1
(
⊕
i∈I
Ai, B

)
∼=

HomZ

(
⊕
i∈I
Ai, J/B

)
π∗

(
HomZ

(
⊕
i∈I
Ai, J

)) and Ext1(Ai, B) ∼=
HomZ(Ai, J/B)

π∗(HomZ(Ai, J))
.

By Theorem 1.1.35,

HomZ

(
⊕
i∈I
Ai, J/B

)
∼=
∏
i∈I
HomZ(Ai, J/B).

Hence we can define the map ϕ 7→ (ϕ|Ai)i∈I 7→ (ϕ|Ai)i∈I of HomZ

(
⊕
i∈I
Ai, J/B

)
onto

∏
i∈I

HomZ(Ai, J/B)

π∗(HomZ(Ai, J))
obtained by composing the above-mentioned isomorphism

componentwise with the quotient maps. If (ϕ|Ai)i∈I is the zero element of the

product
∏
i∈I

HomZ(Ai, J/B)

π∗(HomZ(Ai, J))
, then for all i ∈ I there exists a homomorphism φi :

Ai −→ J such that ϕ|Ai = π ◦ φi. By the universal property of the direct sum,
there exists a homomorphism φ : ⊕

i∈I
Ai −→ J such that φj = φ ◦ ij for all j ∈ I.

Composing φ with the projection π we obtain

ϕ ◦ ij = ϕ|Aj = π ◦ φj = π ◦ φ ◦ ij for all j ∈ I.

Hence, due to the uniqueness of the homomorphism that makes the following dia-
gram commute

Aj J/B

⊕
i∈I
Ai

ϕ|Aj

ij

we obtain ϕ = π ◦ φ ∈ π∗

(
HomZ

(
⊕
i∈I
Ai, J

))
. Since for a homomorphism ψ ∈

HomZ

(
⊕
i∈I
Ai, J

)
we have π ◦ ψ ◦ ij = 0 for all j ∈ I, we conclude that the kernel of

the map ϕ 7→ (ϕ|Ai)i∈I is exactly π∗

(
HomZ

(
⊕
i∈I
Ai, J

))
. Then we obtain, as desired,

Ext1
(
⊕
i∈I
Ai, B

)
∼=

HomZ

(
⊕
i∈I
Ai, J/B

)
π∗

(
HomZ

(
⊕
i∈I
Ai, J

)) ∼= ∏
i∈I

HomZ(Ai, J/B)

π∗(HomZ(Ai, J))
∼=
∏
i∈I
Ext1(Ai, B).
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Now we are ready to study the torsion-free rank of Ext1(A,Z).

Theorem 2.4.2. Let A be a countable torsion-free group. If A is free, then Ext1(A,Z)
is trivial. Otherwise r0(Ext

1(A,Z)) = 2ℵ0.

Proof. If A is free, then it is is projective and so a projective resolution for A is

0 −→ A
id−→ A −→ 0.

This means that Ext1(A,Z) is trivial by Balance of Ext. Thus assume A is not free.
Observe that

Ext1(A,Z) ∼=
HomZ(A,Q/Z)

π∗(HomZ(A,Q))
=⇒ |Ext1(A,Z)| ≤ |HomZ(A,Q/Z)| ≤ ℵ0ℵ0 .

and it follows that r0(Ext
1(A,Z)) ≤ 2ℵ0 . Thus we have to prove the converse

inequality. Suppose for the moment that the theorem holds for groups of rank 1.

If A is not free and of finite rank, proceed by induction. Let A be with torsion-free
rank equal to n. By Theorem 2.4.1 we can assume that A is indecomposable
(recall that an indecomposable group is a non-trivial group that cannot be
expressed as direct sum of two subgroups). Let M = {a1, ... , an} be a maximal
independent system for A. Define the subgroup

B = {a ∈ A \ {0} : a depends on {a1, ... , an−1}} ∪ {0},

which is a countable torsion-free group of rank n− 1.

Since
A = {a ∈ A \ {0} : a depends on {a1, ... , an}} ∪ {0},

A/B is a countable torsion-free group of rank 1. It cannot be free, else it would
be projective, yielding that A ∼= B⊕A/B is free contrary to our assumptions.
Hence A/B is not free and r0(Ext

1(A/B,Z)) = 2ℵ0 .

Now consider the short exact sequence

0 −→ B −→ A −→ A/B → 0

and apply HomZ(−,Z):

0 −→ HomZ(A/B,Z) −→ HomZ(A,Z) −→ HomZ(B,Z)
δ−→

δ−→ Ext1(A/B,Z) −→ Ext1(A,Z) −→ Ext1(B,Z) −→ 0.

By exactness we have

0 −→ Ext1(A/B,Z)

δ(HomZ(B,Z))
−→ Ext1(A,Z).

Since the rank of B is finite, HomZ(B,Z) is at most countable and thus
|δ(HomZ(B,Z))| ≤ ℵ0.
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Lemma 2.4.3. Let A be a group whose torsion-free rank is an infinite cardinal
number and let B be a subgroup such that r0(B) < r0(A): then r0(A/B) =
r0(A).

Proof. Pick a maximal independent system {aj}j∈r0(B) of element of B of
infinite order and extend it to a maximal independent system {ai}i∈r0(A) of
element of A of infinite order. Since r0(B) < r0(A) there exists a subset S of
r0(A) \ r0(B) of cardinality equal to r0(A) such that ai 6= aj in A/B for all
i, j ∈ S. Let {i1, ... , ik} be indices in S and let n1, ... , nk be integer numbers.

n1 · ai1 + ... + nk · aik = 0 =⇒ n1 · ai1 + ... + nk · aik ∈ B.

This means that the element n1 · ai1 + ... + nk · aik depends on {aj}j∈r0(B).
Since {ai1 , ... , aik}∪ {aj}j∈r0(B) is an independent system, it follows that n1 ·
ai1 + ... + nk · aik = 0. Hence the integers nh are trivial for all h ∈ {1, ... , k}
and so {ai}i∈S is an independent system of element of infinite order for A/B.
By Lemma 2.2.8, we have r0(A/B) ≤ r0(A) and this implies that r0(A) =
|S| ≤ r0(A/B) ≤ r0(A).

By Cantor’s Theorem ℵ0 < 2ℵ0 and so the torsion-free rank of the quotient
Ext1(A/B,Z)

δ(HomZ(B,Z))
remains 2ℵ0 . By Lemma 2.2.8, r0(Ext

1(A,Z)) = 2ℵ0 .

If A is not free and of infinite rank, by Pontryagin’s criterion there is a subgroup
B ⊆ A of finite rank which is not free. Now consider the short exact sequence

0 −→ B −→ A −→ A/B −→ 0

and apply HomZ(−,Z). The result is:

0 −→ HomZ(A/B,Z) −→ HomZ(A,Z) −→ HomZ(B,Z) −→
−→ Ext1(A/B,Z) −→ Ext1(A,Z) −→ Ext1(B,Z) −→ 0.

By Lemma 2.2.8 r0(Ext
1(A,Z)) ≥ r0(Ext1(B,Z)) = 2ℵ0 and therefore

r0(Ext
1(A,Z)) = 2ℵ0 .

Now we discuss the case when A has torsion-free rank equal to 1. First of all we
prove that it is not a loss of generality to suppose that A is a subgroup of Q.

