The fixed point property on tree-like Banach spaces

Costas Poulios

costas314@gmail.com

Darmstadt, $23^{\rm rd}$ of March, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definitions.(1) Let $(X, \|.\|)$ be an infinite dimensional Banach space, let K be a weakly compact and convex subset of X and let $T : K \to K$ be a map such that $||Tx - Ty|| \le ||x - y||$ for any $x, y \in K$. Such a map T is called *non-expansive*. (2)We say that X has the *fixed point property* (f.p.p.) if for every K and every $T : K \to K$ as above, the map T has a fixed point (i.e. there is $x \in K$ such that Tx = x).

Banach's fixed point theorem: If $T : K \to K$ is a contraction (i.e. there is 0 < L < 1 such that $||Tx - Ty|| \le L||x - y|| \\ \forall x, y \in K$), then T has a unique fixed point. **Schauder's fixed point theorem:** If K is compact and convex, then any continuous map $T : K \to K$ has a fixed point.

General problem: "Characterize" the spaces X which have the f.p.p.

- Any Hilbert space has the f.p.p (F.E. Browder, 1965)
- Any uniformly convex Banach space has the f.p.p (F. E. Browder, 1965) [ℓ_p, L_p, 1
- Any Banach space with normal structure has the f.p.p (W. A. Kirk, 1965)

Minimal Sets

In the following K will always be a convex, weakly compact set and $T: K \to K$ a non-expansive map.

Definition. Let C be a convex, weakly compact subset of K such that $T(C) \subseteq C$. We say that C is *minimal for* T if there is no strictly smaller subset of C with the same properties. (i.e. $E \subseteq C$ convex, weakly compact, $T(E) \subseteq E \Rightarrow E = C$)

T has a fixed point $x \Leftrightarrow$ the set $C = \{x\}$ is minimal

Proposition. There always are subsets C of K which are minimal for the map T.

Standard technique:

Assume that K is minimal and then show that diam(K) = 0

Proposition. Suppose that K is a weakly compact, convex set and $T: K \to K$ is non-expansive. Then there is a sequence (x_n) in K such that $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$. (x_n) : approximate fixed point sequence for the map T

Theorem. [Karlovitz, 1976] Suppose that K is minimal for the non-expansive map T and let (x_n) be an approximate fixed point sequence in K. Then, for all $x \in K$,

$$\lim_{n\to\infty}\|x-x_n\|=\operatorname{diam}(K).$$

Definition. The space X has normal structure if every weakly compact, convex subset K with diam(K) > 0 contains a non-diametral point, i.e. a point $x_0 \in K$ such that

$$\sup\{||x - x_0|| \mid x \in K\} < diam(K).$$

Theorem. If *X* has normal structure, then *X* has the f.p.p.

Proof. Let K be weakly compact, convex and minimal for the non-expansive T. Assume that diam(K) > 0. Then K contains a non-diametral point x_0 .

If (x_n) is an approximate fixed point sequence in K, then

$$\lim_{n\to\infty}\|x_n-x_0\|=\operatorname{diam}(K).$$

On the other hand,

$$\lim_{n \to \infty} \|x_n - x_0\| \le \sup\{\|x - x_0\| \mid x \in K\} < diam(K)$$

and we have a contradiction. Therefore diam(K) = 0.

Theorem. [Alspach, 1981] The space L_1 fails the f.p.p.

Theorem. [Maurey, 1981] The space c_0 has the f.p.p.

Theorem. [Maurey, 1981] Let (x_n) and (y_n) be approximate fixed point sequences for the map T such that $\lim_{n\to\infty} ||x_n - y_n||$ exists. Then there is an approximate fixed point sequence (z_n) in K such that

$$\lim_{n \to \infty} \|z_n - x_n\| = \lim_{n \to \infty} \|z_n - y_n\| = \frac{1}{2} \lim_{n \to \infty} \|x_n - y_n\|.$$

Tree-like Banach spaces

 ℓ_1 : separable, $\ell_1^* = \ell_\infty$: non-separable

X separable, $\ell_1 \subset X \Rightarrow X^*$: non-separable

Problem. Is ℓ_1 the "only" separable space with non-separable dual?

