The fixed point property on tree-like Banach spaces

Costas Poulios
costas314@gmail.com

Darmstadt, $23^{\text {rd }}$ of March, 2012

Definitions.(1) Let $(X,\|\cdot\|)$ be an infinite dimensional Banach space, let K be a weakly compact and convex subset of X and let $T: K \rightarrow K$ be a map such that $\|T x-T y\| \leq\|x-y\|$ for any $x, y \in K$. Such a map T is called non-expansive.
(2)We say that X has the fixed point property (f.p.p.) if for every K and every $T: K \rightarrow K$ as above, the map T has a fixed point (i.e. there is $x \in K$ such that $T x=x$).

Banach's fixed point theorem: If $T: K \rightarrow K$ is a contraction (i.e. there is $0<L<1$ such that $\|T x-T y\| \leq L\|x-y\|$ $\forall x, y \in K$), then T has a unique fixed point.
Schauder's fixed point theorem: If K is compact and convex, then any continuous map $T: K \rightarrow K$ has a fixed point.

General problem: "Characterize" the spaces X which have the f.p.p.

- Any Hilbert space has the f.p.p
(F.E. Browder, 1965)
- Any uniformly convex Banach space has the f.p.p
(F. E. Browder, 1965) $\left[\ell_{p}, L_{p}, 1<p<\infty\right]$
- Any Banach space with normal structure has the f.p.p (W. A. Kirk, 1965)

Minimal Sets

In the following K will always be a convex, weakly compact set and $T: K \rightarrow K$ a non-expansive map.

Definition. Let C be a convex, weakly compact subset of K such that $T(C) \subseteq C$. We say that C is minimal for T if there is no strictly smaller subset of C with the same properties.
(i.e. $E \subseteq C$ convex, weakly compact, $T(E) \subseteq E \Rightarrow E=C$)
T has a fixed point $x \Leftrightarrow$ the set $C=\{x\}$ is minimal
Proposition. There always are subsets C of K which are minimal for the map T.

Standard technique:

Assume that K is minimal and then show that $\operatorname{diam}(K)=0$

Proposition. Suppose that K is a weakly compact, convex set and $T: K \rightarrow K$ is non-expansive. Then there is a sequence $\left(x_{n}\right)$ in K such that $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$. $\left(x_{n}\right)$: approximate fixed point sequence for the map T

Theorem. [Karlovitz, 1976] Suppose that K is minimal for the non-expansive map T and let $\left(x_{n}\right)$ be an approximate fixed point sequence in K. Then, for all $x \in K$,

$$
\lim _{n \rightarrow \infty}\left\|x-x_{n}\right\|=\operatorname{diam}(K)
$$

Definition. The space X has normal structure if every weakly compact, convex subset K with $\operatorname{diam}(K)>0$ contains a non-diametral point, i.e. a point $x_{0} \in K$ such that

$$
\sup \left\{\left\|x-x_{0}\right\| \mid x \in K\right\}<\operatorname{diam}(K)
$$

Theorem. If X has normal structure, then X has the f.p.p.
Proof. Let K be weakly compact, convex and minimal for the non-expansive T. Assume that $\operatorname{diam}(K)>0$. Then K contains a non-diametral point x_{0}.
If $\left(x_{n}\right)$ is an approximate fixed point sequence in K, then

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|=\operatorname{diam}(K)
$$

On the other hand,

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\| \leq \sup \left\{\left\|x-x_{0}\right\| \mid x \in K\right\}<\operatorname{diam}(K)
$$

and we have a contradiction. Therefore $\operatorname{diam}(K)=0$.

Theorem.[Alspach, 1981] The space L_{1} fails the f.p.p.
Theorem.[Maurey, 1981] The space c_{0} has the f.p.p.
Theorem.[Maurey, 1981] Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be approximate fixed point sequences for the map T such that $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|$ exists. Then there is an approximate fixed point sequence $\left(z_{n}\right)$ in K such that

$$
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|z_{n}-y_{n}\right\|=\frac{1}{2} \lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\| .
$$

Tree-like Banach spaces

ℓ_{1} : separable, $\ell_{1}^{*}=\ell_{\infty}$: non-separable
X separable, $\ell_{1} \subset X \Rightarrow X^{*}$: non-separable
Problem. Is ℓ_{1} the "only" separable space with non-separable dual?