Lemma 2.4.4. If A is a torsion-free group of rank 1 then it is isomorphic to a
subgroup of Q.
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Proof. Fix a maximal independent system, {a}: then for all g ∈ A\{0} there exists a
least n ∈ N∗ such that ng = nga, with ng ∈ N∗ (observe that ng is unique). Consider
the function f : A −→ Q that maps a into 1, 0 into 0 and g into

ng
n : obviously f is

injective, and we claim that it is also a homomorphism: If g and h are respectively
mapped into

ng
n and mh

m then

(ngm+mh n) · a = mng · a+ nmh · a = mn · g + nm · h = mn · (g + h).

If g + h is mapped into k
l then l(g + h) = ka and, multiplying by mn,

kmn · a = lmn · (g + h) = l(ngm+mh n) · a =⇒ l(ngm+mh n) = kmn

since A is torsion-free. Thus

ng
n

+
mh

m
=

(ngm+mh n)

mn
=
k

l
,

as was to be shown.

From now on and for the rest of this proof we suppose that a is equal to 1 and A
is a subgroup of Q. Observe that, for relatively prime numbers m and n, m

n ∈ A if
and only if 1

n ∈ A. Indeed if m and n are relatively primes then there exists s and t
in Z such that sm+ tn = 1 and so

1

n
= s

m

n
+ t ∈ A.

It follows that, for relatively prime numbers m and n, 1
mn ∈ A if and only if both

1
m and 1

n belong to A: indeed if 1
m ,

1
n ∈ A then

1

m
+

1

n
=
m+ n

mn
∈ A

which gives also that 1
mn ∈ A, since m+ n and mn are relatively primes.

To proceed in our analysis we need the following:

Claim. For the group A under consideration (which is now identified with a subgroup
of Q) there exists a prime number p such that 1/pk ∈ A for infinitely many k or
there are infinitely many primes q such that 1/q ∈ A.

Proof. Suppose that for each prime p there exists a maximum power of p, pn, such
that 1/pn ∈ A and that there are finitely many primes {p1, ... , pk} such that 1/pj ∈ A
for any j = 1, ... , k. Let nj be the maximum exponent of pj such that 1/p

nj
j ∈ A

for each j = 1, ... , k. Then y = 1
p
n1
1 · ... · p

nk
k

∈ A, since p
nj
j , p

ni
i are relatively prime for

each i 6= j, and we have already seen that 1/mn ∈ A if m,n are relatively prime
and 1/n, 1/m ∈ A. Since 〈y〉 ( A (otherwise A would be free) there is an element
h ∈ A\〈y〉. Assume h = s/r with s, r relatively prime. By what we already know we
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also get that 1/r ∈ A and 1/r 6∈ 〈y〉 else also h ∈ 〈y〉. Let r = qm1
1 · ... · qmss with each

qi a prime number. This gives that 1/qmii =

(∏
l 6=i
qmll

)
/r ∈ A for all i = 1, ... , s.

Since {p1, ... , pk} exhausts the set of primes p such that 1/p ∈ A we have that
qi ∈ {p1, ... , pk} for all i = 1, ... , s. Thus (modulo a rearrangement) qi = pi for all

i = 1, ... , s and so mi ≤ ni for all i = 1, ... , s. Therefore 1/r =

(
s∏
i=1
pni−mii

)
y ∈ 〈y〉,

which is a contradiction.

Let us now focus on T = A/Z. T is a torsion group since for all g ∈ A \ {0}
there exists (n, ng) such that ng = ng, which gives that n[g] = [0]. Thus by the
Factorization Theorem 1.1.10 we have

Ext1(T,Z) ∼= Ext1
(
⊕
p
Tp,Z

)
∼= HomZ

(
⊕
p
Tp,Q/Z

)
.

We want to prove that r0(Ext
1(T,Z)) ≥ 2ℵ0 . By the Claim there are two cases we

have to handle.

First Case: there is a prime number p such that 1/pk ∈ A for infinitely many k.
This yields that 1/pk ∈ A for all k ∈ N∗. Hence there exists a subgroup of
Tp which is isomorphic to the Prüfer p-group. The Prüfer p-group is divisible,
therefore

0 −→ Z(p∞) −→ Tp exact =⇒
=⇒ HomZ(Tp,Z(p∞)) −→ EndZ(Z(p∞)) −→ 0 exact,

and (by Lemma 2.2.8) r0(HomZ(Tp,Z(p∞))) ≥ r0(EndZ(Z(p∞))). Let us
focus on EndZ(Z(p∞)). By Theorem 1.1.15 EndZ(Z(p∞)) is isomorphic to
the additive group Ẑp of p-adic integers. Since this group is torsion-free by

Proposition 1.1.14, we have that r0(Ẑp) = 2ℵ0 . Thus r0(HomZ(Tp,Z(p∞)) ) =
2ℵ0 . By Corollary 1.1.36 we have

HomZ

(
⊕
p
Tp,Q/Z

)
∼=
∏
p

HomZ(Tp,Z(p∞)).

Therefore the torsion-free rank of HomZ

(
⊕
p
Tp,Q/Z

)
is ≥ 2ℵ0 .

Second Case: there are infinitely many primes p such that 1/p ∈ A.
Enumerate them as {pn}n∈N. For each n ∈ N 1

pn
belongs to A, hence there is

a subgroup isomorphic to Z/pnZ in Tpn for each n. We obtain

0 −→ ⊕
n∈N

Z/pnZ −→ ⊕
n∈N

Tpn exact =⇒

=⇒ HomZ

(
⊕
n∈N

Tpn ,Q/Z
)
−→ HomZ

(
⊕
n∈N

Z/pnZ,Q/Z
)
−→ 0 exact.
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Therefore, by Lemma 2.2.8, we have the following inequalities for what con-
cerns the torsion-free ranks:

r0(HomZ

(
⊕
n∈N

Tpn ,Q/Z
)

) ≥ r0(HomZ

(
⊕
n∈N

Z/pnZ,Q/Z
)

).

Similarly considering the following exact sequence

0 −→ ⊕
n∈N

Z/pnZ −→⊕
p

(Q/Z)p ∼= Q/Z,

and applying HomZ

(
⊕
n∈N

Z/pnZ,−
)

we obtain the exact sequence

0 −→ HomZ

(
⊕
n∈N

Z/pnZ,⊕
n∈N

Z/pnZ
)
−→ HomZ

(
⊕
n∈N

Z/pnZ,Q/Z
)
.

This gives the inequality

r0(HomZ

(
⊕
n∈N

Z/pnZ,Q/Z
)

) ≥ r0(HomZ

(
⊕
n∈N

Z/pnZ,⊕
n∈N

Z/pnZ
)

).

Thus, in order to obtain a lower bound for the torsion-free rank of Ext1(T,Z),

it is enough to study HomZ

(
⊕
n∈N

Z/pnZ, ⊕
n∈N

Z/pnZ
)

, which is isomorphic to∏
n∈N

HomZ

(
Z/pnZ, ⊕

j∈N
Z/pjZ

)
by Theorem 1.1.35. HomZ

(
Z/pnZ,Z/pjZ

)
is

trivial for all j 6= n, and HomZ

(
Z/pnZ,Z/pnZ

)
is isomorphic to Z/pnZ, we

get that
∏
n∈N

HomZ

(
Z/pnZ, ⊕

j∈N
Z/pjZ

)
is actually isomorphic to

∏
n∈N

Z/pnZ.

Now partition N into ℵ0 sets {In}n∈ℵ0 , each of them of cardinality ℵ0: hence

we have
∏
n∈ℵ0

( ∏
p∈In

Z/pZ
)

and each
∏
p∈In

Z/pZ has at least an element an of

infinite order. Therefore the subgroup
∏
p∈In
〈an〉 is a torsion-free group with at

least ℵ0-many independent elements. By Corollary 2.2.7 its torsion-free rank
is equal to its cardinality which is 2ℵ0 . This yields that the torsion free rank of∏
n∈N

Z/pnZ is also 2ℵ0 . Therefore also in this second case r0(Ext
1(T,Z)) = 2ℵ0 .

