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Lusin’s Problem and the Jayne-Rogers Theorem

Problem (Lusin)
Suppose that f : X → Y is a Borel-measurable function
between Polish spaces. Can we partition X into countably
many sets over which the function f is continuous?

The answer is negative. (Sierpinski, Keldis, Laczkovich, Motto
Ros and many more.)

Theorem (Jayne-Rogers)

Suppose that X is analytic space, Y is separable metrizable
and f : X → Y satisfies the property f−1Σ˜ 0

2 ⊆ Σ˜ 0
2. Then there

exists a sequence of closed sets (Fi)i∈ω such that X = ∪iFi and
f � Fi is continuous for all i ∈ ω.
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Notation. Suppose that f : X → Y is a function between
topological spaces. We write f ∈ dec(Σ˜ 0

m) if there exists a
sequence (Xi)i∈ω of subsets of X such that X = ∪iXi and f � Xi
is Σ˜ 0

m-measurable for all i ∈ ω. We also write f ∈ decn(Σ˜ 0
m) if

the preceding sets Xi can be chosen to be Π˜ 0
n subsets of X .

The Jayne-Rogers Theorem now reads:

f−1Σ˜ 0
2 ⊆ Σ˜ 0

2 =⇒ f ∈ dec1(Σ˜ 0
1)

for every function between an analytic space and a separable
metrizable space.
Many mathematicians worked towards extending/generalising
the Jayne-Rogers Theorem including: Andretta, Duparc, Motto
Ros, Pauly, Pawlikowski-Sabok, Semmes, Solecki and Zapletal.
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The decomposability conjecture

Conjecture (Andretta, Motto Ros, Pawlikowski-Sabok et al.)
Suppose that X is analytic and Y is separable metrizable. For
every function f : X → Y and every n ≥ 2 it holds

f−1Σ˜ 0
n ⊆ Σ˜ 0

n =⇒ f ∈ decn−1(Σ˜ 0
1).

More generally for all 2 ≤ m ≤ n we have

f−1Σ˜ 0
m ⊆ Σ˜ 0

n =⇒ f ∈ decn−1(Σ˜ 0
n−m+1).
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Related results

Theorem (Semmes)
For a function f : ωω → ωω we have the following:

f−1Σ˜ 0
2 ⊆ Σ˜ 0

3 =⇒ f ∈ dec2(Σ˜ 0
2) m = 2,n = 3

f−1Σ˜ 0
3 ⊆ Σ˜ 0

3 =⇒ f ∈ dec2(Σ˜ 0
1) m = n = 3.

Theorem (Motto Ros, Pawlikowski-Sabok)
Suppose that X is analytic, Y is separable metrizable and
f : X → Y satisfies f−1Σ˜ 0

n ⊆ Σ˜ 0
n for some n ≥ 3. Then

f ∈ dec(Σ˜ 0
1).

If moreover f is Σ˜ 0
n−1-measurable, or more generally has Σ˜ 0

n

graph then f ∈ decn−1(Σ˜ 0
1).
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Kihara’s approach

The idea. (Kihara, Pauly) We ask that condition f−1Σ˜ 0
m ⊆ Σ˜ 0

n is
witnessed by a continuous function in the codes of the sets.
Universal sets. Suppose that X is separable metrizable and
that (N(X , s))s is an enumeration of a basis of its topology. We
define by recursion the set GX

n ⊆ ωω × X as follows

GX
1 (ε, x) ⇐⇒ (∃k)[x ∈ N(X , ε(k))]

GX
n+1(ε, x) ⇐⇒ (∃k)¬Gn((ε)k , x).

Then GX
n is universal for Σ˜ 0

n � X .
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Suppose that f : X → Y satisfies f−1Σ˜ 0
m ⊆ Σ˜ 0

n. It is easy to see
that for every Σ˜ 0

m set P ⊆ ω × Y the set

Q(i , x) ⇐⇒ P(i , f (x))

is Σ˜ 0
n.

Definition
For a function f : A ⊆ X → Y we say that condition
f−1Σ˜ 0

m ⊆ Σ˜ 0
n holds Γ˜ -uniformly in the codes if there exists a

Γ˜ -measurable function u : ωω → ωω such that for all ε, i , x ∈ A
we have that

Gω×Y
m (ε, i , f (x)) ⇐⇒ Gω×X

n (u(ε), i , x).
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Theorem (Kihara)

Suppose that for a function f : ωω → ωω condition f−1Σ˜ 0
m ⊆ Σ˜ 0

n
holds Σ˜ 0

1-uniformly for some m,n with 3 ≤ m ≤ n < 2m − 1.
Then f ∈ decn−1(Σ˜ 0

n−m+1).

