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The motivation

It is essential for the development of effective descriptive set
theory to deal with spaces which are either a finite product of
the naturals or are perfect, i.e., they have no isolated points.
Problem. For all recursive Polish spaces X and Y there exists a
Σ1

1 subset of Y × X , which is universal for Σ˜ 1
1 � X .

The preceding statement is correct for a perfect Y but it is open
whether it is true for an arbitrary uncountable Y.
The good news. Most of the effective theory on perfect spaces
can be carried out to the general case. For example
Σ1

1 � X 6= Π1
1 � X .

The interesting news. Some very few but basic results cannot
be carried out, and they all have a common cause: an arbitrary
recursive Polish space does not seem to contain (in fact does
not contain) the recursive image of 2ω.
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Basic notions of effective theory

Suppose that (X ,d) is a complete separable metric space and
that (xn)n∈ω is a sequence in X . We define P< ⊆ ω4 as follows

P<(i , j , k ,n) ⇐⇒ d(xi , xj) < k/(n + 1).

Similarly we define the relation P≤.
The sequence (xn)n∈ω is a recursive presentation of (X ,d), if
(1) it is a dense sequence and
(2) the relations P< and P≤ are recursive.
The space of reals R, the Baire space N = ωω and ωk admit a
recursive presentation in other words they are recursively
presented. Some other examples: R× ω, R×N . However not
all complete separable metric spaces are recursively presented.
Every complete separable metric space admits an ε-recursive
presentation for some suitable ε.
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Without loss of generality we will deal with recursively
presented metric spaces.
Polish spaces! complete separable metric spaces
recursive Polish spaces! recursively presented (complete
separable) metric spaces
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N(X , s) = the ball with center x(s)0
and radius (s)1

(s)2+1 .

A set P ⊆ X is semirecursive if P =
⋃

i∈ω N(X , α(i)) where α is
a recursive function from ω to ω.
Σ0

1 = all semirecursive sets
 effective open sets.

Π0
1 = the complements of semirecursive sets
 effective closed sets.

Σ1
1 = projections of Π0

1 sets
 effective analytic sets.

Π1
1 = the complements of Σ1

1 sets
 effective coanalytic sets.

∆1
1 = Σ1

1 ∩ Π1
1 = effective Borel sets (Kleene).
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Relativization. If Γ is one of the preceding pointclasses and
y ∈ Y we define the class

Γ(y) = {Py ⊆ X | P ⊆ Y × X is in Γ,X is recursive Polish}.

Γ-recursive functions. A function f : X → Y is Γ-recursive if the
set Rf ⊆ X × ω defined by

Rf (x , s) ⇐⇒ f (x) ∈ N(Y, s),

is in Γ. We are mostly interested in the case Γ = ∆1
1 (effective

Borel measurable functions).
Points in Γ. A point x ∈ X is a Γ point if the relation U ⊆ ω
defined by

U(s)⇐⇒ x ∈ N(X , s)

is in Γ. We are mostly interested in the cases Γ = ∆1
1,∆

1
1(y).
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We write x =h y if x ∈ ∆1
1(y) and y ∈ ∆1

1(x). In this case we
say that x and y have the same hyperdegree.
Fact. If f : X → Y is ∆1

1-recursive then f (x) ∈ ∆1
1(x), and if f is

injective then f (x) =h x for all x .
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The problem of ∆1
1-isomorphism

Every perfect recursive Polish space is ∆1
1-isomorphic to the

Baire space.
Question. Does there exist an uncountable recursive Polish
space which is not ∆1

1-isomorphic to the Baire space? And if
yes what else can be said about this kind of spaces?
Notation. We write X �∆1

1
Y if there exists a ∆1

1-injection
f : X � Y and X '∆1

1
Y if there exists a ∆1

1-bijection
f : X�→Y. It holds

X '∆1
1
Y ⇐⇒ X �∆1

1
Y and Y �∆1

1
X .

It also holds
ω �∆1

1
X �∆1

1
N

for all recursive Polish X .
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Definition and main properties

Definition

For every tree T on ω we define the space (N T ,dT ) as follows

N T = T ∪ [T ]

and
dT (x , y) = (least n[x(n) 6= y(n)] + 1)−1

for x , y ∈ N T . It is easy to verify that dT is a metric on N T .

There are various ways to view these spaces.
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Theorem

Suppose that T is a tree on ω.
(1) Every point of T is an isolated point of N T .
(2) The tree T is dense in N T .
(3) If T is a recursive tree the space (N T ,dT ) is recursively
presented and is isometric to a Π0

1 subset of N .
(4) If T is recursive then T is a Σ0

1 subset of N T and so [T ] is a
Π0

1 subset of N T .
(5) For all x ∈ [T ] we have that

x ∈ ∆1
1 ∩N T ⇐⇒ x ∈ ∆1

1 ∩N .