Now consider the exact sequence

0 −→ Z −→ A −→ T −→ 0;

applying HomZ(−,Z) we obtain the exact sequence

... −→ HomZ(Z,Z)
δ−→ Ext1(T,Z) −→ Ext1(A,Z) −→ 0 = Ext1(Z,Z).

Therefore Ext1(A,Z) ∼=
Ext1(T,Z)

δ(EndZ(Z))
. Since EndZ(Z) ∼= Z, δ(EndZ(Z)) is a sub-

group of Ext1(T,Z) isomorphic to a quotient of Z, hence its torsion-free rank is
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at most 1. By Lemma 2.4.3 we conclude that the torsion-free rank of
Ext1(T,Z)

δ(EndZ(Z))
remains 2ℵ0 .

The solution for Whitehead’s problem for countable groups is an easy corollary:

Corollary 2.4.5. (Stein’s Theorem) Let A be a countable group. Then Ext1(A,Z) =
0 if and only if A is free.

2.5 The p-rank of Ext1(A,Z)

We turn to the analysis of the p-ranks of Ext1(A,Z) for a countable A.

Lemma 2.5.1. (Stein’s Lemma) Any countable group A can be written as A =
N ⊕ F , where F is free and N is a subgroup such that HomZ(N,Z) = 0.

Proof. Define A∗ as the set HomZ(A,Z). Let N be the intersection of the kernels
of all homomorphisms ϕ : A −→ Z, i.e. N = ∩

ϕ∈A∗
ker(ϕ). Then A/N is isomorphic

to a subgroup of
∏

ϕ∈A∗
A/ ker(ϕ) and every A/ ker(ϕ) is isomorphic to a subgroup of

Z, and so it is either trivial or isomorphic to Z.

Write P =
∏

ϕ∈A∗
A/ ker(ϕ) =

∏
i∈I
〈ai〉 where I is an at most infinite set and 〈ai〉 ∼= Z

for each i. If I is finite then P is free, otherwise we claim that it is ℵ1-free. In order
to show this we prove that all finite torsion-free rank subgroups of P are free, which
(by Pontriagin’s Criterion) also yields that all countable subgroups of P are free.

Towards this aim it suffices to prove the following:

Claim. Every finite subset {b1, ... , bk} ⊆ P can be embedded in a finitely generated
direct summand of P itself.

Proof. We proceed by induction on k.

k = 1: Let b = (niai)i∈I be an element of P with ni ∈ Z and define m as the least
positive integer among all the |ni| with ni 6= 0. Proceed by induction on
m. If m = 1 then there is a j ∈ I such that |nj | = 1, and so P = 〈b〉⊕Bj
where Bj is the subgroup of all elements with j-th coordinate 0. Otherwise
set ni = qim + ri with 0 ≤ ri < m and define c = (qiai)i∈I and d = (riai)i∈I
so that b = cm+ d. By definition there is j ∈ I such that |qj | = 1 and rj = 0:
as before P = 〈c〉⊕Bj where Bj has the same definition above. It happens
that d ∈ Bj with coefficient |ri| < m, and so, by induction on m applied to d
and Bj , Bj has a finitely generated direct summand B′j containing d. Hence
〈c〉⊕B′j is a direct summand of P which contain b.
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k > 1: Given a subset {b1, ... , bk}, by induction we can assume there exists a finitely
generated direct summand B such that {b1, ... , bk−1} ⊆ B. We may in addition
suppose that, in the direct sum A = B⊕C, C is the direct product of almost all
〈ai〉 (it follows from our choice of Bj at each step according to the procedure
described in the previous case). Decomposing bk = b + c where b ∈ B and
c ∈ C we can find a finitely generated direct summand of C which c belongs
to (applying the procedure described in the previous case to c, C).

Hence the Claim is proved.

Therefore, since A/N is countable, it is free (hence projective), therefore A ∼=
N⊕A/N (by Proposition 1.1.21, given that

0 −→ N −→ A −→ A/N −→ 0

is exact with A/N projective). Lastly observe that each homomorphism ψ : N −→ Z
can be extended to a homomorphism ψ : N⊕A/N −→ Z. By its very definition,
N ⊆ ker(ψ), i.e. ψ = 0. Thus HomZ(N,Z) is trivial.

Theorem 2.5.2. Let A be a countable torsion-free group. For each prime number
p, rp(Ext

1(A,Z)) is either finite or 2ℵ0.

Proof. Consider the subgroups F and N of A such that A = N ⊕F with F free and
N such that HomZ(N,Z) = 0, whose existence is ensured by Stein’s Lemma. Since

Ext1(A,Z) = Ext1(N⊕F,Z) ∼= Ext1(N,Z)⊕Ext1(F,Z) ∼= Ext1(N,Z),

(where the second equality holds by Theorem 2.4.1 and the latter by Corollary
2.4.5), without loss of generality we may assume that A has the property that
HomZ(A,Z) = 0. Consider the short exact sequence

0 −→ Z ·p−→ Z −→ Z/pZ −→ 0.

Due to the fact that HomZ(A,Z) = 0, applying HomZ(A,−) we have (by Theorem
1.1.33) the exact sequence:

0 −→ HomZ(A,Z/pZ) −→ Ext1(A,Z)
p∗−→ Ext1(A,Z) −→ Ext1(A,Z/pZ) −→ 0,

where p∗ is the multiplication by p, by the Theorem 1.1.33. By definition of the socle
S(Ext1(A,Z)p) = {x ∈ Ext1(A,Z) : px = 0} coincides with the kernel of p∗. There-
fore (by Remark 9) ker(p∗) is exactly the subgroup to consider in order to compute
rp(Ext

1(A,Z)). By exactness, ker(p∗) ∼= HomZ(A,Z/pZ), hence rp(Ext
1(A,Z)) =

rp(HomZ(A,Z/pZ)). Since pA ⊆ ker(φ) for all φ ∈ HomZ(A,Z/pZ), it follows that

HomZ(A,Z/pZ) ∼= HomZ(A/pA,Z/pZ).

A/pA is endowed of the structure of a Z/pZ-vector space, hence HomZ(A/pA,Z/pZ)
is the dual Z/pZ-vector space (A/pA)∗. This gives that rp(HomZ(A/pA,Z/pZ)) is
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the cardinality of the basis of the Z/pZ-vector space (A/pA)∗. If the dimension of
A/pA is finite, this is also the dimention of HomZ(A/pA,Z/pZ). Otherwise, if the
dimension of A/pA ∼= ⊕

n∈N
Z/pZ is countable, then dimZ/pZ((A/pA)∗) = 2ℵ0 , since

the isomorphism 1.1 gives that

HomZ(⊕
n∈N

Z/pZ,Z/pZ) ∼=
∏
n∈N

EndZ(Z/pZ) ∼=
∏
n∈N

Z/pZ,

which has Z/pZ-dimension equal to 2ℵ0 .



3
Whitehead’s problem

In this Chapter we prove results about Ext1(A,Z) which are consistent with ZFC
but not provable in it. We will study the effects certain principles (the Diamond
Principle and Martin’s Axiom — which have been proved to be consistent with
ZFC) have on the structure of Ext1(A,Z) for uncountable groups A.

Definition 3.0.1. A is a Whitehead group (W-group) if Ext1(A,Z) is trivial.

We will prove the following two statements.

Theorem 3.0.2.

