Turning Borel sets into Clopen effectively

Vassilis Gregoriades TU Darmstadt gregoriades@mathematik.tu-darmstadt.de

> Trends in set theory Warsaw Poland 10th July, 2012

Theorem. If A is a Borel subset of a Polish space $(\mathcal{X}, \mathcal{T})$ there exists a Polish topology \mathcal{T}_{∞} on \mathcal{X} which extends \mathcal{T} , and thus has the same Borel sets as \mathcal{T} such that A is \mathcal{T}_{∞} -clopen.

Theorem. (Lusin-Suslin) Every Borel subset of a Polish space is the continuous injective image of a *closed* subset of the Baire space $\mathcal{N} = {}^{\omega}\omega$.

We consider the family of all recursive functions from ω^k to ω^n . A set $P \subseteq \omega^k$ is *recursive* when the characteristic function χ_p is recursive.

Relativization. For every $\varepsilon \in \mathcal{N}$ one defines the *relativized* family of ε -recursive functions. Similarly one defines the family of ε -recursive subsets of ω^k .

The sequence $(x_n)_{n \in \omega}$ is a *recursive presentation* of \mathcal{X} , if

(1) it is a dense sequence and

(2) the relations P_{\leq} and P_{\leq} are recursive.

The spaces \mathbb{R} , \mathcal{N} and ω^k admit a recursive presentation i.e., they are *recursively presented*. Some other examples: $\mathbb{R} \times \omega$, $\mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.

The sequence $(x_n)_{n \in \omega}$ is a *recursive presentation* of \mathcal{X} , if

(1) it is a dense sequence and

(2) the relations P_{\leq} and P_{\leq} are recursive.

The spaces \mathbb{R} , \mathcal{N} and ω^k admit a recursive presentation i.e., they are *recursively presented*. Some other examples: $\mathbb{R} \times \omega$, $\mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.

The sequence $(x_n)_{n \in \omega}$ is a *recursive presentation* of \mathcal{X} , if

(1) it is a dense sequence and

(2) the relations P_{\leq} and P_{\leq} are recursive.

The spaces \mathbb{R} , \mathcal{N} and ω^k admit a recursive presentation i.e., they are *recursively presented*. Some other examples: $\mathbb{R} \times \omega$, $\mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.

The sequence $(x_n)_{n \in \omega}$ is an ε -recursive presentation of \mathcal{X} , if (1) it is a dama constant of

(1) it is a dense sequence and

(2) the relations P_{\leq} and P_{\leq} are ε -recursive.

The spaces \mathbb{R} , \mathcal{N} and ω^k admit a recursive presentation i.e., they are *recursively presented*. Some other examples: $\mathbb{R} \times \omega$, $\mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.

A set $P \subseteq \mathcal{X}$ is *semirecursive* if $P = \bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω .

- $\Sigma_1^0 =$ all semirecursive sets
 - \rightsquigarrow effective open sets.
- $$\label{eq:prod} \begin{split} \Pi^0_1 = \mbox{the complements of semirecursive sets} \\ \rightsquigarrow \mbox{ effective closed sets.} \end{split}$$

Similarly one defines the class Δ_1^1 of *effective Borel* sets, Σ_1^1 of *effective analytic* and so on.

A function $f : \mathcal{X} \to \mathcal{Y}$ is Σ_1^{0} -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Σ_1^{0} .

A point $x \in \mathcal{X}$ is Δ_1^1 point if the relation $U \subseteq \omega$ which is defined by $s \in U \iff x \in N(\mathcal{X}, s)$, is in Δ_1^1 .

A set $P \subseteq \mathcal{X}$ is *semirecursive* if $P = \bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω .

- $\Sigma_1^0 =$ all semirecursive sets
 - \rightsquigarrow effective open sets.
- $$\label{eq:prod} \begin{split} \Pi^0_1 = \mbox{the complements of semirecursive sets} \\ \rightsquigarrow \mbox{ effective closed sets.} \end{split}$$

Similarly one defines the class Δ_1^1 of *effective Borel* sets, Σ_1^1 of *effective analytic* and so on.

