The descriptive set-theoretic complexity of the set of points of continuity of a multi-valued function

Vassilis Gregoriades

Technische Universität Darmstadt, GERMANY

A *multi-valued* (total) function from a set X to another set Y is a function $F : X \to \mathcal{P}(Y) \setminus \{\emptyset\}$ i.e., F maps points to non-empty sets. Such a function F will be denoted by $F : X \Rightarrow Y$.

From now on we assume that X and Y are metric spaces.

Definition. Let (X, p) and (Y, d) be metric spaces; a multi-valued function $F : X \Rightarrow Y$ is *continuous at x* if

 $(\exists y \in F(x))(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x' \in B_{\rho}(x, \delta))[F(x') \cap B_{d}(y, \varepsilon) \neq \emptyset]$

Question (Martin Ziegler). We know that the set of points of continuity of a usual function is a Π_2^0 set. Assume that *F* is a multi-valued function such F(x) is closed for all *x*, what can be said about the complexity of the set of points of continuity of *F*?

Theorem. Let (X, p) and (Y, d) be metric spaces with (Y, d) being separable and let $F : X \Rightarrow Y$ be a multi-valued function.

- (a) If the set F(x) is compact for all $x \in X$ then the set of points of continuity of F is Π_2^0 .
- (b) If $Y = \bigcup_m K_m$ where K_m is compact with $K_m \subseteq K_{m+1}^{\circ}$ for all m and the set F(x) is closed for all $x \in X$, then the set of points of continuity of F is Σ_3^0 .

Corollary. Suppose that X is a metric space and that $F : X \Rightarrow \mathbb{R}^m$ is a multi-valued function such that the set F(x) is closed for all $x \in X$.

- (a) The set of the points of continuity of F is Σ_3^0 .
- (b) If moreover the set F(x) is bounded for all x ∈ X then the set of points of continuity of F is Π⁰₂.

Sketch of the proof. In the single valued case we know that a function $f: X \rightarrow Y$ is continuous at x if and only if

$$(\forall n) \inf \{ \sup \{ d(f(x), f(x')) \mid x' \in B_p(x, \delta) \} \mid \delta > \mathsf{O} \} < \frac{1}{n+1}$$

For (a) let $\{y_s \mid s = 0, 1, ...\}$ be dense in Y; we have that:

$$F \text{ is continuous at } x \iff (\forall n)(\exists s)\inf\{\sup\{d(y_s, F(x')) \mid x' \in B_p(x, \delta)\} \mid \delta > 0\} < \frac{1}{n+1}$$

•

For fixed *n* and *s* the relation

 $P_{n,s}(x) \iff \inf\{\sup\{d(y_s, F(x')) \mid x' \in B_p(x, \delta)\} \mid \delta > 0\} < \frac{1}{n+1}$ defines an open subset of X.

For (b) we replace F(x') with $F(x') \cap K_m$ and we start our condition as follows $(\exists m)(\forall n)(\exists s)$.

The previous results are optimum.

Theorem. There is a multi-valued function $F : [0, 1] \Rightarrow \mathbb{R}$ such that the set F(x) is closed for all x and the set of points of continuity of F is not Π_3^0 . Therefore the Σ_3^0 -answer is the best possible for a multi-valued function F from [0, 1] to \mathbb{R} .

Lemma (almost obvious). Suppose that X_1 and Y are metric spaces and that X_0 is a closed subset of X_1 . Given a multi-valued function $F: X_0 \Rightarrow Y$ we define the multi-valued function $\tilde{F}: X_1 \Rightarrow Y$ as follows:

$$\tilde{F}(x) = F(x)$$
 if $x \in X_0$ and $\tilde{F}(x) = Y$ if $x \in X_1 \setminus X_0$.

Denote by $C_{\tilde{F}}$ and C_F the set of points of continuity of the corresponding multi-valued function. Then

$$C_{\tilde{F}}=C_F\cup (X_1\setminus X_0).$$

Sketch of the proof of the Theorem. From the previous lemma it is enough to define the multi-valued function on $2^{\omega \times \omega}$. A typical example of a Σ_3^0 set which is not Π_3^0 is the following:

$$\textit{R} = \{\gamma \in 2^{\omega \times \omega} \mid (\exists \textit{m})(\forall \textit{n})(\exists \textit{s} \geq \textit{n})[\gamma(\textit{m},\textit{s}) = 1]\}.$$

We denote by R_m the *m*-section of *R*. Define $F: 2^{\omega \times \omega} \Rightarrow \mathbb{R}$ as follows

$$F(\gamma) = \{m \mid \gamma \in R_m\} \cup \{m + \frac{1}{n(\gamma, m) + 2} \mid \gamma \notin R_m\},\$$

where

 $n(\gamma, m) = \text{ the least } n \{ \text{for all } s \geq n \text{ we have that } \gamma(m, s) = 0 \}.$

for $\gamma \notin R_m$. Then F is continuous at γ exactly when $\gamma \in R$.

