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Spector’s W

For all e ∈ ω we define the partial ordering ≤e on ω by

i ∈ Domain(≤e) ⇐⇒ {e}(〈i , i〉) = 1
i ≤e j ⇐⇒ i , j ∈ Domain(≤e) & {e}(〈i , j〉) = 1.

Spector’s W is the set

{e ∈ ω |≤e is a well-ordering}.

Relativized version. For every x in a recursive Polish space X
we define ≤x

e by replacing the term “recursive” with
“x-recursive” and we put

Wx = {e ∈ ω |≤x
e is a well-ordering}.

We say that Wx is the hyperjump of x .
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Well-known facts

Theorem (Kleene Basis Theorem)

Every non-empty Σ1
1(x) set contains a member which is

recursive in Wx .

Notation: ωCK
1 is the least non-recursive ordinal, ωx

1 is the least
non-x-recursive ordinal, by x ≤h y we mean that x ∈ ∆1

1(y).
Definition. Given recursive Polish spaces X , Y and x ∈ X we
consider the sets

MY = {y ∈ Y | ωy
1 = ωCK

1 } and MY(x) = {y ∈ Y | ω(x ,y)
1 = ωx

1}.

It is well known that the set MY is Σ1
1, Borel, and comeager.

Similarly for MY(x).
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Theorem (Spector)

For all (x , y) ∈ X × Y we have the following:
1 Wx ≤h y implies ωx

1 < ωy
1 .

2 ωx
1 < ωy

1 and x ≤h y implies Wx ≤h y.

Corollary

For all y ∈MY(x) we have W(x ,y) ≤h (Wx , y), and similarly for
all y ∈MY we have that Wy ≤h (W, y).

Proof.

Given ω(x ,y)
1 = ωx

1 we apply (2) of the preceding theorem of
Spector with x ′ = (x , y) and y ′ = (Wx , y). a
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The latter is related to

Theorem (Sacks)

For Cohen-generic (tree) T we have that WT ≤h (W,T ).

Corollary

The hyperjump function y ∈ Y 7→W(x ,y) is Borel-measurable on
MY(x).
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An example

Suppose that X is (w.l.o.g. recursive) Polish space and that P
is analytic, say P is Σ1

1(α) for α ∈ ωω. Then there exists some
Π0

1(α) set F such that P(x) ⇐⇒ (∃γ ∈ ωω)F (x , α). We
compute

x ∈ P ∩MX (α) ⇐⇒ (∃γ ≤T W(α,x))F (x , γ) & x ∈MX (α)

(Kleene Basis)

⇐⇒ (∃γ ∈ ∆1
1(Wα, x))F (x , γ) & x ∈MX (α).

The relation Q(x) ⇐⇒ (∃γ ∈ ∆1
1(Wα, x))F (x , γ) is Π1

1(Wα)
and hence coanalytic. It follows that set P ′ := P ∩MX (α) is
coanalytic, and therefore Borel. Moreover P4P ′ ⊆ X \MX (α),
and the latter set is meager.
So we just proved that analytic sets have the Baire property.
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Suppose that we have a group G acting continuously on a
Polish space X , and we assume that everything is recursively
presented (recursive), cf. Becker-Kechris. In this case we say
that (X ,G, ·) is recursive Polish G-space. By EG we denote the
induced equivalence relation

xEGy ⇐⇒ (∃g ∈ G)[y = g ·x ] ⇐⇒ y belongs to the orbit of x .

From the preceding if follows that the set
EG ∩ {(x , y) | ω(x ,y)

1 = ωCK
1 } is Borel. This is because the g

above can be chosen to be recursive in W(x ,y) ≤h (W, x , y).

Lemma
Suppose that (X ,G, ·) is a recursive Polish G-space, then there
exists some α ∈ ωω such that

xEGy ⇐⇒ (∃g ∈ ∆1
1(W(α,x), y))[y = g · x ].
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The preceding lemma is derived by analyzing the proof of

Theorem (D. E. Miller)
Orbits of Borel actions of Polish groups on Polish spaces are
Borel sets.

Now we can get the following (known?) result.

Theorem
For every Polish G-space (X ,G, ·) there is some α ∈ ωω such
that the set EG ∩MX (α)×X is Borel.
The same assertion holds for MX (ε) in the place of MX (α) for
any α ≤h ε.
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The preceding result is related to the following.
Theorem (Becker)

For every Polish G-space (X ,G, ·) there exists a transfinite
sequence (Aξ)ξ<ω1 of disjoint Borel sets such that (among
other things) we have X = ∪ξ<ω1Aξ and that EG ∩ Aξ × Aξ if
Borel for all ξ < ω1.

