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A topological space X is a Polish space if X is separable and
metrizable by a complete distance function.

Examples: R, ωk , the Baire space N = ωω, (C (K ), ‖.‖∞), K
compact and separable Banach spaces. We will denote Polish
spaces by X , Y.

If P ⊆ X we will write P(x) instead of x ∈ P.

Borel sets B˜ .
Analytic Sets. A set P ⊆ X is analytic or Σ˜ 1

1 if there is a closed
set Q ⊆ X ×N

P(x)⇐⇒ ∃α ∈ N Q(x , α)

Coanalytic sets. A set is coanalytic or Π˜ 1
1 if it is the complement

of an analytic set.

∆˜ 1
1 = Σ˜ 1

1 ∩Π˜ 1
1.

Suslin’s Theorem.
B˜ = ∆˜ 1
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Effective Theory.

Suppose that X is a Polish space, d is compatible distance
function for X and (xn)n∈N is a sequence in X . Define the relation
P< of ω4 as follows P<(i , j , k ,m)⇐⇒ d(xi , xj) <

k
m+1 . Similarly

we define the relation P≤.

The sequence (xn)n∈N is a recursive presentation of X , if
(1) it is a dense sequence and
(2) the relations P< and P≤ are recursive.

The spaces R, N and ωk admit a recursive presentation i.e., they
are recursively presented. Some other examples: R× ω, R×N .
However not all Polish spaces are recursively presented.

Every Polish space admits an ε-recursive presentation for some
suitable ε.

Without loss of generality we will deal with recursively presented
Polish spaces.
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N(X , s) = the ball with center x(s)0 and radius (s)1
(s)2+1 .

A set P ⊆ X is semirecursive if P =
⋃

i∈NN(X , α(i)) where α is a
recursive function from ω to ω.

Σ0
1 = all semirecursive sets
 effective open sets.

Π0
1 = the complements of semirecursive sets
 effective closed sets.

Σ1
1 = projections of Π0

1 sets
 effective analytic sets.

Π1
1 = the complements of Σ1

1 sets
 effective coanalytic sets.

∆1
1 = Σ1

1 ∩ Π1
1 = effective Borel sets (Kleene).

Similarly one defines the relativized pointclasses with respect to
some parameter y ∈ Y which will be denoted by ∆1

1(y) for
example.



A set A is Borel exactly when A is in ∆1
1(ε) for some ε ∈ N .

A function f : X → Y is continuous if and only if the set
R f ⊆ X × ω, R f (x , s)⇐⇒ f (x) ∈ N(Y, s) is open.

A function f : X → Y is Σ0
1-recursive if and only if the set

R f ⊆ X × ω, R f (x , s)⇐⇒ f (x) ∈ N(Y, s), is Σ0
1.

A point x ∈ X is in ∆1
1 if the relation U ⊆ ω which is defined by

U(s)⇐⇒ x ∈ N(X , s)

is ∆1
1.

As before one gets the class of points which are in ∆1
1(y).
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Points in ∆1
1 are important because:

(a) they preserve the complexity of ∆1
1 under projections i.e., if

P ⊆ X × Y is in ∆1
1 and for all x the section

Px = {y ∈ Y | P(x , y)} is either empty or contains a member in
∆1

1(x) then the projection {x ∈ X | (∃y ∈ Y)P(x , y)} is also in
∆1

1. Similarly for Π1
1 instead of ∆1

1.

(b) they provide uniformizing functions for ∆1
1 sets i.e., if

P ⊆ X × Y is in ∆1
1 and for all x either Px is empty or contains a

member in ∆1
1(x) then there is a ∆1

1 recursive function f : X → Y
such that for all x for which Px 6= ∅ we have that P(x , f (x)).
Similarly for Π1

1 in case Px 6= ∅ for all x ∈ X .

Example. The projection of a convex Borel set R ⊆ R×R is also a
Borel set.

Proof. R is ∆1
1(ε) for some ε; each non-empty section Rx is a

convex subset of R and so it is either a singleton or it contains a
rational number. In either case Rx contains a member in ∆1

1(ε, x).
From (b) prR is in ∆1

1(ε).



Theorem (VG). Let X be a Banach space and (xn)n∈N be a
sequence in X which is weakly convergent to x ∈ X . Then x is in
∆1

1((xn)), (in the parameters in which the related spaces are
recursively presented).

Corollary (VG). Let X be a separable Banach space. Then the set

P = { (yi )i∈N ∈ XN | the sequence (yi )i∈N is weakly convergent}

is a coanalytic subset of XN.

Let Q be a coanalytic subset of XN × X . Then the set

PQ = { (yi )i∈N ∈ XN | the sequence (yi )i∈N is weakly convergent

to some y and Q((yi )i∈N, y) }

is a coanalytic subset of XN.



Theorem (Erdös-Magidor). Let X be a Banach space and (ei )i∈N
be a bounded sequence in X . Then there is a subsequence (eki )i∈N
such that: either (a) every subsequence of (eki )i∈N is Cesàro
summable with respect to the norm and all being summed to the
same limit; or (b) no subsequence of (eki )i∈N is Cesàro summable.

Theorem (VG). Let X be a Banach space, (ei )i∈N be a bounded
sequence in X and let Q ⊆ XN × X be a coanalytic set. Then
there is a subsequence (ei )i∈L of (ei )i∈N for which: either
(a) there is some e ∈ X such that every subsequence (ei )i∈H of
(ei )i∈L is weakly Cesàro summable to e and Q((ei )i∈H , e); or
(b) for every subsequence (ei )i∈H of (ei )i∈L and every e ∈ X with
Q((ei )i∈H , e) the sequence (ei )i∈H is not weakly Cesàro summable
to e.



Debs gave the following effective version of a known theorem of
Bourgain, Fremlin and Talagrand.

Theorem (Debs). Let X be a recursively presented Polish space
and (fn)n∈N be a sequence of continuous functions from X to R
which satisfies conditions (1) the sequence (fn)n∈N is pointwise
bounded; (2) every cluster point of (fn)n∈N in RX with the product
topology is a Borel-measurable function; (3) the sequence (fn)n∈N
is ∆1

1(α)-recursive. Then there is an infinite L ⊆ ω which is in
∆1

1(α) such that the subsequence (fn)n∈L is pointwise convergent.

Theorem (VG). Let X be a Banach space and (ei )i∈N a bounded
sequence in X for which every subsequence (ei )i∈L has a further
subsequence (ei )i∈H which is weakly Cesàro summable. Then
(1) every subsequence of (ei )i∈N has a weakly convergent

subsequence and
(2) there is a Borel-measurable function f : [N]ω → [N]ω such that

for all subsequences (ei )i∈L the sequence (ei )i∈f (L) is a weakly
convergent subsequence of (ei )i∈L.
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Thank you!