Answer: Negative. There are separable spaces with non-separable dual, which do not contain any isomorphic copy of ℓ_{1}.

The James Tree space (JT)
Consider the dyadic tree $\mathcal{D}=\cup_{n=0}^{\infty}\{0,1\}^{n}$, that is the set of all finite sequences s in $\{0,1\}$.

The elements of the set \mathcal{D} are called nodes.
In this tree we have a partial order:
$s<s^{\prime}$ and s, \hat{s} are non-comparable.

Definition. Let \mathcal{I} be a finite subset of \mathcal{D} such that \mathcal{I} is linearly ordered and if $s, s^{\prime} \in \mathcal{I}$ and $s<t<s^{\prime}$ then $t \in \mathcal{I}$. The set \mathcal{I} is called a segment on the tree \mathcal{D}.

Let $c_{00}(\mathcal{D})=\{x: \mathcal{D} \rightarrow \mathbb{R} \mid x$ has finite support $\}$.
If \mathcal{I} is a segment, then we set

$$
\mathcal{I}^{*}(x)=\sum_{s \in \mathcal{I}} x(s)
$$

For any $x \in c_{00}(\mathcal{D})$ we define the norm

$$
\|x\|=\max \left(\sum_{k=1}^{r}\left(\mathcal{I}_{k}^{*}(x)\right)^{2}\right)^{1 / 2}
$$

where the maximum is taken over all finite families $\mathcal{S}=\{\mathcal{I}\}_{k=1}^{r}$ of pairwise disjoint segments.

The space $J T$ is the completion of $\left(c_{00}(\mathcal{D}),\|\cdot\|\right)$

- JT is separable: For any node s we define $e_{s}: \mathcal{D} \rightarrow \mathbb{R}$ with

$$
e_{s}(t)= \begin{cases}0, & \text { for any } t \neq s \\ 1, & \text { if } t=s\end{cases}
$$

Then $J T=\overline{\operatorname{span}}\left\{e_{s} \mid s \in \mathcal{D}\right\}$ and \mathcal{D} is a countable set.

- $J T^{*}$ is non-separable: For any branch B we define the functional $B^{*}: J T \rightarrow \mathbb{R}$ such that $B^{*}(x)=\sum_{s \in B} x(s)$.

If $B_{1} \neq B_{2}$ then $\left\|B_{1}^{*}-B_{2}^{*}\right\|=1$ and we have $2^{\aleph_{0}}$ branches.

- JT does not contain any isomorphic copy of ℓ_{1}.

Definition. A Banach space X satisfies the Opial condition if whenever a sequence $\left(x_{n}\right)$ in X converges weakly to 0 and $\lim \inf \left\|x_{n}\right\|=1$, then

$$
\liminf \left\|x_{n}+x\right\|>1 \quad \text { for all } x \neq 0
$$

Theorem. If X satisfies the Opial condition, then X possesses normal structure.

Theorem.[Khamsi 1989, Kuczumow and Reich 1994] The space $J T$ satisfies the Opial condition.
Proof. Let $\left(x_{n}\right)$ be a sequence in $J T$ such that $\left(x_{n}\right)$ converges weakly to 0 and $\lim \inf \left\|x_{n}\right\|=1$ and let $x \in J T, x \neq 0$.

There is a level M such that $x(s)$ is (almost) zero for any node s with $\operatorname{lev}(s)>M$.
$\left(x_{n}\right)$ converges weakly to 0 . Therefore $x_{n}(s) \rightarrow 0$ for every s. If n is quite large, then $x_{n}(s)$ is (almost) zero for every node s with $\operatorname{lev}(s) \leq M$.

$$
\|x\|=\left(\sum_{k}\left(\mathcal{I}_{k}^{*}(x)\right)^{2}\right)^{1 / 2} \quad\left\|x_{n}\right\|=\left(\sum_{\ell}\left(\mathcal{J}_{\ell}^{*}\left(x_{n}\right)\right)^{2}\right)^{1 / 2}
$$

Set $\mathcal{S}=\left\{\mathcal{I}_{k}\right\}_{k} \cup\left\{\mathcal{J}_{\ell}\right\}_{\ell}$.

