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Introduction

These notes are extracted from the lectures on forcing axioms and applications
held by professor Matteo Viale at the University of Turin in the academic year
2011-2012. Our purpose is to give a brief account of the axiom OCA, introduced
by Todorčević in [8], which can be seen as a sort of two-dimensional perfect set
property. It is a basic result of descriptive set theory that every analytic set is
either countable or it contains a perfect subset. It might be surprising but a
similar dichotomy can be stated in a two dimensional version.

Let X be a separable metric space and by [X]2 denote the family of all
unordered pairs of elements of X,

[X]2 = {{x, y} : x 6= y and x, y ∈ X}.

Subsets of [X]2 can be seen as the symmetric subsets of X2 minus the diagonal.
A subset K of [X]2 is open if for every {x, y} in K there are disjoint neighbor-
hoods U of x and V of y such that {{x′, y′} : x′ ∈ U, y′ ∈ V } is contained in K.
We call (open) coloring of X every (open) subset of [X]2.

Definition 1. Let X be a separable metric space, K ⊆ [X]2 and Y ⊆ X. Y is
said to be K-homogeneous if [Y ]2 is contained in K. Instead, we say that Y
is K-countable if Y =

⋃
{Yn : n ∈ ω} where each Yn is Kc − homogeneous.

Example 1. Let us examine two typical examples of open colorings of R:

1. For all n, Kn = {(x, y) ∈ R2 : y < x− 1/n} is an open coloring of R and
R is Kn-countable.

2. If K = {(x, y) ∈ R2 : y < x & ∀n(y 6= x− 1/n)}, K is an open coloring of
R, but R is not K-countable. In fact, a Kc−homogeneous set is at most
countable. (For more details see Remark ?? of Section 2).

Drawing pictures of these sets might be of great help.

Remark 1. Let X be a separable metric space and let K be a coloring of X.
The following properties are trivial to check:
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(a) Let Y ⊆ X. If X is K-countable, then also Y is K-countable. (Thus, if Y
is not K-countable, then so is X).

(b) If {Xn : n ∈ ω} is a family of K−countable subsets of X, then also
⋃
n∈ω

Xn

is K-countable.

Let us introduce the Open Coloring Axiom (OCA). From now on, if not
specified, X will be a separable metric space.

Axiom 1. OCAP(X). For any K open colouring of X exactly one of the
following holds:

• X is K−countable,

• There exists a perfect subset (i.e. a nonempty compact subset without
isolated points) P of X that is homogeneous for K.

As we wil see in Section 1, it is a ZFC theorem that the conclusion of
OCAP (X) holds for every open graph on an analytic set X of a Polish space.

Axiom 2. OCAP OCAP (X) holds for all X separable metric spaces.

After examinig some properties of colorings in Section 2, we will show that
the stated above is a natural consequence of AD (Section 3).

Is it possible to push such a dichotomy even further, in order to cover classes
of sets for which AD fails. This is possible if we slightly weaken the dichotomy.

Axiom 3. OCA(X) For any K open colouring of X exactly one of the following
holds:

• X is K−countable,

• There exists an uncountable subset Z of X that is homogeneous for K.

Axiom 4. OCA OCA(X) holds for all X separable metric spaces.

This last dichotomy is strong enough to decide many questions on the con-
tinuum. In Section 4, indeed, we will prove that under OCA in (P (ω),⊆∗) there
are only Haussdorff gaps or (κ, ω)-gaps where κ ≥ b and that b = ω2.

1 Principle of Open Coloring for analytic sets

One reason why OCAP , and then OCA, can be considered a natural axiom is
the following Principle of Open Coloring for analytic sets, which we will prove
in this section.

Theorem 1. Let X be an analytic set and K an open colouring of X. Then
exactly one of the following holds:

• X is K-countable, or
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• X contains a perfect K−homogeneous set.

The proof of the next lemma is straightforward, since we have assumed by
definition that a perfect subset of a topological space is compact.