Answer: Negative. There are separable spaces with non-separable dual, which do not contain any isomorphic copy of ℓ_1 .

The James Tree space (JT)

(日)、

э

Consider the dyadic tree $\mathcal{D} = \bigcup_{n=0}^{\infty} \{0,1\}^n$, that is the set of all finite sequences s in $\{0,1\}$.

The elements of the set D are called *nodes*. In this tree we have a partial order: s < s' and s, \hat{s} are non-comparable. **Definition.** Let \mathcal{I} be a finite subset of \mathcal{D} such that \mathcal{I} is linearly ordered and if $s, s' \in \mathcal{I}$ and s < t < s' then $t \in \mathcal{I}$. The set \mathcal{I} is called a segment on the tree \mathcal{D} .

Let $c_{00}(\mathcal{D}) = \{x : \mathcal{D} \to \mathbb{R} \mid x \text{ has finite support}\}.$ If \mathcal{I} is a segment, then we set

$$\mathcal{I}^*(x) = \sum_{s \in \mathcal{I}} x(s).$$

For any $x \in c_{00}(\mathcal{D})$ we define the norm

$$||x|| = \max\left(\sum_{k=1}^{r} (\mathcal{I}_{k}^{*}(x))^{2}\right)^{1/2}$$

where the maximum is taken over all finite families $S = \{I\}_{k=1}^r$ of pairwise disjoint segments.

• *JT* is separable: For any node s we define $e_s : \mathcal{D} \to \mathbb{R}$ with

$$e_s(t) = \begin{cases} 0, & \text{for any } t \neq s; \\ 1, & \text{if } t = s. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then $JT = \overline{span} \{ e_s \mid s \in D \}$ and D is a countable set.

• JT^* is non-separable: For any branch B we define the functional $B^*: JT \to \mathbb{R}$ such that $B^*(x) = \sum_{s \in B} x(s)$.

If $B_1 \neq B_2$ then $||B_1^* - B_2^*|| = 1$ and we have 2^{\aleph_0} branches. • JT does not contain any isomorphic copy of ℓ_1 .

В

Definition. A Banach space X satisfies the *Opial condition* if whenever a sequence (x_n) in X converges weakly to 0 and $\liminf ||x_n|| = 1$, then

$$\liminf ||x_n + x|| > 1 \quad \text{for all } x \neq 0.$$

Theorem. If X satisfies the Opial condition, then X possesses normal structure.

Theorem. [Khamsi 1989, Kuczumow and Reich 1994] The space JT satisfies the Opial condition. **Proof.** Let (x_n) be a sequence in JT such that (x_n) converges

weakly to 0 and lim inf $||x_n|| = 1$ and let $x \in JT$, $x \neq 0$.

There is a level M such that x(s) is (almost) zero for any node s with lev(s) > M.

 (x_n) converges weakly to 0. Therefore $x_n(s) \to 0$ for every s. If n is quite large, then $x_n(s)$ is (almost) zero for every node s with $lev(s) \leq M$.

$$\|x\| = \left(\sum_{k} (\mathcal{I}_{k}^{*}(x))^{2}\right)^{1/2} \quad \|x_{n}\| = \left(\sum_{\ell} (\mathcal{J}_{\ell}^{*}(x_{n}))^{2}\right)^{1/2}$$

Set $S = {\mathcal{I}_k}_k \cup {\mathcal{J}_\ell}_\ell.$

Using the family S we estimate the norm of $x_n + x$:

$$\|x_n + x\| \ge (\|x_n\|^2 + \|x\|^2)^{1/2}$$

lim inf $\|x_n + x\| \ge (1 + \|x\|^2)^{1/2} > 1.$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Definition. Let S be a finite family of pairwise disjoint segments of the dyadic tree. The family S is called *admissible* if for every segment $\mathcal{I} \in S$ there is at most one segment $\mathcal{I}' \in S$ such that $\min \mathcal{I} < \min \mathcal{I}'$