Actually it follows from some remarks in Becker-Kechris, that
the sets Aξ can be chosen in such a way that Aξ is comeager
for the first ξ for which Aξ 6= ∅. To see this we assume that
(X ,G, ·) is recursive, and following Becker-Kechris we set

ωG·x
1 = inf{ωg·x

1 | g ∈ G},
then one can choose Aξ := {x ∈ X | ωG·x

1 = ξ}. Clearly Aξ = ∅
for all ξ < ωCK

1 . The set AωCK
1

is Σ1
1 and contains all ∆1

1 points of
X , hence it is comeager (Thomason-Hinman).
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Corollary

Suppose that (X ,G, ·) is a Polish G-space, and assume that EG
is not Borel. Then there exists some α ∈ ωω such that for all
ε ∈ ωω with α ≤h ε the set is EG ∩MX (ε)c ×MX (ε)c is
(analytic) non Borel.

Proof.
Let α be as in the preceding theorem and α ≤h ε. EG is Borel
on MX (ε)×X and hence also on

(
MX (ε)×X

)
∪
(
X ×MX (ε)

)
.

So if EG is Borel on MX (ε)c ×MX (ε)c then EG is Borel. a
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Now let us go back to

Theorem
For every Polish G-space (X ,G, ·) there is some α ∈ ωω such
that the set EG ∩MX (α)×X is Borel.
The same assertion holds for MX (ε) in the place of MX (α) for
any α ≤h ε.

We describe another proof. Let F (G) be the Effros-Borel space
of closed subsets of G and d : F (G)→ G be Borel-measurable
such that d(F ) ∈ F for all F 6= ∅. By Gx we denote the stabilizer
of x ∈ G: {g ∈ G | g · x = x}. Then by unraveling the proof of
the preceding result of Miller (orbits are Borel sets) we have that

y ∈ G · x ⇐⇒ (∃g)[d(gGx ) = g & y = g · x ]

⇐⇒ (∃!g))[d(gGx ) = g & y = g · x ].
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By choosing the function the function d : F (G)→ G
accordingly, the whole thing boils down to estimating the
complexity of the relation

P(g, x , s) ⇐⇒ g ·Gx ∩ Us 6= ∅,

for some fixed Suslin scheme (Us)s∈ω<ω on G.
From the Kleene Basis Theorem (assuming that everything is
recursive) and after some computations [correction] it follows

g ·Gx ∩ Us 6= ∅ ⇐⇒ (∃h ≤T Wx )[h · x = x & g · h ∈ Us].

We set C(β,g, x , s) ⇐⇒ (∃h ≤T β)[h · x = x & g · h ∈ Us],
then C is Σ˜ 0

n for some small n, and

g ·Gx ∩ Us 6= ∅ ⇐⇒ C(Wx ,g, x , s).
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At the end we find some Σ˜ 0
m relation B such that

y ∈ G · x ⇐⇒ (∃g)B(Wx ,g, x , y) ⇐⇒ (∃!g)B(Wx ,g, x , y).

The function x 7→Wx is Borel-measurable on MX , and so there
exists a Borel set A such that for all x ∈MX and all g, y we
have that

B(Wx ,g, x , y) ⇐⇒ A(x ,g, y).

Hence
y ∈ G · x ⇐⇒ (∃!g)A(x ,g, y)

for all x ∈MX and all y ∈ X . It follows that

(x , y) ∈ EG ∩MX ×X ⇐⇒ x ∈MX & (∃!g)A(x ,g, y),

which shows that the set EG ∩MX ×X is coanalytic.
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Bounding the Church-Kleene ordinals

Suppose that (X ,G, ·) is a recursive G-Polish space. We make
the following assumption about the group action

for all x ∈ X there exists y ∈MX such that y ∈ G · x .

We consider the Borel equivalence relation F = EG ∩MX ×MX

on MX and the (well-defined) injective function

ρ : X/EG →MX /F : ρ(C) = C ∩MX .

F satisfies Silver’s Dichotomy. If F has only countably many
equivalence classes, i.e., the quotient MX /F is countable, it
follows from the injectiveness of ρ that X/EG is countable as
well. If F has perfectly many classes, i.e., there exists a Cantor
set C ⊆MX such that [y1]F 6= [y2]F for all y1 6= y2 in C, then we
also have that [y1]EG 6= [y2]EG for all y1 6= y2 in C. Thus such an
EG has either countably many or perfectly many equivalence
classes.
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Now let us assume again the preceding condition, i.e.,
ωG·x

1 = ωCK
1 for all x ∈ X .

How about the Glimm-Effros dichotomy? The set MX is Σ1
1, so

it is open in the Gandy-Harrington topology, and the arguments
in the effective proof of the Harrington-Kechris-Louveau
Theorem seem to go through. However. . .
Theorem (Sami). a) Every orbit is a G · x is a Π˜ 0

ωG·x
1 +2

set.

b) If there exists some ξ < ω1 such that every orbit is G · x is a
Π˜ 0
ξ set, then EG is Borel; from which it follows that:

If ωG·x
1 = ωCK

1 for all x ∈ X then EG is Borel (see also
Becker-Kechris). So the Silver and the Glimm-Effros dichotomy
do hold for EG.

Question. What can be said if ωG·x
1 = ω

f (x)
1 for some Borel

function f? (Or: ωG·x
1 = ω

(α,x)
1 for some fixed α.)
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Thank you for your
attention!
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