Lemma 1. Let X and Y be topological spaces. If P is a perfect subset of X
and f : X → Y is a continuous function injective on P , then f [P ] is perfect in
Y .

Proposition 1. Let X and Y be metric spaces. If OCAP (X) (OCA(X)) holds
and Y is a continuous image of X, then OCAP (Y ) (OCA(Y )) holds.

Proof. Let K be an open colouring of Y . Observe that

H = {{x, y} : f(x) 6= f(y) and {f(x), f(y)} ∈ K}

is open in [X]2. Notice that trivially the image by f of a H−homogeneous
(Hc-homogeneous) subset of X is a K−homogeneous (Kc-homogeneous) subset
of Y .

By OCAP (X), either X =
⋃
{Xn : n ∈ ω}, where each Xn is homogeneous

for Hc, or there exists a perfect subset P of X homogeneous for H. In the first
case, Y = f [X] =

⋃
{f [Xn] : n ∈ ω} and each f [Xn] is homogeneous for Kc.

Otherwise, notice that f in injective on P , since P is homogeneous for H. Thus,
by Lemma 1, f [P ] is perfect in Y .

Proposition 1 plays a crucial role in the study of OCA. In fact, we know that
every T2 second countable space, and thus even every separable metric space,
is a 1-1 continuous image of a set of reals (i.e. a subset of 2ω). Therefore OCA
for sets of reals, which can be proved to be consistent with ZFC, implies OCA
for separable metric spaces.

Moreover, by Proposition 1, in order to prove Theorem 1 we just need to
prove it for X = ωω, since every analityc set is a continuous image of ωω.

Notation 1. Let s, t ∈ ωn for some n ∈ ω. Let

|x| = n,

[s] = {f ∈ ωω : f � n = s},

[s]⊗ [t] = {(f, g) ∈ ωω × ωω : (f ∈ [s] & g ∈ [t]) or (f ∈ [t] & g ∈ [s])}.

Theorem 2. (ZFC) OCAP (ωω).

Proof. Let K be an open colouring of ωω such that ωω is not K-countable. We
have to find in ωω a perfect set P homogeneous for K.

We will construct a perfect subtree of ωω whose body is homogeneous for
K. Proving the following claims, we will tacitly use Remark 1.

Claim 1. If s ∈ ω<ω is such that [s] is not K-countable, then there exists t
extension of s such that [t] is not K-countable.
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Proof. Suppose the claim is false for some s. In particular, we would have that
[sˆn] is K−countable for every n ∈ ω, but this contradicts our hypothesis on
s.

Claim 2. If s ∈ ω<ω is such that [s] is not K-countable, then there exist t, u
incompatible extensions of s such that [t] and [u] are not K-countable.

Proof. By Claim 1, it is possible to define by induction a succession tn with
t0 = s, tn+1 proper extension of tn and such that each [tn] is not K−countable.
Let f be the limit of the tn. If the claim is false, f is the common limit of all
the succession of this type and [s] \ {f} is a countable union of K-countable
sets. So [s] \ {f} is K−countable set. Since Kc is closed and contains [s] \ {f},
then even f is in Kc. Therefore all [s] is K−countable, a contradiction.

Notice that Claim 2 says that

TK = {s ∈ ω<ω : [s] is not K-countable}

is a perfect subtree of ω<ω.

Claim 3. For every s ∈ TK there are t, u ∈ TK incompatible extensions of s
such that [t]⊗ [u] ⊆ K.

Proof. Observe that K is an open colouring even of [TK ]. Moreover, notice that
for each s ∈ TK ,

[s] ∩ [TK ] is not K-countable in [TK ].

In fact, we have that [s]∩ (ωω \ [TK ]) is K−countable, since it can be expressed
as the union of countably many sets as [t] with t extension of s and [t] be K−
countable. Thus, if [s] ∩ [TK ] were K−countable so would [s] be.

