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Definitions.(1) Let (X , ‖.‖) be an infinite dimensional Banach
space, let K be a weakly compact and convex subset of X and let
T : K → K be a map such that ‖Tx − Ty‖ ≤ ‖x − y‖ for any
x , y ∈ K . Such a map T is called non-expansive.
(2)We say that X has the fixed point property (f.p.p.) if for every
K and every T : K → K as above, the map T has a fixed point
(i.e. there is x ∈ K such that Tx = x).

Banach’s fixed point theorem: If T : K → K is a contraction
(i.e. there is 0 < L < 1 such that ‖Tx − Ty‖ ≤ L‖x − y‖
∀x , y ∈ K ), then T has a unique fixed point.
Schauder’s fixed point theorem: If K is compact and convex,
then any continuous map T : K → K has a fixed point.

General problem: “Characterize” the spaces X which have the
f.p.p.



• Any Hilbert space has the f.p.p
(F.E. Browder, 1965)

• Any uniformly convex Banach space has the f.p.p
(F. E. Browder, 1965) [`p, Lp, 1 < p <∞]

• Any Banach space with normal structure has the f.p.p
(W. A. Kirk, 1965)



Minimal Sets

In the following K will always be a convex, weakly compact set and
T : K → K a non-expansive map.

Definition. Let C be a convex, weakly compact subset of K such
that T (C ) ⊆ C . We say that C is minimal for T if there is no
strictly smaller subset of C with the same properties.
(i.e. E ⊆ C convex, weakly compact, T (E ) ⊆ E ⇒ E = C )

T has a fixed point x ⇔ the set C = {x} is minimal

Proposition. There always are subsets C of K which are minimal
for the map T .

Standard technique:
Assume that K is minimal and then show that diam(K ) = 0



Proposition. Suppose that K is a weakly compact, convex set and
T : K → K is non-expansive. Then there is a sequence (xn) in K
such that limn→∞ ‖xn − Txn‖ = 0.
(xn): approximate fixed point sequence for the map T

Theorem. [Karlovitz, 1976] Suppose that K is minimal for the
non-expansive map T and let (xn) be an approximate fixed point
sequence in K . Then, for all x ∈ K ,

lim
n→∞

‖x − xn‖ = diam(K ).



Definition. The space X has normal structure if every weakly
compact, convex subset K with diam(K ) > 0 contains a
non-diametral point, i.e. a point x0 ∈ K such that

sup{‖x − x0‖ | x ∈ K} < diam(K ).

Theorem. If X has normal structure, then X has the f.p.p.

Proof. Let K be weakly compact, convex and minimal for the
non-expansive T . Assume that diam(K ) > 0. Then K contains a
non-diametral point x0.
If (xn) is an approximate fixed point sequence in K , then

lim
n→∞

‖xn − x0‖ = diam(K ).

On the other hand,

lim
n→∞

‖xn − x0‖ ≤ sup{‖x − x0‖ | x ∈ K} < diam(K )

and we have a contradiction. Therefore diam(K ) = 0.



Theorem.[Alspach, 1981] The space L1 fails the f.p.p.

Theorem.[Maurey, 1981] The space c0 has the f.p.p.

Theorem.[Maurey, 1981] Let (xn) and (yn) be approximate fixed
point sequences for the map T such that limn→∞ ‖xn − yn‖ exists.
Then there is an approximate fixed point sequence (zn) in K such
that

lim
n→∞

‖zn − xn‖ = lim
n→∞

‖zn − yn‖ =
1

2
lim

n→∞
‖xn − yn‖.



Tree-like Banach spaces

`1: separable, `∗1 = `∞: non-separable

X separable, `1 ⊂ X ⇒ X ∗: non-separable

Problem. Is `1 the “only” separable space with non-separable
dual?

Answer: Negative. There are separable spaces with non-separable
dual, which do not contain any isomorphic copy of `1.