Extensions. Quasi-Polish spaces of finite small inductive
dimension, computable functions (Kihara).

In this talk we will give an overview of the proof of the preceding
result. Moreover we present some new results.
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What’s new

Proposition (G.-Kihara)
Suppose that X , Y are Polish, A ⊆ X is analytic and f : A→ Y
satisfies f−1Σ˜ 0

m ⊆ Σ˜ 0
n for some m ≥ n ≥ 1. Then condition

f−1Σ˜ 0
m ⊆ Σ˜ 0

n holds Borel-uniformly.

Theorem (G.-Kihara)
Suppose that A ⊆ ωω is analytic and f : A→ ωω satisfies
f−1Σ˜ 0

m ⊆ Σ˜ 0
n for some n ≥ m ≥ 2. Then f ∈ decn(Σ˜ 0

n−m+1).

If moreover m ≥ 3 and f is Σ˜ 0
n−1-measurable then

f ∈ decn−1(Σ˜ 0
n−m+1).

The same assertion holds for spaces of finite small inductive
dimension.



Introduction The Turing degree method Some (more) effective descriptive set theory

Turing degrees

Recursive functions. We consider the family of recursive
functions on some subset of ω to ω. Intuitively these are the
functions f : ω ⇀ ω for which there is a computer program P
with input and output natural numbers such that for all
x ∈ Domain(f ): (a) the program P terminates on the input x
and (b) for all y ∈ ω, f (x) = y iff P on the input x outputs y , i.e.,
P computes f . This family can enumerated in canonical way
(Kleene). We denote by {e} the e-th recursive function.

Relativization. For every B ⊆ ω we can define the family of
B-recursive functions. Intuitively these are the functions for
which the preceding program has as extra input arbitrary finite
initial segments of the characteristic function of B. We denote
by {e}B the e-th B-recursive function.
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A set A ⊆ ω is recursive if its characterstic function can be
computed by a recursive function, i.e., if there exists some e
such that {e} is a function from ω to {0,1} and for all n,
n ∈ A ⇐⇒ {e}(n) = 1.
Similarly A ⊆ ω is B-recursive if there exists e such that
{e}B : ω → {0,1} and n ∈ A ⇐⇒ {e}B(n) = 1 for all n ∈ ω.
We write A ≤T B iff A is B-recursive and A =T B iff A ≤T B and
B ≤T A.
We have that ∅ ≤T A for all A, and A is recursive exactly when
A =T ∅.
The relation ≤T is reflexive and transitive, so that =T is an
equivalence relation. The equivalence class of A under =T is
the Turing degree of A. The set of Turing degrees forms an
upper semilattice.
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Some effective descriptive set theory

The notion of a recursive set extends to recursively presented
Polish spaces and it can be considered as the effective
analogue of clopen sets.
In fact this analogy applies to all pointclasses Σ˜ 0

ξ , Σ˜ 1
n, i.e., one

can define the lightface Σ0
ξ , Σ1

n pointclasses, as well as the
relativized ones Σ0

ξ(x), Σ1
n(x). In fact every set belonging to Γ˜ is

a member of Γ(ε) for some ε ∈ ωω.
This analogy applies to functions as well, i.e., one defines
Γ-recursive functions, which is the effective analogue of
Γ˜ -measurability. Every Γ˜ -measurable function is Γ(ε)-recursive
for some ε ∈ ωω.
The preceding universal sets GXn belong to the lightface Σ0

n
class, whenever X is recursively presented. Moreover P ⊆ X is
Σ0

n if it is the ε-section of GXn for some recursive function ε ∈ ωω.
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Turing jumps

The Turing jump of a set A ⊆ ω is the set

A′ = {n ∈ ω | {n}A(n) is defined}.