Now suppose that s ∈ Tk contradicts the claim, i.e. for all t, u ∈ TK extend-
ing s we have that [t]⊗[u] * K. This implies that ([t]⊗[u])∩([TK ]⊗[TK ]) ⊆ Kc,
since K is open in [TK ]2. But this is a contradiction, because it would mean that
[s] ∩ [TK ] is homogeneous for Kc, while [s] ∩ [TK ] is not even K-countable.

Now we build a tree TP ⊆ TK by induction as follows. Let s∅ = ∅ be
in TP and, given sσ ∈ TP , by Claim 3 we can choose p0, p1 ∈ TK which are
incompatible, extend sσ and such that [p0] ⊗ [p1] ⊆ K. Let sσai = pi be in
TP . It is clear that P = [TP ] is perfect subset of ωω homogeneous for K. This
conclude the proof of Theorem 2.

Now Theorem 1 is completely proved.

Corollary 1. For every analytic set X either X is countable or there is P ⊆ X
perfect.

Proof. Apply Theorem 1 to K = [X]2.
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2 Basic properties of open colourings of a sepa-
rable metric space

In this section we will show some basic properties of open colourings of a polish
space (or more generally of a separable metric space).

Remark 2. Let X ⊂ R and let K be an open colouring of R. If X is homoge-
neous for Kc ∩ [Y ]2 then [X]2 = [X]2 is homogeneous for Kc, since K is open.
Thus it is easy to see, using Remark 1, that X is K−countable iff there exists
Z ∈ Fσ(R) which contains X and is K−countable. Moreover by refining the
topology on R to a new polish topology τ in which such a Z is closed, we get
that X is K-countable iff the topological closure of X with respect to τ is K-
countable. All in all we have that for Polsh space....any separable metric space
X with topology τ and any K open coloring of X, there is a possibly finer topol-
ogy τ ′, and a metric ρ on X compatible with τ ′?, such that X is K-countable
with respect to τ iff the completion of X with respect to τ ′ is K-countable.

Remark 3. Let S ⊆ 2ω and K ⊆ [S]2. Then the following statements are
equivalent:

(i) There is a separable metric topology on S such that K is open in [S]2,

(ii) there are two families of Borel sets of 2ω {An : n < ω}, {Bn : n < ω}
such that K =

⋃
{(An ∩ S)⊗ (Bn ∩ S) : n < ω}.

Proof. (i) → (ii) by definition. We proceed with the proof of the converse
implication; we can suppose S ⊆ 4ω; let τ be the topology on S be defined by
the base {Nσ : σ ∈ 4<ω} as follows:

• N∅ = S,

• if σ has even length 2n,

Nσa0 = Nσ ∩An,

Nσa1 = Nσ ∩ (S \An),

Nσa2 = Nσ ∩Bn,

Nσa3 = Nσ ∩ (S \Bn)

• if σ has odd length 2n+ 1,

Nσai = Nσ ∩ [〈σ(2j) : j ≤ n/2〉ai].

We have that τ is a separable metric topology on S and An, Bn are clopen
in τ for all n (for example, An =

⋃
{Nσa0 : |σ| = 2n}).

Definition 2. Given K open colouring of a separable metric space X, x ∈ X
is a K-accumulation point if for every open neighborhood U of x, K(x) ∩ U
is not K-countable. If Y is a subset of X, we say that x is a K-accumulation
point for Y if if for every open neighborhood U of x, K(x) ∩ U ∩ Y is not
K-countable.
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The following holds:

Property 1. (K-density property) Given K open colouring of R and X ⊆ R,
the following are equivalent:

(i) X is K−countable,

(ii) AX = {y ∈ X : y is a K-accumulation point for X} is K-countable.

Proof. If X is K-countable, then AX is clearly K-countable, being AX a subset
of X. Conversely, suppose X is not K-countable while AX is K-countable.
Then also BX = X \AX is not K-countable.

Notice that if x ∈ BX , then there is an integer nx such that [x− 1/nx, x+
1/nx]∩K(x)∩X is K-countable. Let An = {x ∈ BX : nx = n} for every n ∈ ω.

