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Uniformity functions

The problem is to witness a property uniformly using a function
of some certain complexity.
Example. Suppose that P ⊆ R× R is such that for all x ∈ R the
section Px := {y ∈ R | (x , y) ∈ P} is non-empty. Find a
function u : R→ R such that for all (x ,u(x)) ∈ P for all x ∈ R.
How complex can u be?
In descriptive set theory there are two main ways for obtaining
uniformity functions.

1 Give a constructive proof to the theorem that we are
interested in. This typically results to recursive/continuous
uniformity functions.

2 Ensure the existence of a “definable” witness. This
typically results to Borel-measurable functions (Louveau).
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A standard example of the first method (constructive proof) is
the Suslin-Kleene Theorem that we will mention in the sequel,
and which has the consequence that

∆1
1 = HYP.

A classical application of the second method is the following
result of Louveau: if P ⊆ X × Y is Borel and such that every
section Px is a Σ˜ 0

n subset of Y, then there is a Polish topology
T ′ on X , which refines the original one and P is a Σ˜ 0

n subset of
(X , T ′)× Y.
Another (recent) application is

Theorem (G.-Kihara)

Suppose that f : X → Y is such that for all A ∈ Σ˜ 0
m the

preimage f−1[A] is Σ˜ 0
n. Then there is a Borel-measurable

function u : N → N such that if α is a “Σ˜ 0
m-code” for A then

u(α) is a Σ˜ 0
n-code for f−1[A].
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The latter result has an important application to a still open
problem in descriptive set theory, the Decomposability
Conjecture. (G.-Kihara)
In this talk we deal with the first method. More specifically we
will present the uniform version of a special separation theorem
for analytic sets and give some constructive consequences. We
will also deal with another structural property of analytic sets,
namely the Baire property.
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Notation

Underlying spaces: Polish spaces, i.e., complete separable
metric spaces, X , Y, Z . . . . We will also assume that our
Polish spaces admit a recursive presentation. The Baire space
N is the space ωω with the product topology. This is a Polish
space. We denote its members with α, β, γ etc.
Notation. We will write P(x) instead of x ∈ P. By ¬P(x) we
mean that x 6∈ P. Given P ⊆ X × Y we define

∃Y P = {x ∈ X | there is y s.t. P(x , y)}
Px = {y ∈ Y | P(x , y)}, x ∈ X .

Given α ∈ N we denote by α∗ the function (t 7→ α(t + 1)).
Given also n ∈ ω we denote by (α)n the n-th component of α,
which comes by some fixed recursive injection from ω2 to ω.
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Borel and Luzin pointclasses

We consider the following classes of sets in Polish spaces:

(Borel pointclasses of finite order)

Σ˜ 0
1 = all open sets

Π˜ 0
1 = complements of Σ˜ 0

1 = all closed sets

Σ˜ 0
n+1 = all countable unions of Π˜ 0

n sets

Π˜ 0
n+1 = all complements of Σ˜ 0

n+1 sets

(Luzin pointclasses)

Σ˜ 1
1 = ∃NΠ˜ 0

1 (analytic sets)

Π˜ 1
1 = all complements of Σ˜ 1

1 (coanalytic sets)

Σ˜ 1
n+1 = ∃NΠ˜ 1

n

Π˜ 0
n+1 = all complements of Σ˜ 1

n+1 sets
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Universal sets

A set G ⊆ N ×X parametrizes Γ˜ � X if for all P ⊆ X we have
that

P ∈ Γ˜ ⇐⇒ exists α ∈ N such that P = {x | (α, x) ∈ G} = Gα.

Any α as above is called a Γ˜ -code of P.
By Γ˜ � X we mean the family of all subsets of X , which belong
in Γ˜ .
The set G is universal for Γ˜ � X if G is in Γ˜ and parametrizes
Γ˜ � X .
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Universal sets for the classical pointclasses

Open codes. For every Polish X we fix a basis
{N(X , s) | s ∈ ω} of its topology, we also include the empty set,
and we define UX ⊆ N ×X by

UX (α, x) ⇐⇒ (∃n)[x ∈ N(X , α(n))].

Then UX is universal for Σ˜ 0
1 � X .