Some properties:
(a) A <T A′, in particular the set ∅′ is not recursive.
(b) A ≤T B =⇒ A′ ≤T B′.
(c) The relation P(n,B) ⇐⇒ n ∈ B′ is Σ0

1, hence B′ is a Σ0
1(B)

set.
(d) If A is Σ0

1(B) then A ≤T B′.
(e) The function f : 2ω → 2ω : f (A) = A′ is injective and
Σ˜ 0

2-measurable. Moreover f 6∈ dec(Σ˜ 0
1) (Kihara).
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By iterating we define the n-th Turing jump A(n+1) = (A(n))′. By
A(0) we mean A. The set B(n) is Σ0

n(B) and for every A ∈ Σ0
n(B)

we have A ≤T B(n) for all n ≥ 1. Moreover the function A 7→ A(n)

is Σ˜ 0
n+1-measurable.

It is clear that if A ≤T B(k) then A(m) ≤T B(k+m). The converse
is not correct. Well . . . almost!

The Cancellation Lemma (Kihara)
Suppose that A,B ⊆ ω and 1 ≤ m ≤ n are given. If

(A⊕ C)(m) ≤T (B ⊕ C)(n)

for all C ⊆ ω, then A ≤T B(n−m).
The same assertion holds if we replace A and B with A⊕X and
B ⊕ X repsectively for some fixed X ⊆ ω, (relativized version).

The preceding applies a deep result on Turing degrees by
Shore and Slaman.
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Applications to the decomposability problem

Suppose that we are given a function f : ωω → ωω such that
condition f−1Σ˜ 0

m ⊆ Σ˜ 0
n holds Σ˜ 0

1-uniformly for some n,m with
3 ≤ m ≤ n < 2m − 1 and let u : ωω → ωω be the continuous
witnessing function. Without loss of generality we may assume
that u is recursive and so u(α) ≤T α for all α. (We view ωω as a
subset of 2ω.)
Condition A ≤T B is witnessed by some recursive function
{e}B. Let us write A ≤T,e B in the latter case. The idea is to
show that f (x) ≤T x (n−m) holds for all x . Then we define

Xe ={x ∈ ωω | f (x) ≤T,e x (n−m)}.

It follows that ωω = ∪eXe and the restriction of f on each Xe is a
Σ˜ 0

n−m+1-measurable function.
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We define P ⊆ Z = ωω × ω × ωω by
P(C, i , y) ⇐⇒ i ∈ (y ⊕C)(m). Then P is a Σ0

m set and so there
exists some recursive ε such that P is the ε-section of GZm. For
some recursive function S we have that

P(C, i , y) ⇐⇒ GZm(ε,C, i , y) ⇐⇒ Gω×ωω

m (S(ε,C), i , y),

and so from the key property of u it follows

P(C, i , f (x)) ⇐⇒ Gω×ωω

n (u(S(ε,C)), i , x).

In other words the set (f (x)⊕C)(m) is Σ0
n(u(S(ε,C)), x), and so

(f (x)⊕ C)(m) ≤T (x ⊕ u(S(ε,C)))(n) ≤T (x ⊕ C)(n),

for all C, x . By applying the Cancellation Lemma it follows that
f (x) ≤T x (n−m) for all x .
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Decomposing the domain in a nice way. The method is similar
to the one of Motto Ros and Pawlikowski-Sabok. We use the
following result by Kuratowski: every Σ˜ 0

k -measurable function
on a set A can be extended to a Σ˜ 0

k -measurable function on a
Π˜ 0

k+1 set B, with A ⊆ B ⊆ A.
At some point we have to deal with a set of the form
P = {x | R(x , f (x))}, where R is Π˜ 0

n−m+1 - R computes the
graph of a Σ˜ 0

n−m+1-measurable function. Since n < 2m − 1 it
follows that n−m + 1 ≤ m− 1 and so R is Π˜ 0

m−1 ⊆ Σ˜ 0
m. Using

the fact that f−1Σ˜ 0
m ⊆ Σ˜ 0

n holds Σ˜ 0
1-uniformly it follows that the

set P is Σ˜ 0
n.

One can also notice that the graph of f is a Σ˜ 0
n set - but this

does not seem to help us here unless n = m.
This completes the proof of Kihara’s Theorem about the
decomposability problem.
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The section problem

We proceed to the review of the new results - but first we need
some preliminaries.

Theorem (Louveau)
Suppose that X , Y are Polish spaces, ξ is a countable ordinal
and that P ⊆ X × Y is Borel. If for all x the set Px is Σ˜ 0

ξ then
the topology of X is refined to a Polish topology T∞, which has
the same Borel sets, and P is Σ˜ 0

ξ in (X , T∞)× Y.
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Louveau Separation

The heart of the proof of the preceding result lies in the
following.