Claim 4. For every n ∈ ω, for every (a, b) open interval such that |b−a| < 1/2n,
the set (a, b) ∩An is K-countable.

Proof. Notice that:

1. The set (a, b) ∩ K(x) ∩ X is K-countable for all x ∈ An ∩ (a, b), since
x− 1/n < a < x < b < x+ 1/n.

2. Let {xn : n < ω} be dense in (a, b) ∩ An. If y ∈ K(x) for some x ∈
An∩(a, b), then y ∈ K(xn) for some n. In fact, sinceK is open, there exists
U ⊆ (a, b) open neighbourhood of x such that {y} ⊗ U ⊆ K. Then there
is n such that xn ∈ U , so y ∈ K(xn). Therefore, for all x ∈ An ∩ (a, b),

K(x) ⊆
⋃
n∈ω

K(xn).

3. For all n the set Zn = ((a, b) ∩ An) \
⋃
{K(y) : y ∈ (a, b) ∩ An} is homo-

geneous for Kc, by definition.

By 3, to prove the claim we only need to show that the set

A =
⋃
{K(y) : y ∈ (a, b) ∩An} ∩ (a, b) ∩An.

is K−countable. Using 2, we have that A ⊆
⋃
{K(xn)∩ (a, b)∩An : n ∈ ω} and

thus, applying 1, A is cointained in a countable union of K−countable sets.

By the claim, each An is K-countable, since it can be expressed as the union
of the K-countable sets of the type of I ∩ An, where I is a rational interval of
diameter less then 1/2n.

Finally, also BX is K-countable since it is the union of all the An. This is a
contradiction.
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3 AD → OCAP

In this section we will show that OCAP is a straigthforward consequence of AD
using a simple refinement of the perfect set game.

Theorem 3. (ZFC) Assume AD. Then OCAP (X) holds for all X ⊆ 2ω.

Let X ⊆ 2ω and K be an open colouring of 2ω. We define the game G(K,X)
as follows. Each of player’s I moves is a pair sn0 , sn1 from 2<ω such that [sn0 ] ⊗
[sn1 ] ⊆ K and each of player’s II moves is some in ∈ {0, 1}. We insist on the
following rules:

• for all n < ω, sn+1
0 and sn+1

1 are incompatible extensions of snin ,

• I wins iff x =
⋃
n<ω

snin belongs to X.

The theorem follows from the following claim:

Claim 5. In G(K,X) the following holds:

(i) I has a winning strategy iff X contains a perfect subset homogeneous for
K,

(ii) If II has a winning strategy, then X is K-countable.

Proof. For (ii), notice that a winning strategy for I is essentially a perfect tree
TP and that the rules of the game force [TP ] to be an homogeneous set for K.

For what concerns (ii), let σII be a winning strategy for II. Given x ∈ X,
we say that a position P = 〈(s00, s01), i0, · · · , (sn0 , sn1 ), in〉 ∈ σII is good for x if
x ∈ [snin ]. Since σII is a winning strategy for II, for every x ∈ X the tree Tx of
good positions for x is well-founded. Given P good position for x, let

AP = {y ∈ [snin ] : for all (sn+1
0 , sn+1

1 ) legal moves of I after in, if i is what σII

requires II to play next, then y 6∈ sn+1
i }.

Notice that if P is an end leaf of Tx, then x ∈ AP . Moreover, [AP ]2 ∩K = ∅.
Otherwise, if there were z, y ∈ AP such that {z, y} ∈ K, then [z � n]⊗ [y � n] ⊆
K for some n, since K is open. Therefore (z�n, y�n) would be a legal move of I
answering to P but either z or y would be in sn+1

in+1
, contrary to the definition

of AP . Finally, notice that X ⊆
⋃
P∈G(K,X)AP , so X is a countable union of

Kc-homogeneous sets.

Remark 4. It is not straigthforward to strengthen (ii) in the above claim to
an equivalence as for (i). Probably we need to refine the rules of the game or
eventually even the Axiom OCAP .