Consider the space

$$c_{00}(\mathcal{D}) = \{x : \mathcal{D} \to \mathbb{R} \mid x \text{ has finite support}\}$$

For any $x \in c_{00}(\mathcal{D})$ we define

$$||x|| = \max\left(\sum_{k=1}^{r} (\mathcal{I}_{k}^{*}(x))^{2}\right)^{1/2}$$

where the maximum is taken over all finite *admissible* families $S = \{\mathcal{I}\}_{k=1}^r$ of pairwise disjoint segments.

The space X is the completion of $(c_{00}(\mathcal{D}), \|.\|)$.

Let (x_n) be a sequence in the space X such that (x_n) converges weakly to 0, $\liminf ||x_n|| = 1$ and let $x \in X$, $x \neq 0$.

$$\|x\| = \left(\sum (\mathcal{I}_k^*(x))^2\right)^{1/2} \quad \|x_n\| = \left(\sum (\mathcal{J}_\ell^*(x+n))^2\right)^{1/2}$$

 $\mathcal{S} = \{\mathcal{I}_k\}_k \cup \{\mathcal{J}_\ell\}_\ell$

Theorem. The space X does not possess normal structure.

Theorem. The space X has the fixed point property.

Proof. Let *K* be weakly compact, convex and minimal for the non-expansive map $T: K \to K$.

Suppose that diam(K) > 0. By multiplication with some positive constant we may assume that diam(K) = 1.

Let (x_n) be an approximate fixed point sequence for the map T in the set K, i.e. $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$.

Since K is weakly compact, we may assume that (x_n) converges weakly to some point $x \in K$. By a translation, we may also assume that $0 \in K$ and (x_n) converges weakly to 0.

Since K is minimal, we know that $\lim_{n\to\infty} ||x_n - x|| = diam(K) = 1$ for every $x \in K$. Therefore $\lim_{n\to\infty} ||x_n|| = 1$.

diam(K) = 1, (x_n) : a.f.p.s., $x_n \xrightarrow{w} 0$, $\lim_{n \to \infty} ||x_n|| = 1$

Choose a subsequence (y_n) of (x_n) as follows:

Fix $n \in \mathbb{N}$. There is a level M_n such that $x_n(s) = 0$ for every node s with $lev(s) \ge M_n$.

 (x_k) converges weakly to 0. Hence, $x_k(s) \to 0$ for every $s \in \mathcal{D}$. We find $k_n \in \mathbb{N}$ such that $x_{k_n}(s) = 0$ for every s with $lev(s) \leq M_n$. Let $y_n = x_{k_n}$.

 (x_n) , (y_n) are a.f.p.s.'s and $\lim_{n\to\infty} ||x_n - y_n|| = 1$.

Fix $N \in \mathbb{N}$ and let $\delta = \frac{1}{2^N}$. By Maurey's theorem we find a sequence (z_n) in the set K such that (1) (z_n) is an a.f.p.s. Therefore $\lim_{n\to\infty} ||z_n|| = 1$. (2) $\lim_{n\to\infty} ||z_n - y_n|| = \frac{1}{2^N} \lim_{n\to\infty} ||x_n - y_n||$, $\lim_{n\to\infty} ||z_n - x_n|| = 1 - \frac{1}{2^N} \lim_{n\to\infty} ||z_n - y_n|| = \delta \lim_{n\to\infty} ||z_n - x_n|| = 1 - \delta$ For every n there is an admissible family $S = \{\mathcal{I}_j\}$ of pairwise disjoint segments on the dyadic tree, such that

$$||z_n||^2 = \sum_{\mathcal{I}_j \in \mathcal{S}} (\mathcal{I}_j^*(z_n))^2.$$

$$\begin{split} \lim \|z_n\|^2 &\leq \lim \|z_n - y_n\| \\ 1 &\leq \delta^2 \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