Using the family \mathcal{S} we estimate the norm of $x_{n}+x$:

$$
\begin{aligned}
\left\|x_{n}+x\right\| & \geq\left(\left\|x_{n}\right\|^{2}+\|x\|^{2}\right)^{1 / 2} \\
\liminf \left\|x_{n}+x\right\| & \geq\left(1+\|x\|^{2}\right)^{1 / 2}>1
\end{aligned}
$$

Definition. Let \mathcal{S} be a finite family of pairwise disjoint segments of the dyadic tree. The family \mathcal{S} is called admissible if for every segment $\mathcal{I} \in \mathcal{S}$ there is at most one segment $\mathcal{I}^{\prime} \in \mathcal{S}$ such that $\min \mathcal{I}<\min \mathcal{I}^{\prime}$

Consider the space

$$
c_{00}(\mathcal{D})=\{x: \mathcal{D} \rightarrow \mathbb{R} \mid x \text { has finite support }\}
$$

For any $x \in c_{00}(\mathcal{D})$ we define

$$
\|x\|=\max \left(\sum_{k=1}^{r}\left(\mathcal{I}_{k}^{*}(x)\right)^{2}\right)^{1 / 2}
$$

where the maximum is taken over all finite admissible families $\mathcal{S}=\{\mathcal{I}\}_{k=1}^{r}$ of pairwise disjoint segments.

The space X is the completion of $\left(c_{00}(\mathcal{D}),\|\cdot\|\right)$.

Let $\left(x_{n}\right)$ be a sequence in the space X such that $\left(x_{n}\right)$ converges weakly to $0, \lim \inf \left\|x_{n}\right\|=1$ and let $x \in X, x \neq 0$.

$$
\begin{gathered}
\|x\|=\left(\sum\left(\mathcal{I}_{k}^{*}(x)\right)^{2}\right)^{1 / 2} \quad\left\|x_{n}\right\|=\left(\sum\left(\mathcal{J}_{\ell}^{*}(x+n)\right)^{2}\right)^{1 / 2} \\
\mathcal{S}=\left\{\mathcal{I}_{k}\right\}_{k} \cup\left\{\mathcal{J}_{\ell}\right\}_{\ell}
\end{gathered}
$$

Theorem. The space X does not possess normal structure.

Theorem. The space X has the fixed point property.
Proof. Let K be weakly compact, convex and minimal for the non-expansive map $T: K \rightarrow K$.

Suppose that $\operatorname{diam}(K)>0$. By multiplication with some positive constant we may assume that $\operatorname{diam}(K)=1$.

Let $\left(x_{n}\right)$ be an approximate fixed point sequence for the map T in the set K, i.e. $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$.
Since K is weakly compact, we may assume that $\left(x_{n}\right)$ converges weakly to some point $x \in K$. By a translation, we may also assume that $0 \in K$ and $\left(x_{n}\right)$ converges weakly to 0 .
Since K is minimal, we know that $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=\operatorname{diam}(K)=1$ for every $x \in K$. Therefore $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=1$.
$\operatorname{diam}(K)=1,\left(x_{n}\right):$ a.f.p.s., $x_{n} \xrightarrow{w} 0, \lim _{n \rightarrow \infty}\left\|x_{n}\right\|=1$
Choose a subsequence $\left(y_{n}\right)$ of $\left(x_{n}\right)$ as follows:
Fix $n \in \mathbb{N}$. There is a level M_{n} such that $x_{n}(s)=0$ for every node s with $\operatorname{lev}(s) \geq M_{n}$.
$\left(x_{k}\right)$ converges weakly to 0 . Hence, $x_{k}(s) \rightarrow 0$ for every $s \in \mathcal{D}$. We find $k_{n} \in \mathbb{N}$ such that $x_{k_{n}}(s)=0$ for every s with $\operatorname{lev}(s) \leq M_{n}$. Let $y_{n}=x_{k_{n}}$.