1. The Diamond principle ♦ω1 entails that each W-group of cardinality ℵ1 is free.

2. Martin’s Axiom plus 2ℵ0 > ℵ1 implies that there exists a non-free W-group of
cardinality ℵ1.

Since the two axioms yield contradictory answers to the problem, the equivalence
between being a W-group and being free is undecidable in ZFC for a group of
cardinality ℵ1.

3.1 W -groups

We start giving an equivalent characterization of the notion of W -group.

Lemma 3.1.1. A is a W-group if and only if each exact sequence of group homo-
morphisms

0 −→ Z α−→ B −→ A −→ 0,

splits.

Proof. The sequence splits if and only if there exists a retraction of α. If the latter
exists, then the map α∗ : HomZ(B,Z) −→ HomZ(Z,Z) is surjective, hence the

39
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sequence

0 −→ HomZ(A,Z) −→ HomZ(B,Z) −→ HomZ(Z,Z) −→ 0

is exact, giving that Ext1(A,Z) = 0 (by Thm. 1.1.33). Vice versa if Ext1(A,Z) = 0,
the sequence

0 −→ HomZ(A,Z) −→ HomZ(B,Z) −→ HomZ(Z,Z) −→ 0

is exact (again by Thm. 1.1.33), therefore α∗ is surjective, and each element of
(α∗)−1({idZ}) is a retraction of α.

We have already seen that a free group A is also a W-group and also that a countable
W-group A is free. Whitehead’s Problem asks whether being a W-group corresponds
to being free. Saharon Shelah proved that Whitehead’s problem is undecidable
within ZFC theory, by showing that there are distinct models of ZFC in one of which
every W-group of size ℵ1 is free, while in the other there are non-free W-groups of
size ℵ1.
Throughout this Chapter κ will denote an uncountable regular cardinal.

Definition 3.1.2. A group A is called κ-free if every subgroup of cardinality < κ
is free.

Remark 10. For instance a W-group is always ℵ1-free, since a subgroup of a W-
group is itself a W-group and each countable W-group is free.

For groups of cardinality κ there is another characterization of being κ-free.

Lemma 3.1.3. A group A of cardinality κ is κ-free if and only if it has a κ-free
filtration, or rather a κ-filtration {Aα}α∈κ such that each Aα is free.

Proof. Suppose A is κ-free. Then enumerate its elements {aβ}β∈κ and for each
α ∈ κ define Aα = 〈aβ : β ∈ α〉: the cardinality of Aα is less than κ (κ is regular),
therefore Aα is free for each α ∈ κ. Thus {Aα}α∈κ is a κ-filtration of free subgroups.

Conversely since κ is regular if A has a κ-filtration {Aα}α∈κ of free subgroups,
then for each subgroup B ⊆ A of cardinality < κ there exists an Aα which contains
B. Thus B is a subgroup of a free group, hence B is free too.

3.1.1 Chase(ℵ1)-condition and Γ(A)

In the second Chapter, we saw the Pontryagin’s criterion for countable torsion-
free groups. We now provide a generalization of this principle to κ-free groups of
cardinality κ.

Definition 3.1.4. Let A be a κ-free group. A subgroup B ⊆ A is κ-pure if A/B is
κ-free.
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Definition 3.1.5. We say that a group A satisfies the Chase(κ)-condition if it is
κ-free and each of its subgroups of cardinality < κ is contained in a κ-pure subgroup
of cardinality < κ.

If we restrict ourselves to groups of cardinality κ we have an equivalent description
of the Chase(κ)-condition through the filtrations.

Lemma 3.1.6. Let A be a group of cardinality κ. A satisfies the Chase(κ)-condition
if and only if it has a κ-free filtration such that A0 = 0 and Aα+1 is κ-pure for each
α ∈ κ.

Proof. Suppose that A satisfies the Chase(κ)-condition and proceed by transfinite
induction to define the requested κ-filtration as follows:

Let {aα}α∈κ be an enumeration of the elements of A. For α = 0, A0 = 0. Now
suppose that Aβ has been defined for all β ∈ α. If α = δ+ 1, let Aδ+1 be one of the
κ-pure subgroups of cardinality < κ, which contain Aδ ∪ {aδ}. Such an Aδ+1 exists
by the Chase(κ)-condition, since |Aδ ∪ {aδ}| < κ. Otherwise, if α is a limit ordinal
set Aα =

⋃
β∈α

Aβ. This union is free since its cardinality is less than κ.

Since aα ∈ Aα+1 for each α ∈ κ, A ⊆
⋃
α∈κ

Aα. Therefore {Aα}α∈κ is the filtration

that we were looking for.
Conversely, by Lemma 3.1.3 we have that A is κ-free. Now let B ⊆ A be a

subgroup of cardinality κ: by regularity of κ there exists α ∈ κ such that B ⊆ Aα ⊆
Aα+1; the latter is a κ-pure subgroup of cardinality < κ.

We now give a necessary and sufficient condition to grant freeness for a group of car-
dinality κ satisfying the Chase(κ)-condition. Towards this aim, we need to introduce
an equivalence relation on the filtrations of a group.

Definition 3.1.7. Given E,F in P(κ), E ∼ F if and only if there exists a Cub C
such that E ∩ C = F ∩ C.

Since the intersection of two Cub is itself a Cub, ∼ is an equivalence relation on
P(κ). We denote by [E] the equivalence class of E.

Remark 11. Notice that for E ⊆ κ being stationary is equivalent to [E] 6= [∅].

Definition 3.1.8. Given a group A satisfying the Chase(κ)-condition, let F = {Aα :
α < κ} be a κ-free filtration such that A0 = 0 and Aα+1 is κ-pure for each α ∈ κ
(which exists by the previous Lemma). Define

EF := {α ∈ κ : Aα is not κ-pure} and Γ(A) = [EF ].

We will show that while EF is a set of limit ordinals which depends on the filtration
F we choose on A, its equivalence class Γ(A) = [EF ] does not, hence:
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Lemma 3.1.9. For any group A satisfying the Chase(κ)-condition the map A 7→
Γ(A) is well defined.

Proof. We need the following:

Claim. Let A be a set of cardinality κ and let {Aα}α∈κ and {A′α}α∈κ be two κ-
filtrations of A. Then the set C = {α ∈ κ : A′α = Aα} is a Cub.

Proof. Given α0 ∈ κ, consider Aα0 . Since it has size less than κ and κ is regular,
there exists β0 ∈ κ with α0 ∈ β0, and such that Aα0 ⊆ A′β0 . Analogously one can
find α1 ∈ κ, with β0 ∈ α1, and such that A′β0 ⊆ Aα1 . Inductively, we can define the
chain

Aα0 ⊆ A′β0 ⊆ · · · ⊆ Aαn ⊆ A
′
βn ⊆ Aαn+1 ⊆ · · ·

We conclude that α = sup{αn : n ∈ ω} = sup{βn : n ∈ ω}, which, by the continuity
of the two filtrations, yields

Aα =
⋃
n<ω

Aαn =
⋃
n<ω

A′βn = A′β.

Thus C is unbounded. It is also clear that C is closed (again by the continuity of
the filtrations).

Given two distinct κ-filtrations F , F ′ of A, let C be the Cub given by the previous
Claim, then EF ∩ C = EF ′ ∩ C. It follows that Γ(A) is well defined and does not
depend on the chosen filtration of A.

We also need the following Lemma:

Lemma 3.1.10. Let {Aα}α∈κ be a κ-filtration of the group A such that A0 is free
and Aα+1/Aα is free for each α ∈ κ. Then A is free.

