Turning Borel sets into Clopen effectively

Vassilis Gregoriades
TU Darmstadt gregoriades@mathematik.tu-darmstadt.de

Trends in set theory
Warsaw Poland
$10^{\text {th }}$ July, 2012

Theorem. If A is a Borel subset of a Polish space $(\mathcal{X}, \mathcal{T})$ there exists a Polish topology \mathcal{T}_{∞} on \mathcal{X} which extends \mathcal{T}, and thus has the same Borel sets as \mathcal{T} such that A is \mathcal{T}_{∞}-clopen.
Theorem. (Lusin-Suslin) Every Borel subset of a Polish space is the continuous injective image of a closed subset of the Baire space $\mathcal{N}={ }^{\omega} \omega$.
We consider the family of all recursive functions from ω^{k} to ω^{n}. A set $P \subseteq \omega^{k}$ is recursive when the characteristic function χ_{p} is recursive.
Relativization. For every $\varepsilon \in \mathcal{N}$ one defines the relativized family of ε-recursive functions. Similarly one defines the family of ε-recursive subsets of ω^{k}.

Definition. (Moschovakis) Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $\left(x_{n}\right)_{n \in \omega}$ is a sequence in \mathcal{X}. Define the relation $P_{<}$of ω^{4} as follows
$P_{<}(i, j, k, m) \Longleftrightarrow d\left(x_{i}, x_{j}\right)<\frac{k}{m+1}$. Similarly we define the relation P_{\leq}.
The sequence $\left(x_{n}\right)_{n \in \omega}$ is a recursive presentation of \mathcal{X}, if
(1) it is a dense sequence and
(2) the relations $P_{<}$and P_{\leq}are recursive.

The spaces \mathbb{R}, \mathcal{N} and ω^{k} admit a recursive presentation i.e., they are recursively presented. Some other examples: $\mathbb{R} \times \omega, \mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.
Every Polish space admits an ε-recursive presentation for some suitable ε.

Definition. (Moschovakis) Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $\left(x_{n}\right)_{n \in \omega}$ is a sequence in \mathcal{X}. Define the relation $P_{<}$of ω^{4} as follows
$P_{<}(i, j, k, m) \Longleftrightarrow d\left(x_{i}, x_{j}\right)<\frac{k}{m+1}$. Similarly we define the relation P_{\leq}.
The sequence $\left(x_{n}\right)_{n \in \omega}$ is a recursive presentation of \mathcal{X}, if
(1) it is a dense sequence and
(2) the relations $P_{<}$and P_{\leq}are recursive.

The spaces \mathbb{R}, \mathcal{N} and ω^{k} admit a recursive presentation i.e., they are recursively presented. Some other examples: $\mathbb{R} \times \omega, \mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.
Every Polish space admits an ε-recursive presentation for some suitable ε.

Definition. (Moschovakis) Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $\left(x_{n}\right)_{n \in \omega}$ is a sequence in \mathcal{X}. Define the relation $P_{<}$of ω^{4} as follows
$P_{<}(i, j, k, m) \Longleftrightarrow d\left(x_{i}, x_{j}\right)<\frac{k}{m+1}$. Similarly we define the relation P_{\leq}.
The sequence $\left(x_{n}\right)_{n \in \omega}$ is a recursive presentation of \mathcal{X}, if
(1) it is a dense sequence and
(2) the relations $P_{<}$and P_{\leq}are recursive.

The spaces \mathbb{R}, \mathcal{N} and ω^{k} admit a recursive presentation i.e., they are recursively presented. Some other examples: $\mathbb{R} \times \omega, \mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.
Every Polish space admits an ε-recursive presentation for some suitable ε.