The dichotomy of OCAP that holds for open colourings of subsets of R does
not hold for generic closed colourings as shown by the following:
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Remark 5. If we assume AD, there is a closed colouring K of R such that
neither R is K-countable nor admits a perfect K−homogeneous subset. On the
other hand, assuming AC we have that R is K-countable with respect to the
same colouring K.

Proof. Consider on [R]2 = {(x, y) : x > y} the lines ln = {(x, y) : y = x− 1/n}
and let K =

⋃
n<ω

ln; then K is closed in [R]2. For all x ∈ R, let us consider

the K-fiber of x, i.e. the set K(x) = {y : {x, y} ∈ K}. Notice that K(x) is
the set {x − 1/n : n < ω}, so it is countable. If Y ⊆ R is homogeneous for K
and x ∈ Y , then Y ⊆ K(x), so Y can be at most countable. This shows that R
cannot have a perfect K− homogeneous subset.

Let us assume AC and let A be a Vtali set. We have that the countable
family {A+ r : r ∈ Q} give us a cover of R consisting of Kc−homogeneous sets.

To complete the proof, we wil show that every countable family which is a
cover of R made by Kc-homogeneous sets contains a set that has not the Baire
property. Suppose R =

⋃
n∈ωXn, with Xn K

c−homogeneous for all n. Since R
is Baire, there exists n such that X = Xn is not meager.

Let us look at R as the topological group (R,+). If X had the Baire property,
by the proof of the Pettis theorem for topological group (see [9]), we would have
that there exists an open neighborhood V of 0 such that X ∩ (X+h) 6= ∅ for all
h in V . Thus, in particular, there exists an m ∈ ω such that X∩(X+1/m) 6= ∅,
a contadiction to tha fact that X is Kc−homogeneous.

—oppure:—-
If X had the Baire property, there would exist a nonempty open set U =

(a, b) on wich X ∩ U is comeager. Let r = 1/m < b − a for some m ∈ ω.
Obviously, we have that (X ∩ U) + r is comeager in U + r = (a+ r, b+ r), and
thus (X ∩U) + r is comeager in (a+ r, b), which implies that (X ∩U) + r is not
meager in U . But this is a contradiction to tha fact that U \X is meager, since
((X ∩ U) + r) ∩ U ⊆ U \X, being X Kc-homogeneous.

4 OCA and gaps in ωω

In this section we will show some powerful applications of OCA to problems
concerning properties of the continuum.

On ωω set f <∗ g if the set {n ∈ ω : f(n) ≥ g(n)} is finite. A set A ⊆ ωω

is called bounded if there is a g ∈ ωω such that f <∗ g for all f ∈ A. Let us
define the cardinal b as the minimal size of an unbounded set of ωω.

Definition 3. Let A = {fα : α < κ} and B = {gβ : β < λ} be subsets of ωω.
(A,B) is said to be a (κ, λ∗)-pregap in ωω if

• fα <∗ fγ for all α < γ < κ,

• gρ <∗ gβ for all β < ρ < λ,

• fα <∗ gβfor all α < κ and for all β < λ.
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A pregap (A,B) is filled if there exists h ∈ ωω such that f <∗ h <∗ g, for
all f ∈ A and for all g ∈ B. Otherwise, we say that (A,B) is unfilled. Finally,
a pregap (A,B) is called gap if it is an unfilled pregap.

These are basic facts and folklore results about gaps:

Theorem 4. There are no (ω, ω∗)-gaps.

Theorem 5. There exist a (ω1, ω
∗
1)-gaps and a (b, ω∗)-gap on ωω. These gaps

are called Haussdorff gaps.

In ZFC this is the best possible existence result, while under OCA the
Haussdorff gaps are essentially the only kind of gaps that exist:

Theorem 6. Assume OCA. Then the only type of gaps in ωω are either (ω1, ω
∗
1)

or (κ, ω∗) where κ is a cardinal of size at least b.