Proof. Firstly we prove that for every α ∈ κ, each Aα is free by transfinite induction,
finding a basis for it.
For α = 0, A0 is free by assumption. Let B0 be a basis of A0. Suppose now that
Aβ is free for all β ∈ α and let Bβ be a basis of Aβ such that Bβ ∩ Aγ = Bγ for all
γ < β. If α is a limit ordinal, then let Bα be the union of the previous bases

⋃
λ∈α

Bλ.

This is a basis of Aα: since Aα =
⋃
β∈α

Aβ, pick a ∈ Aα, then a ∈ Aβ giving that

a ∈ 〈Bβ〉. Hence Bα generates Aα. Since Bα is also an independent set of elements
of Aα, Aα free.
If α = δ + 1, consider the exact sequence

0 −→ Aδ −→ Aδ+1 −→ Aδ+1/Aδ −→ 0.

Since Aδ+1/Aδ is free, the sequence splits and we obtain

Aδ+1
∼= Aδ⊕Aδ+1/Aδ.
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Therefore we can let Bα = Bδ∪B, where B is a basis for the copy of Aδ+1/Aδ inside
Aα which is in direct sum with Aδ. Then Bα is a basis for Aα which extends Bδ. If
we set B =

⋃
α∈κ

Bα, then we will have a basis for A, which therefore is free.

Theorem 3.1.11. Let A be a group of cardinality κ satisfying the Chase(κ)-condition.
Then A is free if and only if Γ(A) = [∅].

Proof. If Γ(A) = [∅], then for each EF there exists a Cub C which does not intersect
EF . Since C is a Cub and κ regular, |C| = κ and A =

⋃
α∈C

Aα. For all α ∈ C,

Aα+1/Aα has cardinality < κ in A/Aα, which is κ-free. Thus Aα+1/Aα is free.
Considering the κ-filtration of A induced by C and using the Lemma 3.1.10, we
obtain that A is free.

Vice versa if A is free, then A = ⊕
β∈κ
〈aβ〉. Defining Aα = ⊕

β∈α
〈aβ〉 it follows that

F = {Aα}α∈κ is a κ-filtration such that A/Aα ∼= ⊕
α∈β∈κ

〈aβ〉 is free (and in particular

κ-free). Thus EF is empty.

3.2 Diamond Principle implies Whitehead’s conjecture

In this section we prove the former part of Theorem 3.0.2. The crucial algebraic
tool in our proof will be the following lemma.

Lemma 3.2.1. Let A0 < A1 be countable free groups such that A1/A0 is not free.
Given a short exact sequence of type

0 −→ Z −→ B0
π−→ A0 −→ 0,

and a section ρ of π (which exists since A0 is free), there exists a group B1 which is
an extension of B0 and a map π : B1 → A1 which extends π such that:

1. π[B1 \B0] = A1 \A0;

2. the sequence 0 −→ Z −→ B1
π−→ A1 −→ 0 is exact;

3. ρ cannot be extended to a section of π.

Proof. Due to the existence of a section of π, the exact sequence

0 −→ Z −→ B0
π−→ A0 −→ 0,

splits. Therefore we can assume that B0 = A0 ⊕ Z, that π is exactly the projection
on the first component, and that the map a 7→ (a, 0) is the section ρ.

Now consider the following exact sequence:

0 −→ A0
i−→ A1 −→ A1/A0 −→ 0,
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where i is the inclusion map. By applying HomZ(−,Z), we obtain the long exact
sequence

0 −→ HomZ(A1/A0,Z) −→ HomZ(A1,Z)
i∗−→ HomZ(A0,Z) −→

−→ Ext1(A1/A0,Z) −→ Ext1(A1,Z) −→ Ext1(A0,Z) −→ 0.

Since A1 and A0 are free Ext1(A1,Z) = Ext1(A0,Z) = 0. Therefore we have

Ext1(A1/A0,Z) ∼=
HomZ(A0,Z)

i∗(HomZ(A1,Z))
6= 0

since A1/A0 is a countable non-free group, hence not a W-group.

This means that there exists a homomorphism φ : A0 −→ Z which does not factorize
through the inclusion i : A0 −→ A1.

Define B̂1 = A1 ⊕ Z. Let f : B̂1 −→ A1 × Z be defined by

f(a, n) =

{
(a, n) if a /∈ A0,

(a, n− φ(a)) if a ∈ A0.

Clearly f is injective. Furthermore, if (a,m) ∈ A0 × Z, f(a,m + φ(a)) = (a,m),
and so f is a bijection. Let B1 be A1×Z endowed with the only group operation �
making f a group isomorphism (i.e. b1�b2 = f(f−1(b1)+f

−1(b2)) for all b1, b2 ∈ B1).
Let γ be the following injective homomorphism

γ : B0 −→ B̂1 such that γ(a, n) = (i(a), n+ φ(a)).

The map f ◦ γ gives an injective homomorphism from B0 to B1, hence B1 is an
extension of B0.
Consider the following exact sequence

0 −→ Z −→ B1
π−→ A1 −→ 0,

where the first map is the inclusion n 7→ (0, n) and π(a,m) = a is the projection
on the first coordinate. Obviously, π is an extension of π, since both are projec-
tions on the first coordinate. Moreover we have that (a, n) ∈ B1 \ B0 if and only if
π(a, n) = a ∈ A1 \A0.

It remains to argue that π does not have a section which extends ρ. Suppose by way
of contradiction that there exists a ρ which is a section of π and extends ρ. This
means that ρ|A0 = ρ ◦ i = γ ◦ ρ. Consider the following diagram

A0 A1 B1

Z

i

φ

ρ

π2
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where π2 is the projection on the second coordinate. Given a ∈ A0

π2 ◦ ρ ◦ i(a) = π2 ◦ γ ◦ ρ(a) = π2 ◦ γ(a, 0) = π2(i(a), φ(a)) = φ(a),

and so the diagram commutes. This is a contradiction, since φ does not factorize
through the inclusion i.

The following theorem is the key to the solution of Whitehead’s Problem assuming
Diamond.

Theorem 3.2.2. Assume ♦ℵ1(E). Let {Aα}α∈ℵ1 be a free strictly increasing ℵ1-
filtration of a group A of cardinality ℵ1 such that E = {α ∈ ℵ1 : Aα+1/Aα is not
free} is stationary in ℵ1. Then A is not a W-group.

Proof. Suppose that A is actually a W-group. By Theorem 2.4.1 the subgroups of
a W-group are themselves W-groups: then Ext1(Aα,Z) = 0 for all α ∈ ℵ1.
By the second part of Theorem 1.2.20, let Bα be Aα ⊕ Z and B equal to A ⊕ Z,
we get the family {gα}α∈E , where gα : Aα −→ Aα ⊕ Z and is such that for every
function f : A −→ A⊕ Z, the set {α ∈ E : f |Aα = gα} is stationary in ℵ1. We now
define by transfinite induction a proper exact sequence

0 −→ Z −→ Bα
ψα−→ Aα −→ 0

for all countable ordinals α so that for all β < α:

• ψα � Bβ = ψβ,

• ψα[Bα \Bβ] = Aα \Aβ.

For α = 0, consider the exact sequence 0 −→ Z −→ B0 −→ A0 −→ 0 with the
obvious inclusion and projection. Now suppose that the sequences have been defined
for all β ∈ α. Consider α = δ + 1, a successor ordinal.

δ ∈ E : we first check whether gδ : Aδ −→ Aδ⊕Z is a section for ψδ, and in this case
we let ψδ+1 be one of the extension of ψδ assured by Lemma 3.2.1 (observe that in
this way gδ cannot be extended to a section for ψδ+1). Otherwise we define ψδ+1 as
an extension of ψδ whose existence is again ensured by Lemma 3.2.1.