$\left(x_{n}\right),\left(y_{n}\right)$ are a.f.p.s.'s and $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=1$.
Fix $N \in \mathbb{N}$ and let $\delta=\frac{1}{2^{N}}$. By Maurey's theorem we find a sequence $\left(z_{n}\right)$ in the set K such that
(1) $\left(z_{n}\right)$ is an a.f.p.s. Therefore $\lim _{n \rightarrow \infty}\left\|z_{n}\right\|=1$.
(2) $\lim \left\|z_{n}-y_{n}\right\|=\frac{1}{2^{N}} \lim \left\|x_{n}-y_{n}\right\|, \lim \left\|z_{n}-x_{n}\right\|=1-\frac{1}{2^{N}}$ $\lim \left\|z_{n}-y_{n}\right\|=\delta \lim \left\|z_{n}-x_{n}\right\|=1-\delta$
For every n there is an admissible family $\mathcal{S}=\left\{\mathcal{I}_{j}\right\}$ of pairwise disjoint segments on the dyadic tree, such that

$$
\left\|z_{n}\right\|^{2}=\sum_{\mathcal{I}_{j} \in \mathcal{S}}\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)\right)^{2}
$$

Case 1. Assume that $\operatorname{lev}\left(\max \mathcal{I}_{j}\right) \leq M_{n}$ for every $\mathcal{I}_{j} \in \mathcal{S}$

$$
\begin{aligned}
\left\|z_{n}\right\|^{2}=\sum\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)\right)^{2} & =\sum\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)-\mathcal{I}_{j}^{*}\left(y_{n}\right)\right)^{2} \\
& =\sum\left(\mathcal{I}_{j}^{*}\left(z_{n}-y_{n}\right)\right)^{2} \leq\left\|z_{n}-y_{n}\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\lim \left\|z_{n}\right\|^{2} & \leq \lim \left\|z_{n}-y_{n}\right\|^{2} \\
1 & \leq \delta^{2}
\end{aligned}
$$

Case 2. Assume that $\operatorname{lev}\left(\min \mathcal{I}_{j}\right) \geq M_{n}$ for every $\mathcal{I}_{j} \in \mathcal{S}$

$$
\begin{aligned}
\left\|z_{n}\right\|^{2}=\sum\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)\right)^{2} & =\sum\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)-\mathcal{I}_{j}^{*}\left(x_{n}\right)\right)^{2} \\
& =\sum\left(\mathcal{I}_{j}^{*}\left(z_{n}-x_{n}\right)\right)^{2} \leq\left\|z_{n}-x_{n}\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\lim \left\|z_{n}\right\|^{2} & \leq \lim \left\|z_{n}-x_{n}\right\|^{2} \\
1 & \leq(1-\delta)^{2}
\end{aligned}
$$

Case 3. Assume that $\operatorname{lev}\left(\max \mathcal{I}_{j}\right) \leq M_{n}$ for every $\mathcal{I}_{j} \in \mathcal{S}_{1} \subseteq \mathcal{S}$ and $\operatorname{lev}\left(\min \mathcal{I}_{j}\right) \geq M_{n}$ for every $\mathcal{I}_{j} \in \mathcal{S} \backslash \mathcal{S}_{1}$.

$$
\begin{aligned}
\left\|z_{n}\right\|^{2}=\sum\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)\right)^{2} & =\sum_{\mathcal{I}_{j} \in \mathcal{S}_{1}}\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)\right)^{2}+\sum_{\mathcal{I}_{j} \in \mathcal{S} \backslash \mathcal{S}_{1}}\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)\right)^{2} \\
& \leq\left\|z_{n}-y_{n}\right\|^{2}+\left\|z_{n}-x_{n}\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\lim \left\|z_{n}\right\|^{2} & \leq \lim \left\|z_{n}-y_{n}\right\|^{2}+\lim \left\|z_{n}-x_{n}\right\|^{2} \Rightarrow \\
1 & \leq \delta^{2}+(1-\delta)^{2} \Rightarrow \\
1 & \leq 1-2 \delta(1+\delta)
\end{aligned}
$$