Definition. (Moschovakis) Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $\left(x_{n}\right)_{n \in \omega}$ is a sequence in \mathcal{X}. Define the relation $P_{<}$of ω^{4} as follows
$P_{<}(i, j, k, m) \Longleftrightarrow d\left(x_{i}, x_{j}\right)<\frac{k}{m+1}$. Similarly we define the relation P_{\leq}.
The sequence $\left(x_{n}\right)_{n \in \omega}$ is an ε-recursive presentation of \mathcal{X}, if (1) it is a dense sequence and (2) the relations $P_{<}$and P_{\leq}are ε-recursive. The spaces \mathbb{R}, \mathcal{N} and ω^{k} admit a recursive presentation i.e., they are recursively presented. Some other examples: $\mathbb{R} \times \omega, \mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.
Every Polish space admits an ε-recursive presentation for some suitable ε.
$N(\mathcal{X}, s)=$ the ball with center $x_{(s)_{0}}$ and radius $\frac{(s)_{1}}{(s)_{2}+1}$.
A set $P \subseteq \mathcal{X}$ is semirecursive if $P=\bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω.
$\Sigma_{1}^{0}=$ all semirecursive sets
\rightsquigarrow effective open sets.
$\Pi_{1}^{0}=$ the complements of semirecursive sets
\rightsquigarrow effective closed sets.
Similarly one defines the class Δ_{1}^{1} of effective Borel sets, Σ_{1}^{1} of effective analytic and so on.
A function $f: \mathcal{X} \rightarrow \mathcal{Y}$ is Σ_{1}^{0}-recursive if and only if the set $R^{f} \subseteq \mathcal{X} \times \omega, R^{f}(x, s) \Longleftrightarrow f(x) \in N(\mathcal{Y}, s)$, is Σ_{1}^{0}.
A point $x \in \mathcal{X}$ is Δ_{1}^{1} point if the relation $U \subseteq \omega$ which is defined by $s \in U \Longleftrightarrow x \in N(\mathcal{X}, s)$, is in Δ_{1}^{1}.
Similarly one defines the relativized pointclasses with respect to some parameter ε.
$N(\mathcal{X}, s)=$ the ball with center $x_{(s)_{0}}$ and radius $\frac{(s)_{1}}{(s)_{2}+1}$.
A set $P \subseteq \mathcal{X}$ is semirecursive if $P=\bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω.
$\Sigma_{1}^{0}=$ all semirecursive sets
\rightsquigarrow effective open sets.
$\Pi_{1}^{0}=$ the complements of semirecursive sets
\rightsquigarrow effective closed sets.
Similarly one defines the class Δ_{1}^{1} of effective Borel sets, Σ_{1}^{1} of effective analytic and so on.
A function $f: \mathcal{X} \rightarrow \mathcal{Y}$ is Σ_{1}^{0}-recursive if and only if the set $R^{f} \subseteq \mathcal{X} \times \omega, R^{f}(x, s) \Longleftrightarrow f(x) \in N(\mathcal{Y}, s)$, is Σ_{1}^{0}.
A point $x \in \mathcal{X}$ is Δ_{1}^{1} point if the relation $U \subseteq \omega$ which is defined by $s \in U \Longleftrightarrow x \in N(\mathcal{X}, s)$, is in Δ_{1}^{1}.
Similarly one defines the relativized pointclasses with respect to some parameter ε.
$N(\mathcal{X}, s)=$ the ball with center $x_{(s)_{0}}$ and radius $\frac{(s)_{1}}{(s)_{2}+1}$.
A set $P \subseteq \mathcal{X}$ is semirecursive if $P=\bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω.
$\Sigma_{1}^{0}=$ all semirecursive sets
\rightsquigarrow effective open sets.
$\Pi_{1}^{0}=$ the complements of semirecursive sets
\rightsquigarrow effective closed sets.
Similarly one defines the class Δ_{1}^{1} of effective Borel sets, Σ_{1}^{1} of effective analytic and so on.
A function $f: \mathcal{X} \rightarrow \mathcal{Y}$ is Σ_{1}^{0}-recursive if and only if the set $R^{f} \subseteq \mathcal{X} \times \omega, R^{f}(x, s) \Longleftrightarrow f(x) \in N(\mathcal{Y}, s)$, is Σ_{1}^{0}.
A point $x \in \mathcal{X}$ is Δ_{1}^{1} point if the relation $U \subseteq \omega$ which is defined by $s \in U \Longleftrightarrow x \in N(\mathcal{X}, s)$, is in Δ_{1}^{1}.
Similarly one defines the relativized pointclasses with respect to some parameter ε.
$N(\mathcal{X}, s)=$ the ball with center $x_{(s)_{0}}$ and radius $\frac{(s)_{1}}{(s)_{2}+1}$.
A set $P \subseteq \mathcal{X}$ is semirecursive if $P=\bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω.
$\Sigma_{1}^{0}=$ all semirecursive sets
\rightsquigarrow effective open sets.
$\Pi_{1}^{0}=$ the complements of semirecursive sets
\rightsquigarrow effective closed sets.
Similarly one defines the class Δ_{1}^{1} of effective Borel sets, Σ_{1}^{1} of effective analytic and so on.
A function $f: \mathcal{X} \rightarrow \mathcal{Y}$ is Σ_{1}^{0}-recursive if and only if the set $R^{f} \subseteq \mathcal{X} \times \omega, R^{f}(x, s) \Longleftrightarrow f(x) \in N(\mathcal{Y}, s)$, is Σ_{1}^{0}.
A point $x \in \mathcal{X}$ is Δ_{1}^{1} point if the relation $U \subseteq \omega$ which is defined by $s \in U \Longleftrightarrow x \in N(\mathcal{X}, s)$, is in Δ_{1}^{1}.
Similarly one defines the relativized pointclasses with respect to some parameter ε.
$N(\mathcal{X}, s)=$ the ball with center $x_{(s)_{0}}$ and radius $\frac{(s)_{1}}{(s)_{2}+1}$.
A set $P \subseteq \mathcal{X}$ is semirecursive if $P=\bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω.
$\Sigma_{1}^{0}=$ all semirecursive sets
\rightsquigarrow effective open sets.
$\Pi_{1}^{0}=$ the complements of semirecursive sets
\rightsquigarrow effective closed sets.
Similarly one defines the class Δ_{1}^{1} of effective Borel sets, Σ_{1}^{1} of effective analytic and so on.
A function $f: \mathcal{X} \rightarrow \mathcal{Y}$ is Σ_{1}^{0}-recursive if and only if the set $R^{f} \subseteq \mathcal{X} \times \omega, R^{f}(x, s) \Longleftrightarrow f(x) \in N(\mathcal{Y}, s)$, is Σ_{1}^{0}.
A point $x \in \mathcal{X}$ is Δ_{1}^{1} point if the relation $U \subseteq \omega$ which is defined by $s \in U \Longleftrightarrow x \in N(\mathcal{X}, s)$, is in Δ_{1}^{1}.
Similarly one defines the relativized pointclasses with respect to some parameter ε.
$N(\mathcal{X}, s)=$ the ball with center $x_{(s)_{0}}$ and radius $\frac{(s)_{1}}{(s)_{2}+1}$.
A set $P \subseteq \mathcal{X}$ is semirecursive if $P=\bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω.
$\Sigma_{1}^{0}=$ all semirecursive sets
\rightsquigarrow effective open sets.
$\Pi_{1}^{0}=$ the complements of semirecursive sets
\rightsquigarrow effective closed sets.
Similarly one defines the class Δ_{1}^{1} of effective Borel sets, Σ_{1}^{1} of effective analytic and so on.
A function $f: \mathcal{X} \rightarrow \mathcal{Y}$ is Δ_{1}^{1}-recursive if and only if the set $R^{f} \subseteq \mathcal{X} \times \omega, R^{f}(x, s) \Longleftrightarrow f(x) \in N(\mathcal{Y}, s)$, is Δ_{1}^{1}.
A point $x \in \mathcal{X}$ is Δ_{1}^{1} point if the relation $U \subseteq \omega$ which is defined by $s \in U \Longleftrightarrow x \in N(\mathcal{X}, s)$, is in Δ_{1}^{1}.
Similarly one defines the relativized pointclasses with respect to some parameter ε.