δ /∈ E : then Aδ+1/Aδ is free, and so Aδ+1
∼= Aδ ⊕ Aδ+1/Aδ. Choosing Bδ+1

∼=
Bδ ⊕Aδ+1/Aδ, we get that ψδ+1 : (b, [a]) 7→ (ψδ(b), [a]) is a coherent extension of ψδ
such that

0 −→ Z −→ Bδ+1
ψδ+1−→ Aδ+1 −→ 0

is exact and ψδ+1[Bδ+1 \Bδ] = Aδ+1 \Aδ.

α limit: since Bα = ∪
β∈α

Bβ, we choose ψα as the coherent union of all the ψβ.

Notice that our inductive construction ensures that ψβ[Bβ \ Bα] = Aβ \ Aα for all
β > α.
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Let ψ : B −→ A be the union of the chain {ψα}α∈ℵ1 . Ext1(A,Z) = 0, so there
is a section ρ : A −→ A ⊕ Z. Then (since ψβ[Bβ \ Bα] = Aβ \ Aα for all β > α),
ρ[Aα] ⊆ Bα for all countable ordinals α, hence ρ � Aα is a section of ψα = ψ � Bα
for all countable ordinals α. Therefore the set {α ∈ E : ρ|Aα = gα} is stationary and
thus it is not empty. For each α in this latter set ρAα+1 is a section of ψα+1 which
extends gα, that is absurd for the construction of ψα+1.

Lemma 3.2.3. Assume ♦ω1(E) for some stationary set E. Assume A is a W-group
of cardinality ℵ1; then it satisfies the Chase(ℵ1)-condition.

Proof. Suppose by absurd that the thesis is not true. Since a W-group is ℵ1-free,
then if A does not satisfy Chase(ℵ1)-condition there exists a countable subgroup B
of A such that for every countable subgroup A′ which contains it there exists A′′ such
that A′′/A′ is not free. For each α ∈ ℵ1 define Aα by transfinite induction as follows.

For α = 0 we set A0 = B. Suppose that Aβ has been already defined for every
β ∈ α.

If α = δ + 1, let Aδ+1 be a countable subgroup such that Aδ+1/Aδ is not free.

If α is limit, then set Aα = ∪
β∈α

Aβ.

{Aα}α∈ℵ1 is a strictly increasing ℵ1-free filtration such that {α ∈ ℵ1 : Aα+1/Aα is
not free } = ℵ1 ⊇ E. This is impossible by previous theorem.

Corollary 3.2.4. ♦ℵ1(E) implies that if A is a W-group of cardinality ℵ1, then it
is free.

Proof. By Lemma 3.2.3 A satisfies the Chase(ℵ1)-condition. Therefore (by Lemma
3.1.9) Γ(A) = [EF ] is well-defined, where F = {Aα}α∈ω1 is some (any) ℵ1-free
filtration such that Aα+1 is ℵ1-pure for each α ∈ ℵ1. Clearly

E ⊆ EF = {α ∈ ℵ1 : Aα is not ℵ1-pure}.

(if A/Aα is ℵ1-free, Aα+1/Aα is free, being a countable subgroup of it). Moreover
Aβ/Aα+1

∼= (Aβ/Aα)/(Aα+1/Aα) for each β > α, and Aβ/Aα+1 is free. If Aα+1/Aα
is free, then Aβ/Aα ∼= Aβ/Aα+1⊕Aα+1/Aα: thus Aβ/Aα is free too. By Lemma
3.1.3 A/Aα is ℵ1-free, and so E = EF and Γ(A) = [∅]. By Theorem 3.2.2 E is
non-stationary, hence [E] = [EF ] = [∅]. Therefore Γ(A) = [EF ] = [∅]. By Theorem
3.1.11 we conclude that A is free.

3.3 Martin’s Axiom implies Whitehead’s conjecture is
false

Now we deal with the latter part of Theorem 3.0.2, by proving that Martin’s axiom
entails that there exist W-groups which are not free.
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Remark 12. Recall that a subgroup B ⊆ A is pure if A/B is torsion-free.
Moreover, given any subset X ⊆ A, the smallest pure subgroup containing X is
Y = {a : na ∈ 〈X〉 for some n ∈ Z∗}.

Proof. Let P be a pure subgroup containing X (equivalently 〈X〉). If a ∈ Y then
na ∈ 〈X〉, which is contained in P . Hence the equivalence class n · [a] = [na] is the
trivial one in A/P , and so [a] = [0] by torsion-freeness of A/P . Therefore Y ⊆ P .
On the other hand, A/Y is torsion-free: if there is m ∈ Z∗ such that m · [a] = [ma] =
[0] then there exists n ∈ Z∗ such that mn · a ∈ 〈X〉. Thus a ∈ Y and Y is pure. By
minimality of P it follows that Y = P .

We start proving the following theorem:

Theorem 3.3.1. Assume MA+2ℵ0 > ℵ1. Let A be a group of cardinality ℵ1 which
satisfies Chase(ℵ1)-condition. Then A is a W-group.

Proof. Consider the exact sequence

0 −→ Z −→ B
ψ−→ A −→ 0.

We must prove that there exists a section ρ : A −→ B of ψ. Consider the set

P = {ρS : S −→ B : ρS is a homomorphism from a finitely-generated
pure subgrop of A such that ψ ◦ ρS = idS}

partially ordered by ρS ≤ ρS′ if ρS ⊆ ρS′ . We want to show that P satisifies the
three assumptions of Lemma 1.2.30. First of all remark that any ρS ∈ P is injective,
being a partial section of ψ, hence any ρS ∈ P (having a free group as domain) is
uniquely determined by its values on a set of generators of S.

• By definition P satisfies the first hypothesis of Lemma 1.2.30.

• Consider ρS ∈ P and s ∈ A and define

S′ = {a ∈ A : there exists n ∈ Z∗ such that na ∈ 〈S ∪ {s}〉 }.

By Remark 12, S′ is a pure subgroup containing S ∪ {s}, or analogously
{a0, ... , am, s}, where B0 = {a0, ... , am}, is a minimal set of generators of
S. Moreover S′ is a countable subgroup of A, and (since A is ℵ1-free by the
Chase(ℵ1)-condition) we have that S′ is free. However either B0 is a maximal
independent family in S′ or {a0, ... , am, s} is. In either cases r0(S

′) ≤ m + 1,
hence S′ is finitely generated. Therefore S′ is a finitely-generated pure sub-
group of A.

Now assume s 6∈ S. Since S ⊆ S′ and S is pure, we have that S′/S is a
finitely generated torsion-free group. By Proposition 1.1.8 S′/S is free, and
S′ = S ⊕ S′/S (since the exact sequence

0 −→ S′ −→ S −→ S′/S −→ 0
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splits). Therefore there exists a basis of S′, X∪Y , such that X is a basis of S.
In order to define an injective homomorphism ρS′ : S′ −→ B, it is enough to
define it on a basis (since S′ is free). For all x ∈ X set ρS′(x) = ρS(x), and for
all y ∈ Y define ρS′(y) to be some element in ψ−1({y}). We have just built a
homomorphism such that ψ ◦ ρS′ is the identity on S′. Hence ρS′ belongs to
P , and the second hypothesis of Lemma 1.2.30 is true for P .

We are left with the proof that P respects the third assumption of Lemma 1.2.30.
To proceed further we need the following:

Claim. For any uncountable subset P ′ of P there is an uncountable free pure sub-
group A′ of A and an uncountable subset P ′′ of P ′ such that dom(ρS) ⊆ A′ for every
ρS ∈ P ′′.