Proof. Suppose not, i.e. there exists a gap ({fα : α < κ}, {gβ : β < λ}) in
(ωω, <∗), with κ, λ regular and uncountable cardinals, and such that κ > ω1.

We can modify the gap as follows. Notice that for every α ∈ κ there is an
mα ∈ ω such that |{β ∈ λ : fα(n) < gβ(n) for all n ≥ mα}| = λ and for κ-many
α the integer mα will be the same. So we take from A an unique element for
every mα and by rescaling the fα’s and the gβ ’s in order to have mα = 0 for all
α < κ, we obtain the following subset of ωω:

X = {(fα, gβ) : fα(n) < gβ(n) for all n ∈ ω, α ∈ κ, β ∈ λ}.

Let us consider the colouring of X

K = {{(fα, gβ), (fξ, gη)} : ∃n fα(n) ≥ gη(n) or ∃n fξ(n) ≥ gβ(n)}.

Notice that K is an open coloring of X, since if {(fα, gβ), (fξ, gη)} ∈ K and
n witnesses this fact, we just need to fix the first n + 1 coordinates of each
function to obtain an open neighboorhood of {(fα, gβ), (fξ, gη)} contained in
K.

Then, by OCA, to prove the theorem it is sufficient to show that X is neither
K−countable, nor admits an uncountable subset homogeneous for K.

Claim 6. X is not K-countable.

Proof. If X =
⋃
n∈ω

Xn with each Xn homogeneous for Kc. For each n, set

An = {α : ∃β (fα, gβ) ∈ Xn} and Bn = {β : ∃α (fα, gβ) ∈ Xn}. Suppose there
is an n such that |An| = κ and |Bn| = λ and set g(m) = min{gβ(m) : β ∈ Bn}.
Notice that g fills the gap, a contradiction. The other possibility is that for
all n either |An| < κ or |Bn| < λ. Let α0 =

⋃
{An : |An| < κ} < κ and

β0 =
⋃
{Bn : |Bn| < λ} < λ. Let n0 such that (fα0

, gβ) ∈ Xn0
for some β ≥ β0.

If |An0
| < κ then α0 6∈ An0

, if |Bn0
| < λ then β 6∈ Bn0

, a contradiction.

Claim 7. X has no uncountable K-homogeneous subset.
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Proof. If not, let Y ⊆ X be uncountable and homogeneous for K. Notice that
for every (fα, gβ), (fξ, gη) ∈ Y , we have that α 6= ξ and β 6= η. Otherwise, if
for example α = ξ, since Y is K−homogeneous, then there is an n such that
fα(n) ≥ gη(n), i.e. fξ(n) ≥ gη(n), a contradiction. Recall that by the Dushnik-
Miller Theorem (see [5]), we have that for every F : [Y ]2 → {0, 1} either there
exists an H1 ⊂ Y of order type ω1such that F = 0 on [H1]2 or there exists
an H2 ⊂ Y of order type ω such that F = 1 on [H2]2. Let us consider the
application on [Y ]2 defined by setting

F ({(fα, gβ), (fξ, gη)}) =

{
0, if α < ξ ↔ β < η

1, otherwise.

If H2 were a countable subset of [Y ]2 on which F is costantly equal to 1,
then we would have an infinite discending of elements of ωω with respect to <∗.
Therefore, by the Dushnik-Miller Theorem, there exists an H1 ⊂ Y of order
type ω1such that F = 0 on [H1]2. Let {(fαν , gβν ) : ν < ω1} such that if ρ < γ,
fαρ <

∗ fαγ <
∗ gβγ <

∗ gβρ .
Since κ > ω1 there is an η such that fαν <

∗ fη for all ν. Choose n0 such that
A = {ν : ∀n ≥ n0 fαν (n) < fη(n)} is uncountable and find n1 ≥ n0 such that
B = {ν ∈ A : ∀n ≥ n1 gαν (n) > fη(n)} is uncountable. Find u0 ∈ ωn1 such
that C = {ν ∈ B : fαν ∈ [u0]} is uncountable and finally find u1 ∈ ωn1 such
that D = {ν ∈ C : gβν ∈ [u1]} is uncountable; then for all ρ, γ ∈ D if k < n1

fαρ(k) = fαγ (k) < gβγ (k), while if k ≥ n1 then fαρ(k) < fη(k) < gβγ (k); so for
all ρ, γ ∈ D, for all k ∈ ω, fαρ(k) < gβγ (k).