The James Tree space (JT )

Consider the dyadic tree D = ∪∞n=0{0, 1}n, that is the set of all
finite sequences s in {0, 1}.
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The elements of the set D are called nodes.
In this tree we have a partial order:
s < s ′ and s, ŝ are non-comparable.



Definition. Let I be a finite subset of D such that I is linearly
ordered and if s, s ′ ∈ I and s < t < s ′ then t ∈ I. The set I is
called a segment on the tree D.
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Let c00(D) = {x : D → R | x has finite support}.
If I is a segment, then we set

I∗(x) =
∑
s∈I

x(s).



For any x ∈ c00(D) we define the norm

‖x‖ = max
( r∑

k=1

(I∗k (x))2
)1/2

where the maximum is taken over all finite families S = {I}rk=1 of
pairwise disjoint segments.
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The space JT is the completion of (c00(D), ‖.‖)



• JT is separable: For any node s we define es : D → R with

es(t) =

{
0, for any t 6= s;
1, if t = s.

Then JT = span{es | s ∈ D} and D is a countable set.



• JT ∗ is non-separable: For any branch B we define the functional
B∗ : JT → R such that B∗(x) =

∑
s∈B x(s).
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If B1 6= B2 then ‖B∗1 − B∗2‖ = 1 and we have 2ℵ0 branches.
• JT does not contain any isomorphic copy of `1.



Definition. A Banach space X satisfies the Opial condition if
whenever a sequence (xn) in X converges weakly to 0 and
lim inf ‖xn‖ = 1, then

lim inf ‖xn + x‖ > 1 for all x 6= 0.

Theorem. If X satisfies the Opial condition, then X possesses
normal structure.

Theorem.[Khamsi 1989, Kuczumow and Reich 1994] The space
JT satisfies the Opial condition.
Proof. Let (xn) be a sequence in JT such that (xn) converges
weakly to 0 and lim inf ‖xn‖ = 1 and let x ∈ JT , x 6= 0.
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There is a level M such that x(s) is (almost) zero for any node s
with lev(s) > M.
(xn) converges weakly to 0. Therefore xn(s)→ 0 for every s. If n
is quite large, then xn(s) is (almost) zero for every node s with
lev(s) ≤ M.

‖x‖ =
(∑

k

(I∗k (x))2
)1/2

‖xn‖ =
(∑

`

(J ∗` (xn))2
)1/2

Set S = {Ik}k ∪ {J`}`.



Using the family S we estimate the norm of xn + x :

‖xn + x‖ ≥ (‖xn‖2 + ‖x‖2)1/2

lim inf ‖xn + x‖ ≥ (1 + ‖x‖2)1/2 > 1.



Definition. Let S be a finite family of pairwise disjoint segments
of the dyadic tree. The family S is called admissible if for every
segment I ∈ S there is at most one segment I ′ ∈ S such that
min I < min I ′

Consider the space

c00(D) = {x : D → R | x has finite support}

For any x ∈ c00(D) we define

‖x‖ = max
( r∑

k=1

(I∗k (x))2
)1/2

where the maximum is taken over all finite admissible families
S = {I}rk=1 of pairwise disjoint segments.

The space X is the completion of (c00(D), ‖.‖).



Let (xn) be a sequence in the space X such that (xn) converges
weakly to 0, lim inf ‖xn‖ = 1 and let x ∈ X , x 6= 0.

@
@
@
@
@
@
@
@
@�

�
�
�
�
�
�
�
�

M

x

xn

�
�
A
A
�
�
A
A

B
BBAA

�
�
�

A
A

�
�

A
A

@
@

�
�

�
�

A
A

‖x‖ =
(∑

(I∗k (x))2
)1/2

‖xn‖ =
(∑

(J ∗` (x + n))2
)1/2

S = {Ik}k ∪ {J`}`
Theorem. The space X does not possess normal structure.



Theorem. The space X has the fixed point property.

Proof. Let K be weakly compact, convex and minimal for the
non-expansive map T : K → K .