Closed codes. For every X we define FX ⊆ N ×X by

FX (α, x) ⇐⇒ ¬UX (α, x).

Then FX is universal for Π˜ 0
1 � X .

Σ˜ 0
n-codes. For every X we define HXn ⊆ N ×X by induction on

n ≥ 1, HX1 =UX

HXn+1(α, x) ⇐⇒ (∃i)¬HXn ((α)i , x).
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Analytic and Σ˜ 1
n codes. For every X and every n ≥ 1 we define

the sets GXn ⊆ N ×X as follows

GX1 (α, x) ⇐⇒ (∃γ ∈ N )FX×N (α, x , γ)

GXn+1(α, x) ⇐⇒ (∃γ ∈ N )¬GX×Nn (α, x , γ).

Remark. If Γ˜ is one of the previous pointclasses, then every
α ∈ N is a Γ˜ -code of some (perhaps empty) set in Γ˜ .
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The Kleene pointclasses

We assume that whenever X is a recursive Polish space then
the family {N(X , s) | s ∈ ω} that we chose before comes from
its recursive presentation. The Kleene pointclasses are defined
as follows

Σ0
1 = {UXα | α is recursive} = all recursive sections of UX ,

where X above ranges over all recursive Polish spaces.
Similarly one defines the classes Σ0

n+1, Σ1
n and (by taking

complements) Π0
n, Π1

n, where n ≥ 1.
The preceding notions relativize with respect to some oracle
ε ∈ N , so that we get the pointclasses Σ0

n(ε) etc.
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Borel codes (Louveau - Moschovakis)

We denote by {α} the largest partial function from ω to N
whose graph is computed [correction] by Uω×ω, i.e.,

{α}(n) ↓ ⇐⇒ (∃!β)(∀s)[β ∈ N(X , s)←→ Uω×ω(α,n, s)]

{α}(n) ↓ =⇒ {α}(n) = the unique β as above.

Define the sets BCξ ⊆ N , ξ < ω1 recursively

α ∈ BC0 ⇐⇒ α(0) = 0,
α ∈ BCξ ⇐⇒ α(0) = 1 & (∀n)(∃ζ < ξ)[{α∗}(n) ∈ BCζ ].

The set of Borel codes is

BC = ∪ξ<ω1BCξ.

This is a Π1
1 set and not Borel. In particular not all α’s are Borel

codes.
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For α ∈ BC we put

|α|BC = the least ξ such that α ∈ BCξ.

Given a Polish space X we define the functions
πXξ : BCξ → Σ˜ 0

ξ � X by recursion,

πX1 (α) = ∪n N(X , {α∗}(n)(1))

πXξ (α) = ∪n X \ πX|{α∗}(n)|BC
({α∗}(n)), (1 < ξ < ω1).

An easy induction shows that for all 1 ≤ ζ ≤ ξ we have that
BCζ ⊆ BCξ and πXξ � BCζ = πXζ . We now define

πX : BC→ Borel(X ) : πX = ∪ξ πXξ .
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Hyperarithmetical sets

For every countable ordinal ξ we define the pointclass

Σ0
ξ = {πX (α) | α is a recursive member of BCξ},

where X ranges over all recursive Polish spaces. The induced
hierarchy stabilizes at the ωCK

1 level.
The pointclass HYP of hyperarithmetical sets is defined by

HYP = ∪1≤ξ<ωCK
1

Σ0
ξ .

Let us put ∆1
1 = Σ1

1 ∩ Π1
1.

Theorem (Kleene)
For every A ⊆ ω we have that

A ∈ ∆1
1 ⇐⇒ A ∈ HYP.
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The Suslin-Luzin separation

We denote the class Σ˜ 1
1 ∩Π˜ 1

1 by ∆˜ 1
1, (bi-analytic sets). It is

easy to verify that every Borel set is ∆˜ 1
1. The converse is also

true.

Theorem (Suslin)

In every Polish space it holds ∆˜ 1
1 = Borel.

The preceding theorem is extended to

Theorem (Luzin Separation)
For all Polish spaces X and all disjoint analytic sets A,B ⊆ X
there is a Borel set C ⊆ X such that

A ⊆ C and C ∩ B = ∅.
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The Suslin-Kleene Theorem

The Luzin Separation Theorem has (also) a “constructive"
proof. This yields the following.