Corollary. Define $\mathcal{F}(Y) = \{C \subseteq Y \mid C \text{ is closed}\}$. We can view every multi-valued function $F : X \Rightarrow Y$ with closed images as a usual function $F : X \to \mathcal{F}(Y)$. It is not true in general that if $F : X \Rightarrow Y$ there is a metrizable topology on $\mathcal{F}(Y)$ such that for all $x \in X$, F is continuous at $x \in X$ in the sense of multi-valued functions exactly when $F : X \to \mathcal{F}(Y)$ is continuous at x in the usual sense.

One can ask what is the best that we can say about the set of points of continuity of F without any additional topological assumptions for Y or for F(x).

Proposition. Let (X, p) and (Y, d) be complete and separable metric spaces and let $F : X \Rightarrow Y$ be a multi-valued function such that the set $F \subseteq X \times Y$ is *analytic*. Then the set of points of continuity of F is *analytic* as well.

We will show that this result is optimum.

Theorem. There is a multi-valued function $F : \mathcal{C} \Rightarrow \mathcal{N}$ such that the set F(x) is closed for all $x \in \mathcal{C}$ and the set of points of continuity of F is analytic and not Borel. Moreover the set F is a Borel subset of $\mathcal{C} \times \mathcal{N}$.

Idea of the Proof. A set of finite sequences of naturals *T* is a *tree on the naturals* if it is closed under initial segments. The set *Tr* of all trees on the naturals can be viewed as a closed subset of *C*. From the previous lemma it is enough to define *F* on *Tr*. The set of all *ill-founded* trees i.e., the set of trees which have an infinite branch is analytic and not Borel. The idea is to define *F* in such a way so that for a tree *T* we have that

F is continuous at $T \iff T$ is ill founded.

We define $F: Tr \Rightarrow \mathcal{N}$ as follows

$$F(T) = [T^{+1}] \cup \{v^{(0,0,0,\ldots)} \mid v \text{ terminal in } T^{+1}\}$$

Remark. There is a multi-valued function $F : [0, 1] \Rightarrow [0, 1]$ for which the set of the points of continuity of *F* is analytic and not Borel. Moreover the set *F* is a Borel subset of $[0, 1] \times [0, 1]$.

Definition. Let (X, p) and (Y, d) be metric spaces; a multi-valued function $F: X \Rightarrow Y$ is *strongly continuous at x* if

$$(\forall y \in F(x))(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x' \in B_{\rho}(x, \delta))[F(x') \cap B_{d}(y, \varepsilon) \neq \emptyset].$$

Remark. Let A be a dense subset of [0, 1]; define the multi-valued function $F : [0, 1] \Rightarrow \{0, 1\}$ as follows

$$F(x) = \{0\}, \text{ if } x \in A \text{ and } F(x) = \{0, 1\} \text{ if } x \notin A,$$

for all $x \in [0, 1]$. Then the set of points of strong continuity of *F* is exactly the set *A*.

Theorem. Let (X, p) and (Y, d) be metric spaces with (Y, d) being separable and let $F : X \Rightarrow Y$ be a multi-valued function such that F is a Σ_2^0 subset of $X \times Y$.

- (a) If Y is compact and the set F(x) is closed for all $x \in X$ then the set of points of strong continuity of F is \prod_{2}^{0} .
- (b) If $Y = \bigcup_m K_m$ where K_m is compact with $K_m \subseteq K_{m+1}^{\circ}$ for all m and the set F(x) is closed for all $x \in X$, then the set of points of strong continuity of F is Σ_3^0 .

Sketch of the proof. Recall the basic equivalence in the proof of the first theorem: F is continuous at x exactly when

$$(\forall n)(\exists s) \inf \{ \sup \{ d(y_s, F(x')) \mid x' \in B_p(x, \delta) \} \mid \delta > 0 \} < \frac{1}{n+1}$$

In the case of strong continuity one replaces $(\forall n)(\exists s)$ with $(\forall n)(\forall s \text{ with } d(y_s, F(x)) \leq \frac{1}{3(n+1)})$. This is exactly where we need the assumption about the graph of F.

Proposition.

Let (X, p) and (Y, d) be complete and separable metric spaces and let $F : X \Rightarrow Y$ be a multi-valued function such that the set $F \subseteq X \times Y$ is analytic. Then the set of points of strong continuity of F is the *coanalytic* set.

Question. Are the results about strong continuity optimum?

The *Fell topology* on $\mathcal{F}(Y)$ is the topology which has as basis the family of all sets of the form

$$\begin{aligned} \mathcal{W} &\equiv \mathcal{W}(K, U_1, \dots, U_n) \\ &= \{ C \in \mathcal{F}(Y) \mid C \cap K = \emptyset \& (\forall i \leq n) [C \cap U_i \neq \emptyset] \}, \end{aligned}$$

where K is a compact subset of Y and U_1, \ldots, U_n are open subsets of Y. If Y is a locally compact Polish space then the Fell topology is compact metrizable.

Proposition. Consider a multi-valued function $F : X \Rightarrow Y$, with Y Polish and suppose that F is a closed subset of $X \times Y$. Then the multi-valued function $F : X \Rightarrow Y$ is strongly continuous at $x \in X$ exactly when the function $F : X \to \mathcal{F}(Y)$ is continuous at x with respect to the Fell topology.

It follows that in the case of multi-valued functions with closed graph and range a locally compact Polish space, the notion of strong continuity is metrizable.

THANK YOU!