Applications of Logic to Analysis

Vassilios Gregoriades

7th January, 2011, New Orleans

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A topological space \mathcal{X} is a *Polish space* if \mathcal{X} is separable and metrizable by a complete distance function.

Examples: \mathbb{R} , ω^k , the *Baire space* $\mathcal{N} = \omega^{\omega}$, $(C(K), \|.\|_{\infty})$, K compact and separable Banach spaces. We will denote Polish spaces by \mathcal{X} , \mathcal{Y} .

If $P \subseteq \mathcal{X}$ we will write P(x) instead of $x \in P$.

Borel sets **B**.

Analytic Sets. A set $P \subseteq \mathcal{X}$ is analytic or $\sum_{i=1}^{n-1} f$ if there is a closed set $Q \subseteq \mathcal{X} \times \mathcal{N}$

$$P(x) \iff \exists \alpha \in \mathcal{N} \ Q(x, \alpha)$$

Coanalytic sets. A set is *coanalytic* or $\prod_{i=1}^{1} \prod_{j=1}^{i}$ if it is the complement of an analytic set.

$$\underline{\mathbf{\Delta}}_{1}^{1} = \underline{\mathbf{\Sigma}}_{1}^{1} \cap \underline{\mathbf{\Pi}}_{1}^{1}.$$

Suslin's Theorem.

$$\mathbf{B}_{\widetilde{\omega}} = \mathbf{\Delta}_{1}^{1}$$

Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $(x_n)_{n \in \mathbb{N}}$ is a sequence in \mathcal{X} . Define the relation P_{\leq} of ω^4 as follows $P_{\leq}(i, j, k, m) \iff d(x_i, x_j) < \frac{k}{m+1}$. Similarly we define the relation P_{\leq} .

The sequence $(x_n)_{n \in \mathbb{N}}$ is a *recursive presentation* of \mathcal{X} , if (1) is involved.

(1) it is a dense sequence and

(2) the relations P_{\leq} and P_{\leq} are recursive.

The spaces \mathbb{R} , \mathcal{N} and ω^k admit a recursive presentation i.e., they are *recursively presented*. Some other examples: $\mathbb{R} \times \omega$, $\mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.

Every Polish space admits an ε -recursive presentation for some suitable ε .

Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $(x_n)_{n \in \mathbb{N}}$ is a sequence in \mathcal{X} . Define the relation P_{\leq} of ω^4 as follows $P_{\leq}(i, j, k, m) \iff d(x_i, x_j) < \frac{k}{m+1}$. Similarly we define the relation P_{\leq} .

The sequence $(x_n)_{n \in \mathbb{N}}$ is a *recursive presentation* of \mathcal{X} , if (1) is involved.

(1) it is a dense sequence and

(2) the relations P_{\leq} and P_{\leq} are recursive.

The spaces \mathbb{R} , \mathcal{N} and ω^k admit a recursive presentation i.e., they are *recursively presented*. Some other examples: $\mathbb{R} \times \omega$, $\mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.

Every Polish space admits an ε -recursive presentation for some suitable ε .

Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $(x_n)_{n \in \mathbb{N}}$ is a sequence in \mathcal{X} . Define the relation P_{\leq} of ω^4 as follows $P_{\leq}(i, j, k, m) \iff d(x_i, x_j) < \frac{k}{m+1}$. Similarly we define the relation P_{\leq} .

The sequence $(x_n)_{n \in \mathbb{N}}$ is a *recursive presentation* of \mathcal{X} , if (1) is involved.

(1) it is a dense sequence and

(2) the relations P_{\leq} and P_{\leq} are recursive.

The spaces \mathbb{R} , \mathcal{N} and ω^k admit a recursive presentation i.e., they are *recursively presented*. Some other examples: $\mathbb{R} \times \omega$, $\mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.

Every Polish space admits an ε -recursive presentation for some suitable ε .

Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $(x_n)_{n \in \mathbb{N}}$ is a sequence in \mathcal{X} . Define the relation P_{\leq} of ω^4 as follows $P_{\leq}(i, j, k, m) \iff d(x_i, x_j) < \frac{k}{m+1}$. Similarly we define the relation P_{\leq} .

The sequence $(x_n)_{n \in \mathbb{N}}$ is an ε -recursive presentation of \mathcal{X} , if (1) it is a dense sequence and

(2) the relations P_{\leq} and P_{\leq} are ε -recursive.

The spaces \mathbb{R} , \mathcal{N} and ω^k admit a recursive presentation i.e., they are *recursively presented*. Some other examples: $\mathbb{R} \times \omega$, $\mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.

Every Polish space admits an ε -recursive presentation for some suitable ε .

