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Theorem. If A is a Borel subset of a Polish space (X , T ) there
exists a Polish topology T∞ on X which extends T , and thus has
the same Borel sets as T such that A is T∞-clopen.

Theorem. (Lusin-Suslin) Every Borel subset of a Polish space is
the continuous injective image of a closed subset of the Baire
space N = ωω.

We consider the family of all recursive functions from ωk to ωn.
A set P ⊆ ωk is recursive when the characteristic function χp is
recursive.

Relativization. For every ε ∈ N one defines the relativized family
of ε-recursive functions. Similarly one defines the family of
ε-recursive subsets of ωk .



Definition. (Moschovakis) Suppose that X is a Polish space, d is
compatible distance function for X and (xn)n∈ω is a sequence in
X . Define the relation P< of ω4 as follows
P<(i , j , k ,m)⇐⇒ d(xi , xj) <

k
m+1 . Similarly we define the relation

P≤.

The sequence (xn)n∈ω is a recursive presentation of X , if
(1) it is a dense sequence and
(2) the relations P< and P≤ are recursive.

The spaces R, N and ωk admit a recursive presentation i.e., they
are recursively presented. Some other examples: R× ω, R×N .
However not all Polish spaces are recursively presented.

Every Polish space admits an ε-recursive presentation for some
suitable ε.
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N(X , s) = the ball with center x(s)0 and radius (s)1
(s)2+1 .

A set P ⊆ X is semirecursive if P =
⋃

i∈ω N(X , α(i)) where α is a
recursive function from ω to ω.

Σ0
1 = all semirecursive sets
 effective open sets.

Π0
1 = the complements of semirecursive sets
 effective closed sets.

Similarly one defines the class ∆1
1 of effective Borel sets, Σ1

1 of
effective analytic and so on.

A function f : X → Y is Σ0
1-recursive if and only if the set

R f ⊆ X × ω, R f (x , s)⇐⇒ f (x) ∈ N(Y, s), is Σ0
1.

A point x ∈ X is ∆1
1 point if the relation U ⊆ ω which is defined by

s ∈ U ⇐⇒ x ∈ N(X , s), is in ∆1
1.

Similarly one defines the relativized pointclasses with respect to
some parameter ε.
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Theorem. Every ∆1
1 subset of a recursively presented Polish space

is the recursive injective image of a Π0
1 subset of N .

Theorem. (G.) Suppose that (X , T ) is a recursively presented
Polish space, d is a suitable distance function for (X , T ) and A is
a ∆1

1 subset of X . There exists an εA ∈ N , which is recursive in
Kleene’s O and a Polish topology T∞ with suitable distance
function d∞, which extends T and has the following properties:

(1) The Polish space (X , T∞) is εA-recursively presented.

(2) The set A is a ∆0
1(εA) subset of (X , d∞).

(3) If B ⊆ X is a ∆1
1(α) subset of (X , d), where α ∈ N , then B is

a ∆1
1(εA, α) subset of (X , d∞).

(4) If B ⊆ X is a ∆1
1(εA, α) subset of (X , d∞), where α ∈ N , then

B is a ∆1
1(εA, α) subset of (X , d).



Remark. If the inverse function in the Lusin-Suslin Theorem is
continuous, then the set A that we start with is Gδ.

Lemma. (G.) For every A ⊆ N in Π0
2 there is a set F ⊆ N in Π0

1

and a recursive function π : N → N which is injective on A such
that π[F ] = A and the inverse π−1 is continuous.

Corollary. (G.) Suppose that A is a ∆1
1 subset of N , which is also

in ∆˜ 0
2 and assume moreover that the class ∆1

1 is dense in A and
N \ A. Then one can choose the previous parameter εA in ∆1

1.

Sketch of the proof. It’s just a sketch - really! From of a theorem
of Louveau the set A is in ∆0

2(ε) for some ε ∈ ∆1
1. Apply the

previous lemma and proceed as usual.

Theorem (The Strong ∆-Selection Principal). Suppose that Z
and Y are recursively presented Polish spaces and that P ⊆ Z × Y
is in Π1

1 and such that for all z ∈ Z there exists y ∈ ∆1
1(z) such

that (z , y) ∈ P. Then there exists a ∆1
1-recursive function

f : Z → Y such that (z , f (z)) ∈ P for all z ∈ Z.



Corollary. (G.) Suppose that Z is a Polish space, X is a closed
subset of N and that P is a Borel subset of Z × X such that the
sets Pz and X \ Pz are infinite for all z ∈ Z. Assume moreover
that (∗) ∆1

1(z) is dense in both Pz and X \ Pz for all z ∈ Z.

Then there is a Borel-measurable function f : Z → N such that
f (z) “encodes” a distance function dz on X such that: (1) the
space (X , dz) is complete and separable, (2) the topology Tdz
extends T and (3) Pz is dz -clopen, for all z ∈ Z.

Thanks to results of Tanaka, Sacks, Thomason and Hinman, we
may replace the effective condition (∗) with one of the following
classical conditions:

(1) there is a “reasonable” Borel measure µ on X such that for all
open V and for all z ∈ Z if Pz ∩ V 6= ∅ we have that Pz ∩ V is
countable or µ(Pz ∩ V ) > 0. Similarly for X \ Pz ;

(2) Pz is countable or co-countable for all z ∈ Z.