(6) Every recursively presented metric space X is
∆1

1-isomorphic to a space of the form N T for a recursive T .
From this it follows that Σ1

1 � X 6= Π1
1 � X for all X .
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Let us write
[T ] �∆1

1
[S]

if there exists a ∆1
1-recursive function f : N → N which is

injective on [T ] and f [[T ]] ⊆ [S].
It is easy to see that [T ] �∆1

1
[S] implies N T �∆1

1
N S. The

converse in general not true, however it does hold in the
categories of spaces that we will focus on.
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A counterexample

Suppose that T is a recursive tree on ω with non-empty body
such that α 6∈ [T ] for all α ∈ ∆1

1 ∩N . (Kleene)
If x is a ∆1

1 point of N T = T ∪ [T ] then x cannot belong to [T ],
for otherwise x would be a ∆1

1 point of N belonging to [T ].
Hence

∆1
1 ∩N T = T

in particular the set of all ∆1
1 points of N T is semirecursive.

Fact. For every perfect X the set ∆1
1 ∩ X is a proper Π1

1 set.
It follows that the preceding space N T is not ∆1

1-isomorphic to
the Baire space.
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Definition and basic facts

Definition

A recursive tree T on ω is a Kleene tree if the body [T ] is
non-empty and does not contain ∆1

1-members. A space of the
form N T is a Kleene space if T is a Kleene tree.

A Kleene space is an uncountable set and the set of all of its
∆1

1 points is a semirecursive set, so no Kleene space is
∆1

1-isomorphic to the Baire space. In fact Kleene spaces
characterize the class of all spaces for which the set of their ∆1

1
points is ∆1

1.
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Theorem

An uncountable recursively presented metric space X is
∆1

1-isomorphic to a Kleene space if and only if ∆1
1 ∩ X is ∆1

1.

Corollary

If Y is a Kleene space, X is uncountable and X �∆1
1
Y then X

is ∆1
1-isomorphic to a Kleene space.

Lemma
For Kleene trees T and S we have that

N T �∆1
1
N S ⇐⇒ [T ] �∆1

1
[S].
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Moving downwards

Theorem

For every Kleene tree T , there is some initial segment u of the
leftmost infinite branch of T such that

N Tu ≺∆1
1
N T .

It follows that every Kleene space X is the top of an infinite
sequence of Kleene spaces which is strictly decreasing under
�∆1

1
,

X �∆1
1
X1 �∆1

1
X2 �∆1

1
. . . .
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Sketch of the proof.

There exists some γ ∈ [T ] such that αL 6∈ ∆1
1(γ), where αL is

the leftmost infinite branch of T (Gandy Basis Theorem).
If we had ∆1

1(γ) ∩ [Tu] 6= ∅ for all initial segments u of αL, then
αL would be the unique infinite branch which lies on the left of
every β ∈ ∆1

1(γ) ∩ [T ]. The latter implies that {αL} is in Σ1
1(γ),

from which it follows αL ∈ ∆1
1(γ), a contradiction.

We pick some u v αL such that [Tu] ∩∆1
1(γ) = ∅. Any ∆1

1
function

f : [T ]→ [Tu]

would carry γ to a ∆1
1(γ) point inside [Tu] contradicting the

choice of u. a
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Moving sideways

Theorem (Fokina-Friedman-Törnquist)

There exists a sequence of recursive trees (Ti)i∈ω and a
sequence (αi)i∈ω in N such that αi ∈ [Ti ] and ∆1

1(αi) ∩ [Tj ] = ∅
for all i 6= j .
In particular there does not exist a ∆1

1-recursive function
f : N → N which carries [Ti ] inside [Tj ] for all i 6= j .

The proof of the preceding theorem suggests the following
idea: we verify that arbitrarily large "portions" of the required
incomparability condition are satisfied, and using some
compactness argument (Barwise compactness) we infer that
this condition is satisfied as well.
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Kreisel compactness

Theorem (Kreisel compactness)

Suppose that X is a recursively presented metric space,
D ⊆ ω ×X is Σ1

1 and P ⊆ ω is Π1
1. Suppose that for all ∆1

1 sets
H ⊆ P the intersection ∩n∈HDn is non-empty. Then

∩n∈PDn 6= ∅.
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Example (Does anyone know how to turn this blue?)
We consider the space Tr of all trees on ω and we define
D ⊆ ω ×N × Tr by

D(i , α,T ) ⇐⇒ T is a recursive tree and α ∈ [T ] and

(∀β ∈ ∆1
1)["β ≤T ∅i " −→ β 6∈ [T ]],

where "β ≤ ∅i " is a Π1
1 condition on (i , β) which is equivalent to

β ≤T ∅ξ, whenever i is a notation for the (recursive) ordinal ξ in
some system of ordinal notations, say Kleene’s O.
The set D is Σ1

1 and it is relatively easy to show that ∩n∈HDn 6= ∅
for all ∆1

1 sets H ⊆ O. Hence from Kreisel compactness there
exists some (α,T ) in the intersection ∩n∈ODn 6= ∅.
It follows that T is a Kleene tree.
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The incomparability Lemma in Kleene spaces

Lemma

For all Kleene trees T1, . . . ,Tn there exists a Kleene tree S and
α1, . . . , αn, β in [T1], . . . , [Tn] and [S] respectively such that

∆1
1(β) ∩ [Tk ] = ∅ and γ 6=h αk

for all γ ∈ [S] and all k = 1, . . . ,n. In particular we have
[Tk ] 6�∆1

1
[S] and [S] 6�∆1

1
[Tk ] for all k = 1, . . . ,n.