 $N(\mathcal{X}, s) =$ the ball with center $x_{(s)_0}$ and radius $\frac{(s)_1}{(s)_2+1}$.

A set $P \subseteq \mathcal{X}$ is *semirecursive* if $P = \bigcup_{i \in \mathbb{N}} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω .

- $\Sigma_1^0 =$ all semirecursive sets \rightsquigarrow effective open sets.
- $\Pi^0_1 = \text{the complements of semirecursive sets} \\ \rightsquigarrow \text{ effective closed sets.}$
- $$\begin{split} \Sigma_1^1 &= \text{projections of } \Pi_1^0 \text{ sets} \\ &\rightsquigarrow \text{ effective analytic sets.} \end{split}$$
- $$\label{eq:prod} \begin{split} \Pi^1_1 &= \text{the complements of } \Sigma^1_1 \text{ sets } \\ & \rightsquigarrow \text{ effective coanalytic sets.} \end{split}$$

 $\Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1 = \text{effective Borel sets (Kleene)}.$

Similarly one defines the *relativized* pointclasses with respect to some parameter $y \in \mathcal{Y}$ which will be denoted by $\Delta_1^1(y)$ for example.

A function $f : \mathcal{X} \to \mathcal{Y}$ is Σ_1^0 -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Σ_1^0 .

A point $x \in \mathcal{X}$ is in Δ_1^1 if the relation $U \subseteq \omega$ which is defined by

$$U(s) \Longleftrightarrow x \in N(\mathcal{X}, s)$$

is Δ_1^1 .

A function $f : \mathcal{X} \to \mathcal{Y}$ is Σ_1^0 -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Σ_1^0 .

A point $x \in \mathcal{X}$ is in Δ_1^1 if the relation $U \subseteq \omega$ which is defined by

$$U(s) \Longleftrightarrow x \in N(\mathcal{X}, s)$$

is Δ_1^1 .

A function $f : \mathcal{X} \to \mathcal{Y}$ is Σ_1^0 -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Σ_1^0 .

A point $x \in \mathcal{X}$ is in Δ_1^1 if the relation $U \subseteq \omega$ which is defined by

$$U(s) \Longleftrightarrow x \in N(\mathcal{X}, s)$$

is Δ_1^1 .

A function $f : \mathcal{X} \to \mathcal{Y}$ is Δ_1^1 -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Δ_1^1 .

A point $x \in \mathcal{X}$ is in Δ_1^1 if the relation $U \subseteq \omega$ which is defined by

$$U(s) \Longleftrightarrow x \in N(\mathcal{X}, s)$$

is Δ_1^1 .

Points in Δ_1^1 are important because:

(a) they preserve the complexity of Δ_1^1 under projections i.e., if $P \subseteq \mathcal{X} \times \mathcal{Y}$ is in Δ_1^1 and for all x the section $P_x = \{y \in \mathcal{Y} \mid P(x, y)\}$ is either empty or contains a member in $\Delta_1^1(x)$ then the projection $\{x \in \mathcal{X} \mid (\exists y \in \mathcal{Y})P(x, y)\}$ is also in Δ_1^1 . Similarly for Π_1^1 instead of Δ_1^1 .

(b) they provide uniformizing functions for Δ_1^1 sets i.e., if $P \subseteq \mathcal{X} \times \mathcal{Y}$ is in Δ_1^1 and for all x either P_x is empty or contains a member in $\Delta_1^1(x)$ then there is a Δ_1^1 recursive function $f : \mathcal{X} \to \mathcal{Y}$ such that for all x for which $P_x \neq \emptyset$ we have that P(x, f(x)). Similarly for Π_1^1 in case $P_x \neq \emptyset$ for all $x \in \mathcal{X}$.

Example. The projection of a convex Borel set $R \subseteq \mathbb{R} \times \mathbb{R}$ is also a Borel set.

Proof. R is $\Delta_1^1(\varepsilon)$ for some ε ; each non-empty section R_x is a convex subset of \mathbb{R} and so it is either a singleton or it contains a rational number. In either case R_x contains a member in $\Delta_1^1(\varepsilon, x)$. From (b) prR is in $\Delta_1^1(\varepsilon)$. Theorem (VG). Let X be a Banach space and $(x_n)_{n \in \mathbb{N}}$ be a sequence in X which is weakly convergent to $x \in X$. Then x is in $\Delta_1^1((x_n))$, (in the parameters in which the related spaces are recursively presented).