Suppose that diam(K ) > 0. By multiplication with some positive
constant we may assume that diam(K ) = 1.

Let (xn) be an approximate fixed point sequence for the map T in
the set K , i.e. limn→∞ ‖xn − Txn‖ = 0.

Since K is weakly compact, we may assume that (xn) converges
weakly to some point x ∈ K . By a translation, we may also
assume that 0 ∈ K and (xn) converges weakly to 0.

Since K is minimal, we know that limn→∞ ‖xn− x‖ = diam(K ) = 1
for every x ∈ K . Therefore limn→∞ ‖xn‖ = 1.



diam(K ) = 1, (xn): a.f.p.s., xn
w→ 0, limn→∞ ‖xn‖ = 1

Choose a subsequence (yn) of (xn) as follows:
Fix n ∈ N. There is a level Mn such that xn(s) = 0 for every node
s with lev(s) ≥ Mn.
(xk) converges weakly to 0. Hence, xk(s)→ 0 for every s ∈ D. We
find kn ∈ N such that xkn(s) = 0 for every s with lev(s) ≤ Mn. Let
yn = xkn .
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(xn), (yn) are a.f.p.s.’s and limn→∞ ‖xn − yn‖ = 1.

Fix N ∈ N and let δ = 1
2N . By Maurey’s theorem we find a

sequence (zn) in the set K such that
(1) (zn) is an a.f.p.s. Therefore limn→∞ ‖zn‖ = 1.
(2) lim ‖zn − yn‖ = 1

2N lim ‖xn − yn‖, lim ‖zn − xn‖ = 1− 1
2N

lim ‖zn − yn‖ = δ lim ‖zn − xn‖ = 1− δ
For every n there is an admissible family S = {Ij} of pairwise
disjoint segments on the dyadic tree, such that

‖zn‖2 =
∑
Ij∈S

(I∗j (zn))2.



Case 1. Assume that lev(max Ij) ≤ Mn for every Ij ∈ S
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‖zn‖2 =
∑

(I∗j (zn))2 =
∑

(I∗j (zn)− I∗j (yn))2

=
∑

(I∗j (zn − yn))2 ≤ ‖zn − yn‖2

lim ‖zn‖2 ≤ lim ‖zn − yn‖2

1 ≤ δ2



Case 2. Assume that lev(min Ij) ≥ Mn for every Ij ∈ S
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‖zn‖2 =
∑

(I∗j (zn))2 =
∑

(I∗j (zn)− I∗j (xn))2

=
∑

(I∗j (zn − xn))2 ≤ ‖zn − xn‖2

lim ‖zn‖2 ≤ lim ‖zn − xn‖2

1 ≤ (1− δ)2



Case 3. Assume that lev(max Ij) ≤ Mn for every Ij ∈ S1 ⊆ S
and lev(min Ij) ≥ Mn for every Ij ∈ S \ S1.

‖zn‖2 =
∑

(I∗j (zn))2 =
∑
Ij∈S1

(I∗j (zn))2 +
∑
Ij∈S\S1

(I∗j (zn))2

≤ ‖zn − yn‖2 + ‖zn − xn‖2

lim ‖zn‖2 ≤ lim ‖zn − yn‖2 + lim ‖zn − xn‖2 ⇒
1 ≤ δ2 + (1− δ)2 ⇒
1 ≤ 1− 2δ(1 + δ).