Result: The family \mathcal{S} contains segments which pass through the level M_{n}, that is

$$
\operatorname{lev}\left(\min \mathcal{I}_{j}\right)<M_{n}<\operatorname{lev}\left(\max \mathcal{I}_{j}\right)
$$

$$
\begin{aligned}
& \mathcal{S}_{1}=\left\{\mathcal{I}_{j} \in \mathcal{S} \mid \operatorname{lev}\left(\max \mathcal{I}_{j}\right) \leq M_{n}\right\} \\
& \mathcal{S}_{2}=\left\{\mathcal{I}_{j} \in \mathcal{S} \mid \operatorname{lev}\left(\min \mathcal{I}_{j}\right) \geq M_{n}\right\} \\
& \mathcal{S}_{3}=\left\{\mathcal{I}_{j} \in \mathcal{S} \mid \mathcal{I}_{j} \text { pass through the level } M_{n}\right\} \neq \emptyset
\end{aligned}
$$

Each $\mathcal{I}_{j} \in \mathcal{S}_{3}$ is divided into two parts $\mathcal{I}_{j}=E_{j} \cup K_{j}$:

$$
\begin{aligned}
E_{j} & =\mathcal{I}_{j} \cap\left\{s \mid \operatorname{lev}(s)<M_{n}\right\} \\
K_{j} & =\mathcal{I}_{j} \cap\left\{s \mid \operatorname{lev}(s) \geq M_{n}\right\}
\end{aligned}
$$

For all sufficiently large n we have

$$
\begin{gathered}
1 \approx\left\|z_{n}\right\|^{2}=\sum_{\mathcal{I}_{j} \in \mathcal{S}_{1}}\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)\right)^{2}+\sum_{\mathcal{I}_{j} \in \mathcal{S}_{2}}\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)\right)^{2}+ \\
\sum_{\mathcal{I}_{j} \in \mathcal{S}_{3}}\left(E_{j}^{*}\left(z_{n}\right)+K_{j}^{*}\left(z_{n}\right)\right)^{2} \\
(a+b)^{2} \leq\left(1+\frac{1}{\epsilon}\right) a^{2}+(1+\epsilon) b^{2} \\
\left(E_{j}^{*}\left(z_{n}\right)+K_{j}^{*}\left(z_{n}\right)\right)^{2} \leq\left(1+\frac{1}{\epsilon}\right)\left(E_{j}^{*}\left(z_{n}\right)\right)^{2}+(1+\epsilon)\left(K_{j}^{*}\left(z_{n}\right)\right)^{2} \\
\sum_{\mathcal{I}_{j} \in \mathcal{S}_{3}}\left(E_{j}^{*}\left(z_{n}\right)+K_{j}^{*}\left(z_{n}\right)\right)^{2} \leq\left(1+\frac{1}{\epsilon}\right) \sum_{\mathcal{I}_{j} \in \mathcal{S}_{3}}\left(E_{j}^{*}\left(z_{n}\right)\right)^{2}+(1+\epsilon) \sum_{\mathcal{I}_{j} \in \mathcal{S}_{3}}\left(K_{j}^{*}\left(z_{n}\right)\right)^{2}
\end{gathered}
$$

$$
\begin{gathered}
1 \approx\left\|z_{n}\right\|^{2} \leq \sum_{\mathcal{I}_{j} \in \mathcal{S}_{1}}\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)\right)^{2}+\sum_{\mathcal{I}_{j} \in \mathcal{S}_{2}}\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)\right)^{2}+ \\
=\left(\sum_{\epsilon}\right) \sum\left(E_{j}^{*}\left(z_{n}\right)\right)^{2}+(1+\epsilon) \sum\left(K_{j}^{*}\left(z_{n}\right)\right)^{2} \\
\left.\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)\right)^{2}+\sum\left(E_{j}^{*}\left(z_{n}\right)\right)^{2}\right)+\frac{1}{\epsilon} \sum\left(E_{j}^{*}\left(z_{n}\right)\right)^{2} \\
\left(\sum_{\mathcal{I}_{j} \in \mathcal{S}_{2}}\left(\mathcal{I}_{j}^{*}\left(z_{n}\right)\right)^{2}+\sum\left(K_{j}^{*}\left(z_{n}\right)\right)^{2}\right)+\epsilon \sum\left(K_{j}^{*}\left(z_{n}\right)\right)^{2} \\
\leq\left\|z_{n}-y_{n}\right\|^{2}+\frac{1}{\epsilon}\left\|z_{n}-y_{n}\right\|^{2}+\left\|z_{n}-x_{n}\right\|^{2}+\epsilon\left\|z_{n}-x_{n}\right\|^{2} \\
\approx \delta^{2}+\frac{1}{\epsilon} \delta^{2}+(1-\delta)^{2}+\epsilon(1-\delta)^{2} \\
=1 \quad \text { for } \epsilon=\frac{\delta}{1-\delta}
\end{gathered}
$$