$$egin{aligned} \|z_n\|^2 &= \sum (\mathcal{I}_j^*(z_n))^2 = \sum (\mathcal{I}_j^*(z_n) - \mathcal{I}_j^*(x_n))^2 \ &= \sum (\mathcal{I}_j^*(z_n - x_n))^2 \leq \|z_n - x_n\|^2 \end{aligned}$$

$$\lim ||z_n||^2 \le \lim ||z_n - x_n||^2$$
$$1 \le (1 - \delta)^2$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Case 3. Assume that $lev(\max \mathcal{I}_j) \leq M_n$ for every $\mathcal{I}_j \in S_1 \subseteq S$ and $lev(\min \mathcal{I}_j) \geq M_n$ for every $\mathcal{I}_j \in S \setminus S_1$.

$$\begin{split} \|z_n\|^2 &= \sum (\mathcal{I}_j^*(z_n))^2 = \sum_{\mathcal{I}_j \in \mathcal{S}_1} (\mathcal{I}_j^*(z_n))^2 + \sum_{\mathcal{I}_j \in \mathcal{S} \setminus \mathcal{S}_1} (\mathcal{I}_j^*(z_n))^2 \\ &\leq \|z_n - y_n\|^2 + \|z_n - x_n\|^2 \end{split}$$

$$\begin{split} \lim \|z_n\|^2 &\leq \lim \|z_n - y_n\|^2 + \lim \|z_n - x_n\|^2 \Rightarrow \\ 1 &\leq \delta^2 + (1 - \delta)^2 \Rightarrow \\ 1 &\leq 1 - 2\delta(1 + \delta). \end{split}$$

Result: The family S contains segments which pass through the level M_n , that is

$$lev(\min \mathcal{I}_j) < M_n < lev(\max \mathcal{I}_j)$$

$$\begin{split} \mathcal{S}_1 &= \{\mathcal{I}_j \in \mathcal{S} \mid \textit{lev}(\max \mathcal{I}_j) \leq M_n\} \\ \mathcal{S}_2 &= \{\mathcal{I}_j \in \mathcal{S} \mid \textit{lev}(\min \mathcal{I}_j) \geq M_n\} \\ \mathcal{S}_3 &= \{\mathcal{I}_j \in \mathcal{S} \mid \mathcal{I}_j \text{ pass through the level } M_n\} \neq \emptyset \end{split}$$

Each $\mathcal{I}_j \in \mathcal{S}_3$ is divided into two parts $\mathcal{I}_j = E_j \cup K_j$:

$$E_j = \mathcal{I}_j \cap \{s \mid lev(s) < M_n\}$$

$$K_j = \mathcal{I}_j \cap \{s \mid lev(s) \ge M_n\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For all sufficiently large n we have

$$\begin{split} 1 &\approx \|z_n\|^2 = \sum_{\mathcal{I}_j \in \mathcal{S}_1} (\mathcal{I}_j^*(z_n))^2 + \sum_{\mathcal{I}_j \in \mathcal{S}_2} (\mathcal{I}_j^*(z_n))^2 + \\ &\sum_{\mathcal{I}_j \in \mathcal{S}_3} (E_j^*(z_n) + K_j^*(z_n))^2 \end{split}$$

$$(\mathsf{a}+\mathsf{b})^2 \leq (1+rac{1}{\epsilon})\mathsf{a}^2 + (1+\epsilon)\mathsf{b}^2$$

$$(E_j^*(z_n) + K_j^*(z_n))^2 \le (1 + \frac{1}{\epsilon})(E_j^*(z_n))^2 + (1 + \epsilon)(K_j^*(z_n))^2$$

$$\sum_{\mathcal{I}_j \in \mathcal{S}_3} (E_j^*(z_n) + \mathcal{K}_j^*(z_n))^2 \leq (1 + \frac{1}{\epsilon}) \sum_{\mathcal{I}_j \in \mathcal{S}_3} (E_j^*(z_n))^2 + (1 + \epsilon) \sum_{\mathcal{I}_j \in \mathcal{S}_3} (\mathcal{K}_j^*(z_n))^2$$