Theorem. Every Δ_{1}^{1} subset of a recursively presented Polish space is the recursive injective image of a Π_{1}^{0} subset of \mathcal{N}.
Theorem. (G.) Suppose that $(\mathcal{X}, \mathcal{T})$ is a recursively presented Polish space, d is a suitable distance function for $(\mathcal{X}, \mathcal{T})$ and A is a Δ_{1}^{1} subset of \mathcal{X}. There exists an $\varepsilon_{A} \in \mathcal{N}$, which is recursive in Kleene's O and a Polish topology \mathcal{T}_{∞} with suitable distance function d_{∞}, which extends \mathcal{T} and has the following properties:
(1) The Polish space $\left(\mathcal{X}, \mathcal{T}_{\infty}\right)$ is ε_{A}-recursively presented.
(2) The set A is a $\Delta_{1}^{0}\left(\varepsilon_{A}\right)$ subset of $\left(\mathcal{X}, d_{\infty}\right)$.
(3) If $B \subseteq \mathcal{X}$ is a $\Delta_{1}^{1}(\alpha)$ subset of (\mathcal{X}, d), where $\alpha \in \mathcal{N}$, then B is a $\Delta_{1}^{1}\left(\varepsilon_{A}, \alpha\right)$ subset of $\left(\mathcal{X}, d_{\infty}\right)$.
(4) If $B \subseteq \mathcal{X}$ is a $\Delta_{1}^{1}\left(\varepsilon_{A}, \alpha\right)$ subset of $\left(\mathcal{X}, d_{\infty}\right)$, where $\alpha \in \mathcal{N}$, then B is a $\Delta_{1}^{1}\left(\varepsilon_{A}, \alpha\right)$ subset of (\mathcal{X}, d).