It follows that $\left(\sum\left(K_{j}^{*}\left(z_{n}\right)\right)^{2}\right)^{1 / 2} \approx 1-\delta$.

Since $\left\|z_{n}-y_{n}\right\| \approx \delta$, we have that

$$
\left(\sum\left(K_{j}^{*}\left(y_{n}\right)\right)^{2}\right)^{1 / 2} \approx 1-2 \delta
$$

We choose a subsequence $\left(y_{n}^{\prime}\right)$ of $\left(x_{n}\right)$ as follows: Fix $n \in \mathbb{N}$

There is $\ell_{n} \in \mathbb{N}$ such that:
(i) $x_{\ell_{n}}(s)=0$ for every s with $\operatorname{lev}(s) \leq M_{n}$
(ii) $x_{\ell_{n}}(s)=0$ for every $s \in \cup K_{j}$.

We set $y_{n}^{\prime}=x_{\ell_{n}}$.
If we repeat the previous part of the proof, we find segments $\left\{L_{i}\right\}$ such that $\left(\sum\left(L_{i}^{*}\left(y_{n}^{\prime}\right)\right)^{2}\right)^{1 / 2} \approx 1-2 \delta$ and for any i the minimum node of L_{i} lies on the level M_{n}.

There may be nodes s on the level M_{n} such that: s is the minimum node of one K_{j} s is the minimum node of one L_{i}
$y_{n}^{\prime}(s)=0$ for every $s \in K_{j} \cap L_{i}$. We set $\hat{L}_{i}=L_{i} \backslash\left(K_{j} \cap L_{i}\right)$ then we have

$$
\left(\sum\left(\hat{L}_{i}^{*}\left(y_{n}^{\prime}\right)\right)^{2}\right)^{1 / 2} \approx 1-2 \delta
$$

Using the admissible family \mathcal{S}, we have

$$
\left\|y_{n}-y_{n}^{\prime}\right\| \approx(1-2 \delta)+(1-2 \delta)=2-4 \delta
$$

On the other hand

$$
\left\|y_{n}-y_{n}^{\prime}\right\| \leq \operatorname{diam}(K)=1
$$

and we have the final contradiction.

REMARKS

Proposition. For any $M>0$, there is a subspace Y_{M} of X such that Y_{M} is isomorphic to c_{0} and $d\left(Y_{M}, c_{0}\right)>M$.
$d\left(Y_{M}, c_{0}\right)=\inf \left\{\|T\| \cdot\left\|T^{-1}\right\|: T: Y_{M} \rightarrow c_{0}\right.$ isomorphism, onto $\left.c_{0}\right\}$

Corollary. For any $M>0$, there is a Banach space Y isomorphic to c_{0} such that Y has the fixed point property and $d\left(Y, c_{0}\right)>M$.

Problem. Find a non-trivial class of Banach spaces such that the members of this class are isomorphic to each other and each member has the f.p.p.
(Trivial example: the Banach spaces isomorphic to ℓ_{1})
Question. Let $M>0$. Is there a subspace Y of c_{0} such that Y is isomorphic to c_{0} and $d\left(Y, c_{0}\right)>M$?

The Hagler Tree space ($H T$)

Question. Does $H T$ have the fixed point property?

THANK YOU!