A function $f : \mathcal{X} \to \mathcal{Y}$ is Σ_1^{0} -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Σ_1^{0} .

A point $x \in \mathcal{X}$ is Δ_1^1 point if the relation $U \subseteq \omega$ which is defined by $s \in U \iff x \in N(\mathcal{X}, s)$, is in Δ_1^1 .

A set $P \subseteq \mathcal{X}$ is *semirecursive* if $P = \bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω .

- $\Sigma_1^0 =$ all semirecursive sets
 - \rightsquigarrow effective open sets.
- $$\label{eq:prod} \begin{split} \Pi^0_1 = \mbox{the complements of semirecursive sets} \\ \rightsquigarrow \mbox{ effective closed sets.} \end{split}$$

Similarly one defines the class Δ_1^1 of *effective Borel* sets, Σ_1^1 of *effective analytic* and so on.

A function $f : \mathcal{X} \to \mathcal{Y}$ is Σ_1^{0} -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Σ_1^{0} .

A point $x \in \mathcal{X}$ is Δ_1^1 point if the relation $U \subseteq \omega$ which is defined by $s \in U \iff x \in N(\mathcal{X}, s)$, is in Δ_1^1 .

A set $P \subseteq \mathcal{X}$ is *semirecursive* if $P = \bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω .

- $\Sigma_1^0 =$ all semirecursive sets
 - \rightsquigarrow effective open sets.
- $$\label{eq:prod} \begin{split} \Pi^0_1 = \mbox{the complements of semirecursive sets} \\ \rightsquigarrow \mbox{ effective closed sets.} \end{split}$$

Similarly one defines the class Δ_1^1 of *effective Borel* sets, Σ_1^1 of *effective analytic* and so on.

A function $f : \mathcal{X} \to \mathcal{Y}$ is Σ_1^{0} -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Σ_1^{0} .

A point $x \in \mathcal{X}$ is Δ_1^1 point if the relation $U \subseteq \omega$ which is defined by $s \in U \iff x \in N(\mathcal{X}, s)$, is in Δ_1^1 .

A set $P \subseteq \mathcal{X}$ is *semirecursive* if $P = \bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω .

- $\Sigma_1^0 =$ all semirecursive sets
 - \rightsquigarrow effective open sets.
- $$\label{eq:prod} \begin{split} \Pi^0_1 = \mbox{the complements of semirecursive sets} \\ \rightsquigarrow \mbox{ effective closed sets.} \end{split}$$

Similarly one defines the class Δ_1^1 of *effective Borel* sets, Σ_1^1 of *effective analytic* and so on.

A function $f : \mathcal{X} \to \mathcal{Y}$ is Σ_1^{0} -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Σ_1^{0} .

A point $x \in \mathcal{X}$ is Δ_1^1 point if the relation $U \subseteq \omega$ which is defined by $s \in U \iff x \in N(\mathcal{X}, s)$, is in Δ_1^1 .

A set $P \subseteq \mathcal{X}$ is *semirecursive* if $P = \bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω .

- $\Sigma_1^0 =$ all semirecursive sets
 - \rightsquigarrow effective open sets.
- $$\label{eq:prod} \begin{split} \Pi^0_1 = \mbox{the complements of semirecursive sets} \\ \rightsquigarrow \mbox{ effective closed sets.} \end{split}$$

Similarly one defines the class Δ_1^1 of *effective Borel* sets, Σ_1^1 of *effective analytic* and so on.

A function $f : \mathcal{X} \to \mathcal{Y}$ is Δ_1^1 -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Δ_1^1 .

A point $x \in \mathcal{X}$ is Δ_1^1 point if the relation $U \subseteq \omega$ which is defined by $s \in U \iff x \in N(\mathcal{X}, s)$, is in Δ_1^1 .

Theorem. Every Δ_1^1 subset of a recursively presented Polish space is the recursive injective image of a Π_1^0 subset of \mathcal{N} .