Corollary (VG). Let X be a separable Banach space. Then the set $P = \{ (y_i)_{i \in \mathbb{N}} \in X^{\mathbb{N}} \mid \text{the sequence } (y_i)_{i \in \mathbb{N}} \text{ is weakly convergent} \}$

is a coanalytic subset of $X^{\mathbb{N}}$. Let Q be a coanalytic subset of $X^{\mathbb{N}} \times X$. Then the set

$$P_Q = \{ (y_i)_{i \in \mathbb{N}} \in X^{\mathbb{N}} \mid \text{the sequence } (y_i)_{i \in \mathbb{N}} \text{ is weakly convergent} \\ \text{to some } y \text{ and } Q((y_i)_{i \in \mathbb{N}}, y) \}$$

is a coanalytic subset of $X^{\mathbb{N}}$.

Theorem (Erdös-Magidor). Let X be a Banach space and $(e_i)_{i \in \mathbb{N}}$ be a bounded sequence in X. Then there is a subsequence $(e_{k_i})_{i \in \mathbb{N}}$ such that: either (a) every subsequence of $(e_{k_i})_{i \in \mathbb{N}}$ is Cesàro summable with respect to the norm and all being summed to the same limit; or (b) no subsequence of $(e_{k_i})_{i \in \mathbb{N}}$ is Cesàro summable. *Theorem (VG).* Let X be a Banach space, $(e_i)_{i \in \mathbb{N}}$ be a bounded sequence in X and let $Q \subseteq X^{\mathbb{N}} \times X$ be a coanalytic set. Then there is a subsequence $(e_i)_{i \in L}$ of $(e_i)_{i \in \mathbb{N}}$ for which: either (a) there is some $e \in X$ such that every subsequence $(e_i)_{i \in H}$ of $(e_i)_{i \in L}$ is weakly Cesàro summable to e and $Q((e_i)_{i \in H}, e)$; or (b) for every subsequence $(e_i)_{i \in H}$ of $(e_i)_{i \in L}$ and every $e \in X$ with $Q((e_i)_{i \in H}, e)$ the sequence $(e_i)_{i \in H}$ is not weakly Cesàro summable to e.

Debs gave the following effective version of a known theorem of Bourgain, Fremlin and Talagrand.

Theorem (Debs). Let \mathcal{X} be a recursively presented Polish space and $(f_n)_{n\in\mathbb{N}}$ be a sequence of continuous functions from \mathcal{X} to \mathbb{R} which satisfies conditions (1) the sequence $(f_n)_{n\in\mathbb{N}}$ is pointwise bounded; (2) every cluster point of $(f_n)_{n\in\mathbb{N}}$ in $\mathbb{R}^{\mathcal{X}}$ with the product topology is a Borel-measurable function; (3) the sequence $(f_n)_{n\in\mathbb{N}}$ is $\Delta_1^1(\alpha)$ -recursive.

A function $f : \mathcal{X} \to \mathcal{Y}$ is Δ_1^1 -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Δ_1^1 .

A point $x \in \mathcal{X}$ is in Δ_1^1 if the relation $U \subseteq \omega$ which is defined by

$$U(s) \Longleftrightarrow x \in N(\mathcal{X}, s)$$

is Δ_1^1 .

Debs gave the following effective version of a known theorem of Bourgain, Fremlin and Talagrand.

Theorem (Debs). Let \mathcal{X} be a recursively presented Polish space and $(f_n)_{n\in\mathbb{N}}$ be a sequence of continuous functions from \mathcal{X} to \mathbb{R} which satisfies conditions (1) the sequence $(f_n)_{n\in\mathbb{N}}$ is pointwise bounded; (2) every cluster point of $(f_n)_{n\in\mathbb{N}}$ in $\mathbb{R}^{\mathcal{X}}$ with the product topology is a Borel-measurable function; (3) the sequence $(f_n)_{n\in\mathbb{N}}$ is $\Delta_1^1(\alpha)$ -recursive. Then there is an infinite $L \subseteq \omega$ which is in $\Delta_1^1(\alpha)$ such that the subsequence $(f_n)_{n\in L}$ is pointwise convergent.

Theorem (VG). Let X be a Banach space and $(e_i)_{i \in \mathbb{N}}$ a bounded sequence in X for which every subsequence $(e_i)_{i \in L}$ has a further subsequence $(e_i)_{i \in H}$ which is weakly Cesàro summable. Then (1) every subsequence of $(e_i)_{i \in \mathbb{N}}$ has a weakly *convergent* subsequence and

(2) there is a Borel-measurable function f : [N]^ω → [N]^ω such that for all subsequences (e_i)_{i∈L} the sequence (e_i)_{i∈f(L)} is a weakly convergent subsequence of (e_i)_{i∈L}.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