$$1 \approx \|z_n\|^2 \le \sum_{\mathcal{I}_j \in S_1} (\mathcal{I}_j^*(z_n))^2 + \sum_{\mathcal{I}_j \in S_2} (\mathcal{I}_j^*(z_n))^2 + (1 + \frac{1}{\epsilon}) \sum (E_j^*(z_n))^2 + (1 + \epsilon) \sum (K_j^*(z_n))^2$$

$$= \left(\sum_{\mathcal{I}_{j} \in \mathcal{S}_{1}} (\mathcal{I}_{j}^{*}(z_{n}))^{2} + \sum (E_{j}^{*}(z_{n}))^{2}\right) + \frac{1}{\epsilon} \sum (E_{j}^{*}(z_{n}))^{2}$$
$$\left(\sum_{\mathcal{I}_{j} \in \mathcal{S}_{2}} (\mathcal{I}_{j}^{*}(z_{n}))^{2} + \sum (K_{j}^{*}(z_{n}))^{2}\right) + \epsilon \sum (K_{j}^{*}(z_{n}))^{2}$$

$$\leq \|z_n - y_n\|^2 + \frac{1}{\epsilon} \|z_n - y_n\|^2 + \|z_n - x_n\|^2 + \epsilon \|z_n - x_n\|^2$$

$$pprox \delta^2 + rac{1}{\epsilon}\delta^2 + (1-\delta)^2 + \epsilon(1-\delta)^2$$

= 1 for
$$\epsilon = rac{\delta}{1-\delta}$$

We choose a subsequence (y'_n) of (x_n) as follows: Fix $n \in \mathbb{N}$

There is $\ell_n \in \mathbb{N}$ such that: (i) $x_{\ell_n}(s) = 0$ for every s with $lev(s) \leq M_n$ (ii) $x_{\ell_n}(s) = 0$ for every $s \in \bigcup K_j$. We set $y'_n = x_{\ell_n}$.

If we repeat the previous part of the proof, we find segments $\{L_i\}$ such that $\left(\sum_i (L_i^*(y'_n))^2\right)^{1/2} \approx 1 - 2\delta$ and for any *i* the minimum node of L_i lies on the level M_n .

s is the minimum node of one L_i

 $y'_n(s) = 0$ for every $s \in K_j \cap L_i$. We set $\hat{L}_i = L_i \setminus (K_j \cap L_i)$ then we have

$$\left(\sum (\hat{\mathcal{L}}_i^*(y_n'))^2\right)^{1/2} \approx 1 - 2\delta$$

 $\mathcal{S} = \{K_j\} \cup \{\hat{L}_i\}$

Using the *admissible* family \mathcal{S} , we have

$$||y_n - y'_n|| \approx (1 - 2\delta) + (1 - 2\delta) = 2 - 4\delta$$

On the other hand

$$\|y_n - y'_n\| \leq diam(K) = 1$$

and we have the final contradiction.

REMARKS

Proposition. For any M > 0, there is a subspace Y_M of X such that Y_M is isomorphic to c_0 and $d(Y_M, c_0) > M$.

 $d(Y_M, c_0) = \inf\{\|T\| \cdot \|T^{-1}\| : T : Y_M \to c_0 \text{ isomorphism, onto } c_0\}$

Corollary. For any M > 0, there is a Banach space Y isomorphic to c_0 such that Y has the fixed point property and $d(Y, c_0) > M$.

Problem. Find a non-trivial class of Banach spaces such that the members of this class are isomorphic to each other and each member has the f.p.p.

(Trivial example: the Banach spaces isomorphic to ℓ_1)

Question. Let M > 0. Is there a subspace Y of c_0 such that Y is isomorphic to c_0 and $d(Y, c_0) > M$?

The Hagler Tree space (HT)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Question. Does HT have the fixed point property?

THANK YOU!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