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A multi-valued (total) function from a set X to another set Y is a

function F : X → P(Y ) \ {∅} i.e., F maps points to non-empty sets.

Such a function F will be denoted by F : X ⇒ Y .

From now on we assume that X and Y are metric spaces.

Definition. Let (X , p) and (Y , d) be metric spaces; a multi-valued

function F : X ⇒ Y is continuous at x if

(∃y ∈ F(x))(∀ε > 0)(∃δ > 0)(∀x ′ ∈ Bp(x, δ))[F(x
′) ∩ Bd(y, ε) 6= ∅]

Question (Martin Ziegler). We know that the set of points of continuity of

a usual function is a Π0
2 set. Assume that F is a multi-valued function

such F(x) is closed for all x , what can be said about the complexity of

the set of points of continuity of F?



Theorem. Let (X , p) and (Y , d) be metric spaces with (Y , d) being

separable and let F : X ⇒ Y be a multi-valued function.

(a) If the set F(x) is compact for all x ∈ X then the set of points of

continuity of F is Π0
2.

(b) If Y = ∪mKm where Km is compact with Km ⊆ K ◦m+1 for all m and

the set F(x) is closed for all x ∈ X , then the set of points of

continuity of F is Σ0
3.

Corollary. Suppose that X is a metric space and that F : X ⇒ Rm is a

multi-valued function such that the set F(x) is closed for all x ∈ X .

(a) The set of the points of continuity of F is Σ0
3.

(b) If moreover the set F(x) is bounded for all x ∈ X then the set of

points of continuity of F is Π0
2.



Sketch of the proof. In the single valued case we know that a function

f : X → Y is continuous at x if and only if

(∀n) inf
{

sup{d(f(x), f(x
′)) | x

′ ∈ Bp(x, δ)} | δ > 0
}
<

1

n + 1

For (a) let {ys | s = 0, 1, . . . } be dense in Y ; we have that:

F is continuous at x ⇐⇒
(∀n)(∃s)inf

{
sup{d(ys, F(x

′)) | x
′ ∈ Bp(x, δ)} | δ > 0

}
<

1

n + 1

For fixed n and s the relation

Pn,s(x)⇐⇒ inf{sup{d(ys, F(x ′)) | x ′ ∈ Bp(x, δ)} | δ > 0} < 1

n+1

defines an open subset of X .

For (b) we replace F(x ′) with F(x ′) ∩ Km and we start our condition as

follows (∃m)(∀n)(∃s).



The previous results are optimum.

Theorem. There is a multi-valued function F : [0, 1]⇒ R such that the

set F(x) is closed for all x and the set of points of continuity of F is not

Π0
3. Therefore the Σ0

3-answer is the best possible for a multi-valued

function F from [0, 1] to R.

Lemma (almost obvious). Suppose that X1 and Y are metric spaces

and that X0 is a closed subset of X1. Given a multi-valued function

F : X0 ⇒ Y we define the multi-valued function F̃ : X1 ⇒ Y as follows:

F̃(x) = F(x) if x ∈ X0 and F̃(x) = Y if x ∈ X1 \ X0.

Denote by C
F̃

and CF the set of points of continuity of the

corresponding multi-valued function. Then

C
F̃

= CF ∪ (X1 \ X0).



Sketch of the proof of the Theorem. From the previous lemma it is

enough to define the multi-valued function on 2ω×ω . A typical example

of a Σ0
3 set which is not Π0

3 is the following:

R = {γ ∈ 2
ω×ω | (∃m)(∀n)(∃s ≥ n)[γ(m, s) = 1]}.

We denote by Rm the m-section of R. Define F : 2ω×ω ⇒ R as follows

F(γ) = {m | γ ∈ Rm} ∪ {m +
1

n(γ,m) + 2
| γ 6∈ Rm},

where

n(γ,m) = the least n
{

for all s ≥ n we have that γ(m, s) = 0
}
.

for γ 6∈ Rm. Then F is continuous at γ exactly when γ ∈ R.



Corollary. Define F(Y ) = {C ⊆ Y | C is closed}. We can view

every multi-valued function F : X ⇒ Y with closed images as a usual

function F : X → F(Y ). It is not true in general that if F : X ⇒ Y there is

a metrizable topology on F(Y ) such that for all x ∈ X , F is continuous

at x ∈ X in the sense of multi-valued functions exactly when

F : X → F(Y ) is continuous at x in the usual sense.