Proof. Enumerate the elements of P ′, {ρα : Sα −→ B}α∈ℵ1 . Define P ′n as the subset
of P ′ such that for all ρα ∈ P ′n Sα has a basis of cardinality n. The collection
{P ′n}n∈ω gives a partition of P ′, and thus there is one P ′n whose cardinality is ℵ1.
Define T as a pure subgroup of A maximal with respect to the property of being
contained in uncountably many Sα ∈ P ′n. Fixing such a T we can further refine P ′n
to an uncountable subset P ′′ given by the Sα in which T is contained. Fix for each
α < ω1 Xα, Yα such that Xα is a base for T and Xα ∪ Yα is a base for Sα. Since T
is countable we can find an uncountabel set I and a fixed X such that Xα = X for
all α ∈ I. Hence letting P ∗ = {ρα : α ∈ I}. We reenumerate P ∗ so that:

• P ∗ = {ρα : Sα → B : α < ω1} with each Sα a pure subgroup of rank n,

• T ⊆ Sα for all α < ω1,

• T ′ is not contained in some Sα for any T ′ ⊃ T pure subgroup of A,

• X is a base of T and X ∪ Yα is a base for Sα for all α < ω1.

Define a chain of countable pure subsets {Aα}α∈ℵ1 by transfinite induction as fol-
lows: A0 = T , which is free and pure. Next suppose we have defined {Aβ}β∈α so
that there exists a strictly increasing sequence of ordinals {γβ}β∈α such that for all
0 ∈ β ∈ α, Yγβ is contained in Aβ.

If α = δ+1, let Bδ be an ℵ1-pure countable subgroup containing Aδ, whose existences
is ensured by the Chase(ℵ1)-condition for A. Suppose that Bδ ∩ (Sα \ T ) 6= ∅ for
uncountably many α ∈ ℵ1. Since Bδ is countable, there exists b ∈ Bδ \{0} such that
b ∈ Bδ ∩ (Sα \ T ) for uncountably many α. This means that 〈T ∪ {b}〉 is contained
in uncountably many Sα, with b /∈ T ; as previously done, define T ′ = {a ∈ A : there
is n ∈ N such that na ∈ 〈T ∪ {b}〉}. We can again argue that T ′ is a pure subgroup
of A containing T ∪ {b} with r0(T

′) = r0(T ) + 1. Since Sα is pure for all α ∈ ℵ1, it
follows that T ′ ⊆ Sα for uncountably many α (i.e for all α such that b ∈ Sα). This
contradicts the maximality property of T (remind that T was chosen to be maximal
with the property of being contained in uncountably many Sα). Therefore (since
〈Yα〉 \ {0} ⊆ Sα \ T ) Bδ ∩ 〈Yα〉 = {0} for eventually all α.
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Let γδ+1 be the first ordinal for which it happens. Define Aδ+1 as the smallest
pure subgroup which contains Aδ ∪ Yγδ+1

. Clearly Aδ ⊆ Aδ+1 ∩ Bδ. Conversely, if
a ∈ Aδ+1 ∩ Bδ then a ∈ Aδ+1, and so there is n ∈ N such that na = aδ + y with
aδ ∈ Aδ and y ∈ Yγδ+1

. Since a ∈ Bδ too, na = aδ + y ∈ Bδ, or rather y ∈ Bδ. It
follows that y = 0 and a ∈ Aδ, hence Aδ+1 ∩Bδ = Aδ. Since Bδ +Aδ+1 is countable
and A/Bδ is ℵ1-free, we get that (Bδ +Aδ+1)/Bδ is also free. Now

Aδ+1/Aδ ∼= Aδ+1/(Bδ ∩Aδ+1) ∼= (Bδ +Aδ+1)/Bδ,

hence Aδ+1/Aδ is free.

For α a limit ordinal, set Aα = ∪
β∈α

Aβ. Aα is countable and therefore free. More-

over it is a union of pure subgroups and so it is pure too.

Let A′ =
⋃
{Aα : α < ω1}. Then A′ is pure, since union of pure subgroups, and

free by Lemma 3.1.10 applied to the filtration {Aα : α < ω1}. If we consider
P ′′ = {ργα+1}α∈ℵ1 we have that dom(ργα+1) = Sγα+1 ⊆ A′.

We continue with the proof of the third condition for P . Without loss of generality
it is enough to prove it for a P ′ that satisfies the hypotheses of the previous Claim
and consists of elements of the same size.

Following the notation of Claim 3.3.1, let Z = {zα}α∈ℵ1 be a basis of A′ and
consider dom(ργβ ). Each element of the basis X ∪ Yγβ can be written as a finite
linear combination of {zα}α∈ℵ1 , thus dom(ργβ ) is contained in ⊕

i∈n
〈zαi〉 for some fixed

set {α1, . . . , αn}. Since dom(ργβ ) is pure, we have that ⊕
i∈n
〈zαi〉/dom(ργβ ) is free,

hence

dom(ργβ )⊕
(
⊕
i∈n
〈zαi〉/dom(ργβ )

)
∼= ⊕

i∈n
〈zαi〉.

ργβ can be extended to a function ρ∗β in P whose domain is a finite subset of Z such

that ψ◦ρ∗β is the identity, as follows: fix {[zαi1 ], . . . , [zαik ]} base for

(
⊕
i∈n
〈zαi〉/dom(ργβ )

)
.

For each zαi find bi in its preimage under ψ and let

ρ∗β(a+
k∑
j=1

nj [zαj ]) = ρβ(a) +
k∑
j=1

njbj .

By taking an uncountable subset of {ρ∗β : ργβ ∈ P ′}, one can assume that the
cardinality of r0(dom(ρ∗β)) is some fixed n for all functions in P ′. Let

P ∗∗ = {ρ∗β : Tβ → B : β ∈ I}

be this latter set. Then each of the elements of P ∗∗ is a condition in P which extends
a unique condition in P ′ and whose domain has a basis of size n contained in the
uncountable and pure free subgroup A′ of A.
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Let Zβ ⊆ Z be a basis of Tβ for each β ∈ I. As in the proof of Lemma 3.3.1, define
Z∗ as a subset of Z maximal with respect to the property of being contained in
uncountably many Zα. We can refine I to an uncountable J such that Z∗ ⊆ Zα for
all α ∈ J . Notice that ker(ψ) is countable since it is isomorphic to Z. Therefore
ψ−1(zi) is a countable set for all zi ∈ Z. This means that each ρ∗β � Z∗ has range
contained in a countable set. In particular we can refine J to an uncountable set
K such that ρ∗β � Z∗ = ρ for all β ∈ K and for some fixed injective homomorphism
ρ : 〈Z∗〉 → B.

Now for all z ∈ Z0 \Z∗ there exists only countably many α such that z ∈ Zα, by
the maximality property of Z∗. Hence, there is α 6= 0 such that Zα∩Z0 = Z∗. Since
ρ∗0 � Z

∗ = ρ∗α � Z∗ we can define a common extension of ρ∗0 and ρ∗α to a section ρ′ of ψ
defined on S′ = 〈Z∗∗〉 (where Z∗∗ = Z0∪Zα) letting ρ′(a+ b+ c) = ρ∗0(a+ b) +ρ∗α(c)
for a ∈ 〈Z∗〉, b ∈ 〈Z0 \ Z∗〉, c ∈ 〈Zα \ Z∗〉 since S′ = 〈Z∗〉 ⊕ 〈Z0 \ Z∗〉 ⊕ 〈Zα \ Z∗〉.

Notice that A′/S′ ∼= 〈Z \Z∗∗〉 is free; moreover (A/S′)/(A′/S′) ∼= A/A′ is torsion
free; we can conclude that also A/S′ is torsion-free by Fact 1.1.17.