This means that {(fαρ , gβρ), (fαγ , gβγ )} 6∈ K.

The theorem is completely proved.

Theorem 7. Assume OCA. Then b = ω2.

Lemma 2. OCA implies that b > ω1.

Proof. Let A = {fα : α < b} be an unbounded family of strictly increasing
functions in ωω, let {fα, fβ} ∈ K if there are n,m such that either: fα(m) <
fβ(m) & fα(n) > fβ(n) or fα(m) > fβ(m) & fα(n) < fβ(n). K is open in [A]2,
since if {fα, fβ} ∈ K and k > n,m, [fα � k]⊗ [fβ � k] ⊆ K.

A is not K-countable, else there must be an A′ homogeneous for Kc and
uncountable; then (A′, <lex) would be an uncountable well order inside
(ωω, <lex) which is not possible.

So, by OCA, A has an uncountable K-homogeneous subset Y . We show
that Y is bounded, so that |A| > |Y | ≥ ω1, and the lemma holds.

Suppose Y is unbounded and for each t ∈ ω<ω such that [t] ∩ Y 6= ∅ choose
αt such that fαt ∈ Y ; let γ > sup{αt : t ∈ ω<ω} such that fγ ∈ Y . Choose
k0 in order that Z = {f ∈ Y : ∀k ≥ k0 f(k) > fγ(k)} is still unbounded and
k1 ≥ k0 such that {f(k1) : f ∈ Z} is infinite. Now choose u ∈ ωk1 such that
Z ∩ [u] is unbounded.
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Let k2 ≥ k1 such that for all k ≥ k2, fαu(k) < fγ(k). and f ∈ Z ∩ [u] such
that f(k1) > fγ(k2).

Then for k < k1, fαu(k) = f(k), for k1 ≤ k ≤ k2, fαu(k) ≤ fαu(k2) <
fγ(k2) < f(k1) ≤ f(k); for k > k2 fαu(k) < fγ(k) < f(k). But this is a
contradiction, since f, fαu ∈ Y but {f, fαu} 6∈ K.

Therefore, by Theorem 6, to conclude the proof of Theorem 7 we just need
the following lemma:

Lemma 3. If b > ω2 then there is an (ω2, λ) gap for some λ uncountable.

Proof. Let A = {fα : α < ω2} be a family of strictly increasing functions in
ωω, and consider F = {g : ∀α fα <∗ g}.

Let B = {gα : α < λ} ⊆ F a maximal chain under >∗.

Claim 8. cof(λ) > ω

If the claim holds (A,B) is a gap as required by the lemma.

Proof. We just have to show that if {gn : n ∈ ω} is a decreasing chain under
<∗ in F then there is a g <∗ gn in F .

For each α < ω2 letmα ∈ ωω be a strictly increasing function such that for all
k ≥ mα(n), fα(k) < min{gi(k) : i ≤ n}; let m∗ >∗ mα for all α; this is possible
since b > ω2. Set for all k ∈ [m∗(n);m∗(n+ 1)), g(k) = min{gi(k) : i ≤ n}.

Now given fα, let n be large enough in order that m∗(k) > mα(k) for all
k ≥ n then for all j > n if j ∈ [m∗(l),m∗(l + 1)), then j ∈ [mα(l′),mα(l′ + 1))
for some l′ ≥ l so fα(j) < min{gi(k) : i ≤ l′} ≤ min{gi(k) : i ≤ l} = g(k). So
g ∈ F and g <∗ gn for all n.

This completes the proof of the lemma.
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