One can ask what is the best that we can say about the set of points of

continuity of F without any additional topological assumptions for Y or

for F(x).

Proposition. Let (X , p) and (Y , d) be complete and separable metric

spaces and let F : X ⇒ Y be a multi-valued function such that the set

F ⊆ X × Y is analytic. Then the set of points of continuity of F is analytic

as well.

We will show that this result is optimum.



Theorem. There is a multi-valued function F : C ⇒ N such that the set

F(x) is closed for all x ∈ C and the set of points of continuity of F is

analytic and not Borel. Moreover the set F is a Borel subset of C × N .

Idea of the Proof. A set of finite sequences of naturals T is a tree on the

naturals if it is closed under initial segments. The set Tr of all trees on the

naturals can be viewed as a closed subset of C. From the previous

lemma it is enough to define F on Tr . The set of all ill-founded trees i.e.,

the set of trees which have an infinite branch is analytic and not Borel.

The idea is to define F in such a way so that for a tree T we have that

F is continuous at T ⇐⇒ T is ill founded.

We define F : Tr ⇒ N as follows

F(T) = [T+1] ∪ {vˆ(0, 0, 0, . . . ) | v terminal in T
+1}



Remark. There is a multi-valued function F : [0, 1]⇒ [0, 1] for which the

set of the points of continuity of F is analytic and not Borel. Moreover

the set F is a Borel subset of [0, 1]× [0, 1].

Definition. Let (X , p) and (Y , d) be metric spaces; a multi-valued

function F : X ⇒ Y is strongly continuous at x if

(∀y ∈ F(x))(∀ε > 0)(∃δ > 0)(∀x ′ ∈ Bp(x, δ))[F(x
′) ∩ Bd(y, ε) 6= ∅].

Remark. Let A be a dense subset of [0, 1]; define the multi-valued

function F : [0, 1]⇒ {0, 1} as follows

F(x) = {0}, if x ∈ A and F(x) = {0, 1} if x 6∈ A,

for all x ∈ [0, 1]. Then the set of points of strong continuity of F is exactly

the set A.



Theorem. Let (X , p) and (Y , d) be metric spaces with (Y , d) being

separable and let F : X ⇒ Y be a multi-valued function such that

F is a Σ0
2 subset of X × Y .

(a) If Y is compact and the set F(x) is closed for all x ∈ X then the set

of points of strong continuity of F is Π0
2.

(b) If Y = ∪mKm where Km is compact with Km ⊆ K ◦m+1 for all m and

the set F(x) is closed for all x ∈ X , then the set of points of strong

continuity of F is Σ0
3.

Sketch of the proof. Recall the basic equivalence in the proof of the

first theorem: F is continuous at x exactly when

(∀n)(∃s) inf{sup{d(ys, F(x
′)) | x

′ ∈ Bp(x, δ)} | δ > 0} < 1

n + 1

In the case of strong continuity one replaces (∀n)(∃s) with

(∀n)(∀s with d(ys, F(x)) ≤ 1

3(n + 1)
). This is exactly where we need

the assumption about the graph of F .



Proposition.
Let (X , p) and (Y , d) be complete and separable metric spaces and

let F : X ⇒ Y be a multi-valued function such that the set F ⊆ X × Y is

analytic. Then the set of points of strong continuity of F is the coanalytic

set.

Question. Are the results about strong continuity optimum?



The Fell topology on F(Y ) is the topology which has as basis the family

of all sets of the form

W ≡ W(K , U1, . . . , Un)

= {C ∈ F(Y ) | C ∩ K = ∅ & (∀i ≤ n)[C ∩ Ui 6= ∅]},

where K is a compact subset of Y and U1, . . . , Un are open subsets of

Y . If Y is a locally compact Polish space then the Fell topology is

compact metrizable.

Proposition. Consider a multi-valued function F : X ⇒ Y , with Y Polish

and suppose that F is a closed subset of X × Y . Then the multi-valued

function F : X ⇒ Y is strongly continuous at x ∈ X exactly when the

function F : X → F(Y ) is continuous at x with respect to the Fell

topology.

It follows that in the case of multi-valued functions with closed graph

and range a locally compact Polish space, the notion of strong

continuity is metrizable.
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