Theorem (Suslin-Kleene)
For every recursive Polish space X there is a recursive function
u : N ×N → N such that for all α, β ∈ N if the analytic sets A
and B encoded by α and β are disjoint, then u(α, β) is a Borel
code of a set C with

A ⊆ C and C ∩ B = ∅.

This has the following application.

Theorem (Kleene - Louveau - Moschovakis)
In every recursive Polish space it holds

∆1
1 = HYP.



The setting Basic notions Separation theorems The Baire property

A few words about the proof of the Suslin-Kleene
Theorem

Let A,B be non-empty disjoint analytic subsets of N , and let T
and S be trees of pairs such that

x ∈ A ⇐⇒ (∃α)(∀t)[(x(0), α(0), . . . x(t), α(t)) ∈ T ]

x ∈ B ⇐⇒ (∃β)(∀t)[(x(0), β(0), . . . x(t), β(t)) ∈ S].

We then define the tree J of triples by

(u,a,b) ∈ J ⇐⇒ (u,a) ∈ T & (u,b) ∈ S

where u,a,b ∈ ω<ω of the same length.
An infinite branch in J would provide some x ∈ A ∩ B
contradicting that A ∩ B = ∅. Hence the tree J is well-founded.
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One defines by bar recursion on J a family (Cσ)σ∈J of subsets
of N such that for all σ = (u,a,b) ∈ J we have:
(a) Cσ is Borel,
(b) Cσ separates pr[T(u,a)] from pr[S(u,b)].
From this it follows that C := C∅ is Borel which separates
A = pr[T∅] from B = pr[S∅].
The definition of Cσ is further refined as follows. We define a
family (Dσ

(t ,n,s,m))t ,n,s,m of Borel sets such that for all (t ,n, s,m)

the set Dσ
(t ,n,s,m) separates pr[T(u,a)ˆ(t ,n)] from pr[S(u,b)ˆ(s,m)].

Then it is easy to see that the set

Cσ := ∪(t ,n) ∩(s,m) Dσ
(t ,n,s,m)

separates pr[T(u,a)] from pr[S(u,b)].
If σ is terminal in J then Dσ

(t ,n,s,m) is one of the following sets: ∅,
N , {x ∈ N | x(i) = j}.
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Dyck Separation

We consider the following subsets of 2ω,

Un := {x ∈ 2ω | x(n) = 1}.

The family of all positive sets is the least family which contains
{Un | n ∈ ω} and is closed under countable unions and
intersections. The family of semi-positive sets is the least family
which contains {Un | n ∈ ω} ∪ {∅,2ω} and is closed under
countable unions and intersections.
Every x ∈ 2ω can be identified with the subsets of the naturals
{n ∈ ω | x(n) = 1}. We say that a set A ⊆ 2ω is monotone if for
all x ∈ A and all y ∈ 2ω with x ⊆ y it holds y ∈ A.
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It is not difficult to see that every semi-positive set is monotone.
The converse is also true. This is a corollary to:

Theorem (Dyck Separation)
Let A,B ⊆ 2ω be disjoint analytic sets. If A is monotone then
there is a semi-positive Borel set C such that A ⊆ C and
C ∩ B = ∅.

We can give a “constructive" proof to the latter in the style of
the Suslin-Kleene Theorem.
The idea is to define the tree J of quadruples of length n by

(u,a, v ,b) ∈ J ⇐⇒
(u,a) ∈ T & (v ,b) ∈ S & (∀i < n)[u(i) = 1 −→ v(i) = 1].

Then J is well-founded. The definition of the sets Cσ proceeds
similarly. At the terminal nodes of J we can choose sets of the
form Un, ∅, 2ω.
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The uniform Dyck Theorem

Theorem (G.)
There exists a recursive function u : N ×N → N such that
whenever α, β are codes of disjoint analytic sets A, B
respectively with A being monotone, then u(α, β) is a Borel
code of a semi-positive set C such that A ⊆ C and C ∩ B = ∅.