Theorem. (G.) Suppose that $(\mathcal{X}, \mathcal{T})$ is a recursively presented Polish space, d is a suitable distance function for $(\mathcal{X}, \mathcal{T})$ and A is a Δ_1^1 subset of \mathcal{X} . There exists an $\varepsilon_A \in \mathcal{N}$, which is recursive in Kleene's O and a Polish topology \mathcal{T}_{∞} with suitable distance function d_{∞} , which extends \mathcal{T} and has the following properties: (1) The Polish space $(\mathcal{X}, \mathcal{T}_{\infty})$ is ε_A -recursively presented. (2) The set A is a $\Delta_1^0(\varepsilon_A)$ subset of (\mathcal{X}, d_∞) . (3) If $B \subseteq \mathcal{X}$ is a $\Delta_1^1(\alpha)$ subset of (\mathcal{X}, d) , where $\alpha \in \mathcal{N}$, then B is a $\Delta_1^1(\varepsilon_A, \alpha)$ subset of (\mathcal{X}, d_∞) . (4) If $B \subseteq \mathcal{X}$ is a $\Delta^1_1(\varepsilon_A, \alpha)$ subset of (\mathcal{X}, d_∞) , where $\alpha \in \mathcal{N}$, then B is a $\Delta_1^1(\varepsilon_A, \alpha)$ subset of (\mathcal{X}, d) .

Remark. If the inverse function in the Lusin-Suslin Theorem is continuous, then the set A that we start with is G_{δ} .

Lemma. (G.) For every $A \subseteq \mathcal{N}$ in Π_2^0 there is a set $F \subseteq \mathcal{N}$ in Π_1^0 and a recursive function $\pi : \mathcal{N} \to \mathcal{N}$ which is injective on A such that $\pi[F] = A$ and the inverse π^{-1} is continuous.

Corollary. (G.) Suppose that A is a Δ_1^1 subset of \mathcal{N} , which is also in $\mathbf{\Delta}_2^0$ and assume moreover that the class Δ_1^1 is dense in A and $\mathcal{N} \setminus A$. Then one can choose the previous parameter ε_A in Δ_1^1 .

Sketch of the proof. It's just a sketch - really! From of a theorem of Louveau the set A is in $\Delta_2^0(\varepsilon)$ for some $\varepsilon \in \Delta_1^1$. Apply the previous lemma and proceed as usual.

Theorem (The Strong Δ -Selection Principal). Suppose that \mathcal{Z} and \mathcal{Y} are recursively presented Polish spaces and that $P \subseteq \mathcal{Z} \times \mathcal{Y}$ is in Π_1^1 and such that for all $z \in \mathcal{Z}$ there exists $y \in \Delta_1^1(z)$ such that $(z, y) \in P$. Then there exists a Δ_1^1 -recursive function $f : \mathcal{Z} \to \mathcal{Y}$ such that $(z, f(z)) \in P$ for all $z \in \mathcal{Z}$.

Corollary. (G.) Suppose that \mathcal{Z} is a Polish space, \mathcal{X} is a closed subset of \mathcal{N} and that P is a Borel subset of $\mathcal{Z} \times \mathcal{X}$ such that the sets P_z and $\mathcal{X} \setminus P_z$ are infinite for all $z \in \mathcal{Z}$. Assume moreover that (*) $\Delta_1^1(z)$ is dense in both P_z and $\mathcal{X} \setminus P_z$ for all $z \in \mathcal{Z}$. Then there is a Borel-measurable function $f : \mathcal{Z} \to \mathcal{N}$ such that f(z) "encodes" a distance function d_z on \mathcal{X} such that: (1) the space (\mathcal{X}, d_z) is complete and separable, (2) the topology \mathcal{T}_{d_z} extends \mathcal{T} and (3) P_z is d_z -clopen, for all $z \in \mathcal{Z}$.

Thanks to results of Tanaka, Sacks, Thomason and Hinman, we may replace the effective condition (*) with one of the following classical conditions:

(1) there is a "reasonable" Borel measure μ on \mathcal{X} such that for all open V and for all $z \in \mathcal{Z}$ if $P_z \cap V \neq \emptyset$ we have that $P_z \cap V$ is countable or $\mu(P_z \cap V) > 0$. Similarly for $\mathcal{X} \setminus P_z$;

(2) P_z is countable or co-countable for all $z \in \mathbb{Z}$.