Result: The family S contains segments which pass through the
level Mn, that is

lev(min Ij) < Mn < lev(max Ij)

S1 = {Ij ∈ S | lev(max Ij) ≤ Mn}
S2 = {Ij ∈ S | lev(min Ij) ≥ Mn}
S3 = {Ij ∈ S | Ij pass through the level Mn} 6= ∅

Each Ij ∈ S3 is divided into two parts Ij = Ej ∪ Kj :

Ej = Ij ∩ {s | lev(s) < Mn}
Kj = Ij ∩ {s | lev(s) ≥ Mn}



For all sufficiently large n we have

1 ≈ ‖zn‖2 =
∑
Ij∈S1

(I∗j (zn))2 +
∑
Ij∈S2

(I∗j (zn))2+

∑
Ij∈S3

(E ∗j (zn) + K ∗j (zn))2

(a + b)2 ≤ (1 +
1

ε
)a2 + (1 + ε)b2

(E ∗j (zn) + K ∗j (zn))2 ≤ (1 +
1

ε
)(E ∗j (zn))2 + (1 + ε)(K ∗j (zn))2

∑
Ij∈S3

(E ∗j (zn)+K ∗j (zn))2 ≤ (1+
1

ε
)
∑
Ij∈S3

(E ∗j (zn))2+(1+ε)
∑
Ij∈S3

(K ∗j (zn))2



1 ≈ ‖zn‖2 ≤
∑
Ij∈S1

(I∗j (zn))2 +
∑
Ij∈S2

(I∗j (zn))2+

(1 +
1

ε
)
∑

(E ∗j (zn))2 + (1 + ε)
∑

(K ∗j (zn))2

=
( ∑
Ij∈S1

(I∗j (zn))2 +
∑

(E ∗j (zn))2
)

+
1

ε

∑
(E ∗j (zn))2

( ∑
Ij∈S2

(I∗j (zn))2 +
∑

(K ∗j (zn))2
)

+ ε
∑

(K ∗j (zn))2

≤ ‖zn − yn‖2 +
1

ε
‖zn − yn‖2 + ‖zn − xn‖2 + ε‖zn − xn‖2

≈ δ2 +
1

ε
δ2 + (1− δ)2 + ε(1− δ)2

= 1 for ε =
δ

1− δ



It follows that
(∑

(K ∗j (zn))2
)1/2

≈ 1− δ.
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Since ‖zn − yn‖ ≈ δ, we have that(∑
(K ∗j (yn))2

)1/2
≈ 1− 2δ



We choose a subsequence (y ′n) of (xn) as follows: Fix n ∈ N
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There is `n ∈ N such that:
(i) x`n(s) = 0 for every s with lev(s) ≤ Mn

(ii) x`n(s) = 0 for every s ∈ ∪Kj .
We set y ′n = x`n .

If we repeat the previous part of the proof, we find segments {Li}

such that
(∑

(L∗i (y ′n))2
)1/2

≈ 1− 2δ and for any i the minimum

node of Li lies on the level Mn.
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There may be nodes s on the level Mn such that:
s is the minimum node of one Kj

s is the minimum node of one Li

y ′n(s) = 0 for every s ∈ Kj ∩ Li . We set L̂i = Li \ (Kj ∩ Li ) then we
have (∑

(L̂∗i (y ′n))2
)1/2

≈ 1− 2δ
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S = {Kj} ∪ {L̂i}

Using the admissible family S, we have

‖yn − y ′n‖ ≈ (1− 2δ) + (1− 2δ) = 2− 4δ

On the other hand

‖yn − y ′n‖ ≤ diam(K ) = 1

and we have the final contradiction.



REMARKS

Proposition. For any M > 0, there is a subspace YM of X such
that YM is isomorphic to c0 and d(YM , c0) > M.

d(YM , c0) = inf{‖T‖·‖T−1‖ : T : YM → c0 isomorphism, onto c0}

Corollary. For any M > 0, there is a Banach space Y isomorphic
to c0 such that Y has the fixed point property and d(Y , c0) > M.

Problem. Find a non-trivial class of Banach spaces such that the
members of this class are isomorphic to each other and each
member has the f.p.p.
(Trivial example: the Banach spaces isomorphic to `1)

Question. Let M > 0. Is there a subspace Y of c0 such that Y is
isomorphic to c0 and d(Y , c0) > M?



The Hagler Tree space (HT )

Question. Does HT have the fixed point property?



THANK YOU!