Theorem
For every finite sequence X1,X2, . . . ,Xn of Kleene spaces,
there is a Kleene space Y which is �∆1

1
-incomparable with

each Xi . It follows that every Kleene space is the member of
an infinite sequence of Kleene spaces which are pairwise
incomparable under �∆1

1
.
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Idea of the proof of the Incomparability Lemma.
We assume that have just one Kleene tree T . We say that
D(i , α, β,S) holds exactly when

α ∈ [T ] & S is a recursive tree & β ∈ [S]

& (∀γ ∈ ∆1
1)["γ ≤ ∅i " −→ γ 6∈ [S]]

& (∀δ ∈ ∆1
1(β))[δ 6∈ [T ]]

& (∀γ ∈ ∆1
1(α))[α ∈ ∆1

1(γ) −→ γ 6∈ [S]].

a
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Moving upwards

Theorem

For every Kleene tree T there exists a Kleene tree K such that
N T ≺∆1

1
N K .

It follows that every Kleene space X is the bottom of an infinite
sequence of Kleene spaces which is strictly increasing under
�∆1

1
,

X ≺∆1
1
X1 ≺∆1

1
X2 ≺∆1

1
. . . .

Idea of the proof.

We choose a Kleene tree T1 such that the spaces N T , N T1 are
�∆1

1
-incomparable and we take the topological sum N T ⊕N T1 .

We continue similarly. a
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The (strong form) of the Spector-Gandy Theorem

Theorem (Spector-Gandy)

For every Π1
1 set P ⊆ ω there exists a recursive tree T on ω

such that

P(n) ⇐⇒ (∃α ∈ ∆1
1)[(n)ˆα ∈ [T ]]

⇐⇒ (∃!α)[(n)ˆα ∈ [T ]].
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Definition

A recursive tree T on ω is a Spector-Gandy tree if

(∃x ∈ ∆1
1)[x ∈ [T ] & x(0) = n] ⇐⇒ (∃!x)[x ∈ [T ] & x(0) = n]

for all n ∈ ω and the Π1
1 set

P(n) ⇐⇒ (∃x ∈ ∆1
1)[x ∈ [T ] & x(0) = n]

is not ∆1
1.

A space of the form N T is a Spector-Gandy space if T is a
Spector-Gandy tree.
The set P from above is the companion set of the
Spector-Gandy space N T .
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A typical Spector-Gandy tree
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Basic facts

Remark - this is blue, this is blue, this is blue . . .
1 The set of ∆1

1-points of a Spector-Gandy space is not ∆1
1,

so no Spector-Gandy space is ∆1
1-isomorphic to a Kleene

space.
2 Every Spector-Gandy space contains a Kleene space.
3 Every Kleene space is contained in a Spector-Gandy

space.
4 No Spector-Gandy space is ∆1

1-isomorphic to the Baire
space.

5 For every Spector-Gandy trees T and S we have that

N T �∆1
1
N S ⇐⇒ [T ] �∆1

1
[S].
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Kreisel compactness applied to Spector-Gandy
spaces

Removing ∆1
1 points arbitrarily guarantees that we will end up

with a Kleene tree. In order to make sure that we will get a
Spector-Gandy tree at the end, we will use a given
Spector-Gandy tree as a pilot.

Lemma (The pilot Lemma)

Suppose that K is a Spector-Gandy tree with a companion set
P and that T is a recursive tree such that T(n) = K(n), whenever
n ∈ P or [T(n)] has a ∆1

1 member. Then T is also a
Spector-Gandy tree with the same companion set P.
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Moving downwards

We say that a Spector-Gandy space N T is nice if its companion
set is the well-founded part of a recursive linear ordering.

Lemma

For every nice Spector-Gandy tree T there exists a
Spector-Gandy tree S ⊆ T with the same companion set and
some γ ∈ [T ] not in ∆1

1, such that α 6=h γ for all α ∈ [S].

Theorem
Every nice Spector-Gandy space is the top of a strictly
decreasing sequence of nice Spector-Gandy trees under �∆1

1
.
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Idea of the proof of the Lemma.

We define the set D ⊆ ω ×N × Tr by saying that D(i , γ,S)
holds exactly when

S is a recursive tree and S ⊆ T

& γ ∈ [T ] & γ 6∈ ∆1
1

& (∀j � i)[S(j) = T(j)]

& (∀n)(∀α∗ ∈ ∆1
1)[(n)ˆα∗ ∈ [S] −→ S(n) = T(n)]

& (∀α ∈ ∆1
1(γ))[γ ∈ ∆1

1(α) −→ α 6∈ [S]].

a
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Moving sideways and upwards

One can get similar results for nice Spector-Gandy spaces by
applying the Kreisel compactness technique and the
Incomparability Lemma in Kleene spaces.

Also we can move upwards using topological sums.
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Thank you for your
attention!
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