Remark. If the inverse function in the Lusin-Suslin Theorem is continuous, then the set A that we start with is G_{δ}.
Lemma. (G.) For every $A \subseteq \mathcal{N}$ in Π_{2}^{0} there is a set $F \subseteq \mathcal{N}$ in Π_{1}^{0} and a recursive function $\pi: \mathcal{N} \rightarrow \mathcal{N}$ which is injective on A such that $\pi[F]=A$ and the inverse π^{-1} is continuous.
Corollary. (G.) Suppose that A is a Δ_{1}^{1} subset of \mathcal{N}, which is also in ${\underset{\sim}{~}}_{2}^{0}$ and assume moreover that the class Δ_{1}^{1} is dense in A and $\mathcal{N} \backslash A$. Then one can choose the previous parameter ε_{A} in Δ_{1}^{1}. Sketch of the proof. It's just a sketch - really! From of a theorem of Louveau the set A is in $\Delta_{2}^{0}(\varepsilon)$ for some $\varepsilon \in \Delta_{1}^{1}$. Apply the previous lemma and proceed as usual.
Theorem (The Strong Δ-Selection Principal). Suppose that \mathcal{Z} and \mathcal{Y} are recursively presented Polish spaces and that $P \subseteq \mathcal{Z} \times \mathcal{Y}$ is in Π_{1}^{1} and such that for all $z \in \mathcal{Z}$ there exists $y \in \Delta_{1}^{1}(z)$ such that $(z, y) \in P$. Then there exists a Δ_{1}^{1}-recursive function $f: \mathcal{Z} \rightarrow \mathcal{Y}$ such that $(z, f(z)) \in P$ for all $z \in \mathcal{Z}$.

Corollary. (G.) Suppose that \mathcal{Z} is a Polish space, \mathcal{X} is a closed subset of \mathcal{N} and that P is a Borel subset of $\mathcal{Z} \times \mathcal{X}$ such that the sets P_{z} and $\mathcal{X} \backslash P_{z}$ are infinite for all $z \in \mathcal{Z}$. Assume moreover that $(*) \Delta_{1}^{1}(z)$ is dense in both P_{z} and $\mathcal{X} \backslash P_{z}$ for all $z \in \mathcal{Z}$.
Then there is a Borel-measurable function $f: \mathcal{Z} \rightarrow \mathcal{N}$ such that $f(z)$ "encodes" a distance function d_{z} on \mathcal{X} such that: (1) the space $\left(\mathcal{X}, d_{z}\right)$ is complete and separable, (2) the topology $\mathcal{T}_{d_{z}}$ extends \mathcal{T} and (3) P_{z} is d_{z}-clopen, for all $z \in \mathcal{Z}$.
Thanks to results of Tanaka, Sacks, Thomason and Hinman, we may replace the effective condition $(*)$ with one of the following classical conditions:
(1) there is a "reasonable" Borel measure μ on \mathcal{X} such that for all open V and for all $z \in \mathcal{Z}$ if $P_{z} \cap V \neq \emptyset$ we have that $P_{z} \cap V$ is countable or $\mu\left(P_{z} \cap V\right)>0$. Similarly for $\mathcal{X} \backslash P_{z}$;
(2) P_{z} is countable or co-countable for all $z \in \mathcal{Z}$.