Question. Is there a constructive consequence to the preceding
result in the style HYP = ∆1

1?
The answer is affirmative but first we need to introduce the
effective semi-positive sets.
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First we introduce the following hierarchy of SP˜ = the family of
all semi-positive sets,

V0 = ∅, V1 = 2ω, Vn+2 := Un = {x ∈ 2ω | x(n) = 1}, n ∈ ω;

SP˜ 0 = {Vn | n ∈ ω};
SP˜ ξ = {∪i∈ω ∩j∈ω Aij | for all i , j there is ξij < ξ such that Aij ∈ SP˜ ξij},

where 1 ≤ ξ < ω1.

We also define for α ∈ N ,

α ∈ SPC0 ⇐⇒ α(0) = 0
α ∈ SPCξ ⇐⇒ α(0) = 1 & (∀i , j)(∃η < ξ)[{α∗}(〈i , j〉) ∈ SPCη],

for all ξ < ω1, and
SPC = ∪ξ<ω1SPCξ.
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The members of SPC will be called semi-positive codes.
Given α ∈ SPC we put

|α|SP = the least ξ < ω1 such that α ∈ SPCξ.

The coding τξ of the family SP˜ ξ is as usual defined by recursion
on ξ,

τ0 : SPC0 � SP˜ 0 : τ0(α) = Vα∗(1)

τξ : SPCξ � SP˜ ξ : τξ(α) = ∪i ∩j τ|{α∗}(〈i,j〉)|SP({α∗}(〈i , j〉)).

The analogous (to the coding BC) properties hold in this setting.
The function

τ := ∪ξ<ω1τξ : SPC � SP˜defines a coding of the family SP˜ .
A set A ⊆ 2ω is effective semi-positive if it is of the form τ(α) for
some recursive α ∈ SPC. (In this case we necessarily have that
|α|SP < ωCK

1 .)
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The constructive consequence

Theorem (G. Uniform Dyck Separation for semi-positive codes)
There exists a recursive function u : N ×N → N such that
whenever α, β are codes of disjoint analytic sets A, B
respectively with A being monotone, then u(α, β) is a
semi-positive code of a set C such that A ⊆ C and C ∩ B = ∅.

As a consequence to this we get

Corollary (G.)
It holds

∪ξ<ωCK
1

SPξ = ∆1
1 ∩ {A ⊆ 2ω | A is semi-positive }

= ∆1
1 ∩ {A ⊆ 2ω | A is monotone }.
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A set P ⊆ X has the Baire property or simpler P has the BP if
there exists an open set U such that the symmetric difference

P4U := (P \ U) ∪ (U \ P)

is meager = countable union of nowhere dense sets. The
family all subsets of X which have the BP is a σ-algebra, which
contains all open subsets of X . Hence it contains the family of
all Borel subsets of X (= the least σ-algebra which contains all
open subsets of X ).
Every Σ˜ 1

1 set has the BP, and under some determinacy
assumptions every Σ˜ 1

n set has the BP as well.
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The Baire property holds almost uniformly

For convenience we denote in the sequel the α-sections of
some set P ⊆ N ×X by P(α).

Proposition (G. Axiom of Projective Determinacy for n > 1)
For every Polish space X and every n ∈ ω there exists a
continuous function uXn : N → N such that for almost all α ∈ N
the set

GXn (α)4UX (uXn (α))

is meager.



The setting Basic notions Separation theorems The Baire property

It is really almost

We cannot improve upon the "for almost all" part.

Theorem (G.)

For every n ≥ 1 there is no ∆˜ 1
n-measurable function u : N → N

such that the set
GNn (α)4UN (u(α))

is meager for all α ∈ N .

Idea of the proof

Construct an open V ⊆ N , which has “complex" Σ˜ 1
n-codes.
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Some plans for the future

1 Give constructive proofs to other separation-type results,
(e.g. Preiss).

2 Find Borel-measurable uniformity functions using definable
points.

Problem. Suppose that X is a recursive Banach space and that
K is a non-empty ∆1

1 weakly compact subset of X . Does K
contain a hyperarithmetical member?
An affirmative answer would provide a Borel-measurable
uniformity function dealing with the fixed point property in
Banach spaces.
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Thank you for your
attention!
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