Turning Borel sets into Clopen effectively
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Theorem. If A is a Borel subset of a Polish space (X, 7)) there
exists a Polish topology 7o, on X which extends 7, and thus has
the same Borel sets as 7 such that A is Too-clopen.

Theorem. (Lusin-Suslin) Every Borel subset of a Polish space is
the continuous injective image of a closed subset of the Baire
space N = “w.

We consider the family of all recursive functions from w* to w”.
A set P C wk is recursive when the characteristic function Xp is
recursive.

Relativization. For every e € N one defines the relativized family

of e-recursive functions. Similarly one defines the family of
e-recursive subsets of wk.



Definition. (Moschovakis) Suppose that X is a Polish space, d is
compatible distance function for X and (x,)ne. is a sequence in
X. Define the relation P of w* as follows

P-(i,j, k,m) <= d(x;,x;) < mLH Similarly we define the relation
P<.

The sequence (xp)new IS @ recursive presentation of X, if

(1) it is a dense sequence and

(2) the relations P and P< are recursive.

The spaces R, NV and wk admit a recursive presentation i.e., they
are recursively presented. Some other examples: R x w, R x N
However not all Polish spaces are recursively presented.

Every Polish space admits an e-recursive presentation for some
suitable €.
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N(X,s) = the ball with center x(,), and radius (S() )+
)

Aset P C X is semirecursive if P =|J;c, N(X, (i
recursive function from w to w.

i
) where « is a

¥ ? = all semirecursive sets
~ effective open sets.
N9 = the complements of semirecursive sets
~ effective closed sets.
Similarly one defines the class Al of effective Borel sets, ¥} of
effective analytic and so on.
A function f : X — Y is ¥ {-recursive if and only if the set
Rf C X xw, Rf(x,s) <= f(x) € N(),s), is X{.
A point x € X' is A% point if the relation U C w which is defined by
se U< xe N(X,s),isin Al
Similarly one defines the relativized pointclasses with respect to
some parameter ¢.
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Theorem. Every A% subset of a recursively presented Polish space
is the recursive injective image of a M? subset of .

Theorem. (G.) Suppose that (X, 7) is a recursively presented
Polish space, d is a suitable distance function for (X', 7) and A is
a A% subset of X. There exists an €4 € N, which is recursive in
Kleene's O and a Polish topology 75 with suitable distance
function d.,, which extends 7 and has the following properties:

(1) The Polish space (X, Ts) is ea-recursively presented.

(2) The set Ais a Ad(c4) subset of (X, dw).

(3) If BC X is a Al(«a) subset of (X, d), where a € NV, then B is
a Al(ea, a) subset of (X, ds).

(4) If BC X is a Al(ea, ) subset of (X, dw), where a € A, then
B is a Al(ea, ) subset of (X, d).



Remark. If the inverse function in the Lusin-Suslin Theorem is
continuous, then the set A that we start with is Gs.

Lemma. (G.) For every A C A in N9 there is a set F C A in M9
and a recursive function 7 : A" — A which is injective on A such
that [F] = A and the inverse 7! is continuous.

Corollary. (G.) Suppose that A is a Al subset of A/, which is also
in A and assume moreover that the class Al is dense in A and
N\ A. Then one can choose the previous parameter €, in A%.

Sketch of the proof. It's just a sketch - really! From of a theorem
of Louveau the set A is in A9(e) for some e € Al. Apply the
previous lemma and proceed as usual.

Theorem (The Strong A-Selection Principal). Suppose that Z
and ) are recursively presented Polish spaces and that P C Z x Y
is in M1 and such that for all z € Z there exists y € A}(z) such
that (z,y) € P. Then there exists a Al-recursive function

f:Z — Y such that (z,f(z)) € P forall z € Z.



Corollary. (G.) Suppose that Z is a Polish space, X" is a closed
subset of N and that P is a Borel subset of Z x X such that the
sets P, and X'\ P, are infinite for all z € Z. Assume moreover
that (x) Al(z) is dense in both P, and X'\ P, for all z € Z.

Then there is a Borel-measurable function f : Z — N such that
f(z) “encodes” a distance function d, on X such that: (1) the
space (X, d) is complete and separable, (2) the topology 7g,
extends 7 and (3) P, is d,-clopen, for all z € Z.

Thanks to results of Tanaka, Sacks, Thomason and Hinman, we
may replace the effective condition (x) with one of the following
classical conditions:

(1) there is a “reasonable” Borel measure p on X' such that for all
open V and for all z € Z if P, NV # () we have that P, NV is
countable or p(P; N V) > 0. Similarly for X'\ P;;

(2) P, is countable or co-countable for all z € Z.



