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A topological space X is a Polish space if X' is separable and
metrizable by a complete distance function.

Examples: R, w*, the Baire space N' = w®, (C(K),|l.|lo0), K
compact and separable Banach spaces. We will denote Polish
spaces by X', V.

If P C X we will write P(x) instead of x € P.

Borel sets B.

Analytic Sets. A set P C X is analytic or £} if there is a closed
set QC X x N

P(x) <= Ja e N Q(x,«)

Coanalytic sets. A set is coanalytic or M1 if it is the complement
of an analytic set.
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Effective Theory.

Suppose that X is a Polish space, d is compatible distance
function for X and (x,)nen is a sequence in X. Define the relation
P~ of w* as follows P(i,}, k, m) < d(x;, x;) < miﬂ Similarly
we define the relation P<.

The sequence (xp)nen is a recursive presentation of X, if

(1) it is a dense sequence and

(2) the relations P~ and P< are recursive.

The spaces R, N and w* admit a recursive presentation i.e., they
are recursively presented. Some other examples: R x w, R x .
However not all Polish spaces are recursively presented.

Every Polish space admits an e-recursive presentation for some
suitable €.

Without loss of generality we will deal with recursively presented
Polish spaces.
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N(X,s) = the ball with center X(s)o and radius (S()52)1

+1°
Aset P C X is semirecursive if P = ;. N(X, (7)) where a is a
recursive function from w to w.

¥? = all semirecursive sets
~ effective open sets.

N9 = the complements of semirecursive sets
~- effective closed sets.

¥} = projections of M? sets
~ effective analytic sets.

N} = the complements of ¥} sets
~ effective coanalytic sets.

Al = ¥1 NN} = effective Borel sets (Kleene).
Similarly one defines the relativized pointclasses with respect to

some parameter y € ) which will be denoted by Al(y) for
example.



A set A is Borel exactly when A is in Al(e) for some e € .

A function f : X — ) is continuous if and only if the set
Rf C X xw, Rf(x,s) <= f(x) € N(),s) is open.

A function f : X — ) is ¥{-recursive if and only if the set
Rf C X x w, Rf(x,s) <= f(x) € N(),s), is ).

A point x € X isin A% if the relation U C w which is defined by
U(s) <= x € N(X,s)

i« Al
is A7.

As before one gets the class of points which are in Al(y).
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Points in A% are important because:

(a) they preserve the complexity of Al under projections i.e., if

P C X x Yisin Al and for all x the section

Py ={y € Y| P(x,y)} is either empty or contains a member in
Al(x) then the projection {x € X | (3y € V)P(x,y)} is also in
Af. Similarly for M} instead of Al

(b) they provide uniformizing functions for Al sets i.e., if
PCXxYisin A% and for all x either P, is empty or contains a
member in Al(x) then there is a Al recursive function f: X — Y
such that for all x for which Py # () we have that P(x, f(x)).
Similarly for M} in case Py # ) for all x € X

Example. The projection of a convex Borel set R C R x R is also a
Borel set.

Proof. R is Al(e) for some ¢; each non-empty section Ry is a
convex subset of R and so it is either a singleton or it contains a
rational number. In either case R, contains a member in Al(e, x).
From (b) prR is in Al(e).



Theorem (VG). Let X be a Banach space and (x,)nen be a
sequence in X which is weakly convergent to x € X. Then x is in
Al((xn)), (in the parameters in which the related spaces are
recursively presented).

Corollary (VG). Let X be a separable Banach space. Then the set
P ={ (v;)ien € X" | the sequence (y;);en is weakly convergent}

is a coanalytic subset of XN,
Let @ be a coanalytic subset of XN x X. Then the set

Po = {(y)ien € XN | the sequence (y;j)ien is weakly convergent
to some y and Q((yi)ien, ) }

is a coanalytic subset of XN,



Theorem (Erdés-Magidor). Let X be a Banach space and (¢&;)jen
be a bounded sequence in X. Then there is a subsequence (e;)icN
such that: either (a) every subsequence of (e, )ien is Cesaro
summable with respect to the norm and all being summed to the
same limit; or (b) no subsequence of (e, )ien is Cesaro summable.

Theorem (VG). Let X be a Banach space, (¢&j);cn be a bounded
sequence in X and let Q C XN % X be a coanalytic set. Then
there is a subsequence (¢&;);cr of (e&)ien for which: either

(a) there is some e € X such that every subsequence (¢&;);cy of
(ei)icL is weakly Cesaro summable to e and Q((ej)icH, €); or

(b) for every subsequence (&;)jcy of (&i)icL and every e € X with
Q((ei)icH, €) the sequence (&;);cy is not weakly Cesaro summable
to e.



Debs gave the following effective version of a known theorem of
Bourgain, Fremlin and Talagrand.

Theorem (Debs). Let X' be a recursively presented Polish space
and (f,)nen be a sequence of continuous functions from X’ to R
which satisfies conditions (1) the sequence (f,)ncn is pointwise
bounded; (2) every cluster point of (f,)nen in RY with the product
topology is a Borel-measurable function; (3) the sequence (f,)nen
is Al(a)-recursive.
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Debs gave the following effective version of a known theorem of
Bourgain, Fremlin and Talagrand.

Theorem (Debs). Let X' be a recursively presented Polish space
and (f,)nen be a sequence of continuous functions from X’ to R
which satisfies conditions (1) the sequence (f,)ncn is pointwise
bounded; (2) every cluster point of (f,)nen in RY with the product
topology is a Borel-measurable function; (3) the sequence (f,)nen
is Al(a)-recursive. Then there is an infinite L C w which is in
Al(a) such that the subsequence (), is pointwise convergent.

Theorem (VG). Let X be a Banach space and (¢€j);en a bounded

sequence in X for which every subsequence (e;);c; has a further

subsequence (e&;)jcy which is weakly Cesaro summable. Then

(1) every subsequence of (e;)ien has a weakly convergent
subsequence and

(2) there is a Borel-measurable function f : [N]* — [N]“ such that
for all subsequences (e;)ic, the sequence (e&;)icr (1) is a weakly
convergent subsequence of (€j);ey.



Thank you!