Hence S′ is a finitely-generated pure subgroup of A. We conclude that ρ′ ∈ P refines
ργ0 and ργα in P ′. Therefore P satisfies also the third property.

By Lemma 1.2.30, there exists ρ : A −→ B such that for each finite F ⊆ A there is
ρS ∈ P such that F ⊆ dom(ρS) and ρ �F= ρS �F . It follows that ρ is a homomor-
phism and in particular a section of ψ defined on A.

We can conclude our discussion proving right away in ZFC that there is a group
which is not free but satisfies Chase(ℵ1)-condition. Assuming MA+ 2ℵ0 > ℵ1 such
a group is a W-group of cardinality ℵ1. It follows that under this assumption there
exists a non-free W-group of cardinality ℵ1.

Theorem 3.3.2. There exists a non-free group A of cardinality ℵ1 which satisfies
the Chase(ℵ1)-condition.

Proof. We define by transfinite induction a family F = {Aα}α∈ℵ1 satisfying the
following properties:

1. Aα is countable and free for every α ∈ ℵ1;
2. Aβ < Aα for all β ∈ α ∈ ℵ1;
3. Aα = ∪

β∈α
Aβ for all limit ordinals α ∈ ℵ1;

4. Aα/Aβ+1 is free for all β ∈ α ∈ ℵ1;
5. Aα+1/Aα is not free for all limit ordinals α ∈ ℵ1.

Suppose we succeed. Then we let A =
⋃
α<ω1

Aα. By Lemma 3.1.6 F is an ℵ1-
filtration witnesses the Chase((ℵ1))-condition for A: for all α Aα is countable and
free, and

A/Aα+1 =
⋃

β>α+1

Aβ/Aα+1
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is also ℵ1-free, being an increasing union of countable free groups. We get that
Γ(A) = [EF ] = {β < ω1 : β is limit} = [ω1] 6= [∅]. By Lemma 3.1.11, we conclude
that A is not free.

We define the filtration as follows:

• A0 = 0

• Suppose that Aβ has been already defined for every β ∈ α so to satisfy the
above clauses. We define Aα according to the following cases:

α is a limit ordinal: Aα = ∪
β∈α

Aβ. Then Aα is equal to ∪
n∈ω

Aβn , where {βn}n∈ω
is a filtration of α such that every βn is a successor ordinal. Then Aα
is a countable torsion-free group: any of its subgroups of finite rank is
in some Aβn and thus each of them is free. By Pontryagin’s Criterion it
follows that also Aα is free. Again by Pontryagin’s Criterion we conclude
that Aα/Aδ+1 is free for all δ ∈ α since so are all Aβn/Aδ+1 by inductive
assumption.

α = δ+ 1 and δ is not a limit ordinal: Aα = Aδ⊕Z. It is immediate to check
that {Aγ : γ ≤ α} still satisfies all the required clauses.

α = δ + 1 and δ is a limit ordinal: We fix an increasing sequence βn con-
verging to δ with β0 = 0, and βn a successor ordinal for all n > 0.
Then Aδ = ∪

n∈ω
Aβn . Let {Bn}n∈ω be a an increasing family of subsets

of Aδ with Bn a basis for Aβn and Bn ( Bn+1. For each n ≥ 1, choose
bn ∈ Bn \ Bn−1 and define B′0 = B0 = 0 and B′n = Bn \ {b1, ... , bn}.
Let B′ be the subgroup of Aδ generated by 〈 ∪

n∈ω
B′n〉. Observe that

∪
n∈ω

B′n =
(
∪
n∈ω

Bn

)
\ {bn : n ∈ ω}. Since ∪

n∈ω
Bn is a basis (for Aδ),

then B′ ∩
∏
n≥1
〈bn〉 = {0Aδ}. Let P =

∏
n≥1
〈bn〉.

It will be convenient in what follows to denote an element 〈nibi : i ∈ N〉
of P by

∑
i∈N nibi and an element (c, 〈nibi : i ∈ N〉) of B′ ⊕ P by

c+
∑

i∈N nibi, using in both cases an additive notation.

Using this convention, it is immediate to identify Aδ with the subgroup
of B′⊕P given by generalized sums of elements of B′∪{bn : n ∈ N} with
a finite number of non-zero coefficients.

We defineAδ+1 as the subgroup ofB′⊕P generated byB′ and {am}1≤m∈ω,
where

am =
∑
n≥m

n!

m!
bn.

First we observe that bn = an − (n + 1)an+1 for each n ∈ N∗, therefore
B′∪{an}n∈N∗ generates Aδ+1 and Aδ ⊆ Aδ+1. We also claim that ∪

n∈ω
B′n∪

{an}n∈N∗ forms a basis for Aδ+1: it is a generating set for Aδ+1, and
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moreover no linear combination of the an can belong to B′\{0}. Therefore
it suffices to show that no non-trivial linear combination of the an can be
0P . Suppose to the contrary that there exist n1 < ... < nk indices in N∗
and z1, ... , zm non-zero integers such that

m∑
k=1

zkank = 0P .

Then

0P =
m∑
k=1

zkank =
m∑
k=1

zk
∑
n≥nk

n!

nk!
bn =

m∑
k=1

∑
n≥nk

zk
n!

nk!
bn = 0P .

Now the n1-th coordinate of

m∑
k=1

∑
n≥nk

zk
n!

nk!
bn

is exactly z1b1, giving that z1 = 0, which is impossible. Thus, {an}n∈N∗
forms an independent subset of P , or rather ∪

n∈ω
B′n ∪ {an}n∈ω is a basis

for Aδ+1, which is consequently free and countable.

Claim. Aα/Aβ+1 is free for all β ∈ δ.

Proof. Being {βn}n∈ω a filtration of δ there exists βn > β+1 for all β ∈ δ.
Hence we get an exact sequence

0 −→ Aβn/Aβ+1 −→ Aα/Aβ+1 −→ (Aα/Aβ+1)/(Aβn/Aβ+1) −→ 0.

Aβn/Aβ+1 is free by inductive assumptions on β + 1 < βn for all n ∈ ω.
By Lemma 1.1.21 to prove the Claim it suffices to prove that Aα/Aβn

∼=
(Aα/Aβ+1)/(Aβn/Aβ+1) is free, and therefore projective for all n ∈ ω.
Let us prove it: since Aβn = 〈Bn〉 = 〈a1, . . . , an〉, Aα/Aβn is generated by

∪
m∈ω
{B′m \Bn}∪ {[am]}n∈m∈ω.

Now observe that

C = 〈 ∪
m∈ω

(B′m \Bn)∪ {am}n∈m∈ω〉
is a subgroup of Aδ+1 in direct sum with Bn, hence the map a 7→ [a] is
an isomorphism of C with Aα/Aβn . Since C is free so is Aα/Aβn .

The proof of the Claim is completed.

Finally, Aδ+1/Aδ is not free because a1 is an element which is divisible
for all n ∈ ω:

a1 − n! an =

n∑
i=1

i! bi ∈ Aδ

for all n ∈ N, hence a1 = n! an in Aδ+1/Aδ for all n ∈ N.
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The second part of Theorem 3.0.2 may be generalized as follows.

Proposition 3.3.3. Martin’s Axiom plus 2ℵ0 > ℵ1 imply that for every uncountable
cardinal κ there exists a non-free W-group of cardinality κ.

Proof. By Theorem 2.4.1, if A is a non-free W-group of cardinality ℵ1 then the direct
sum of κ copies of A is a W-group since

Ext1
(
⊕
α∈κ

A,Z
)
∼=
∏
α∈κ

Ext1(A,Z) = 0.
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