Theorem (Louveau)
Suppose that X is a recursively presented metric space and
that A,B are disjoint Σ1

1 subsets of X . If A is separated from B
by a Π˜ 0

ξ set, then A is separated from B by a Π0
ξ(ε) set for some

ε ∈ ∆1
1.

In particular if A is Π˜ 0
ξ and ∆1

1, then it is Π0
ξ(ε) for some ε ∈ ∆1

1.

Let’s see how Louveau Separation solves the Section Problem.
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Let be P ⊆ X × Y be Borel such that for all x the set Px is Σ˜ 0
ξ .

Without loss of generality we may assume that P is ∆1
1, so that

every section Px is ∆1
1(x). Then from Louveau Separation Px is

Σ0
ξ(ε) for some ε ∈ ∆1

1(x). It follows that every section Px is the
β-section of some suitably chosen universal set Gξ for some
β ∈ ∆1

1(x).
A well-known result of effective descriptive set theory states
that if Q ⊆ X × Z is Π1

1 and for all x ∈ X there exists z ∈ ∆1
1(x)

such that Q(x , z), then there exists a Borel measurable function
f : X → Z such that Q(x , f (x)) for all x .
We apply the preceding to the Π1

1 set

Q(x , β) ⇐⇒ (∀y)[P(x , y) ⇐⇒ Gξ(β, y)]

and voilà: there exists a Borel measurable function f : X → ωω

such that P(x , y) ⇐⇒ Gξ(f (x), y). The topology T∞ is the one
which turns f continuous.
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Using Louveau Separation and the preceding ideas one can
prove the Proposition given in the Introduction:

Proposition (G.-Kihara)
Suppose that A ⊆ ωω is analytic and f : A→ ωω satisfies
f−1Σ˜ 0

m ⊆ Σ˜ 0
n for some m ≥ n ≥ 1. Then condition f−1Σ˜ 0

m ⊆ Σ˜ 0
n

holds Borel-uniformly.

We take the simple case where A = ωω. For every α the set

{(i , x) | Gωω×ω×ωω

m (α, i , f (x))}

Σ˜ 0
n and (without loss of generality) is ∆1

1(α). Hence it is a Σ0
n(ε)

set for some ε ∈ ∆1
1(α). So we can find a Borel-measurable

function u : ωω → ωω such that

Gωω×ω×ωω

m (α, i , f (x)) ⇐⇒ Gωω×ω×ωω

n (u(α), i , x).
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Now let us move to the Theorem in the Introduction:

Theorem (G.-Kihara)
Suppose that A ⊆ ωω is analytic and f : A→ ωω satisfies
f−1Σ˜ 0

m ⊆ Σ˜ 0
n for some n ≥ m ≥ 2. Then f ∈ decn(Σ˜ 0

n−m+1).

If moreover m ≥ 3 and f is Σ˜ 0
n−1-measurable then

f ∈ decn−1(Σ˜ 0
n−m+1).

Comment. The preceding estimation f ∈ decn−1(Σ˜ 0
n−m+1)

reduces the Decomposability Conjecture (in the Baire space) to
the cases 2 = m ≤ n.
By repeating the arguments in the proof of Kihara’s Theorem
we get that

(f (x)⊕ C)(m) ≤T (x ⊕ C(ξ))(n)

for some recursive ordinal ξ (where f is ∆1
1-recursive).
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The Cancellation Lemma - Extended Version

Suppose that A,B ⊆ ω, 1 ≤ m ≤ n and ξ < ωCK
1 are given. If

(A⊕ C)(m) ≤T (B ⊕ C(ξ))(n)

for all C ⊆ ω, then A ≤T (B ⊕ ∅(ξ))(n−m). The same assertion
holds if we replace A and B with A⊕ X and B ⊕ X respectively
for some fixed X ⊆ ω, (relativized version).

We proceed as before and we get f (x) ≤T (x ⊕ ∅(ξ))(n−m) for all
x . Now we take the set

Xe = {x | f (x) ≤T,e (x ⊕ ∅(ξ))(n−m)}.

It is not hard to see that Xe is Π˜ 0
n, and that if m ≥ 3 and f is

Σ˜ 0
n−1-measurable then Xe is in fact Π˜ 0

n−1.
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Thank you for your
attention!
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