▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Some uniformity aspects of the class of analytic sets

Vassilis Gregoriades

TU Darmstadt

CCC 2015 Kochel

Uniformity functions

The problem is to witness a property uniformly using a function of some certain complexity.

Example. Suppose that $P \subseteq \mathbb{R} \times \mathbb{R}$ is such that for all $x \in \mathbb{R}$ the section $P_x := \{y \in \mathbb{R} \mid (x, y) \in P\}$ is non-empty. Find a function $u : \mathbb{R} \to \mathbb{R}$ such that for all $(x, u(x)) \in P$ for all $x \in \mathbb{R}$. How complex can u be?

In descriptive set theory there are two main ways for obtaining uniformity functions.

- Give a constructive proof to the theorem that we are interested in. This typically results to recursive/continuous uniformity functions.
- Ensure the existence of a "definable" witness. This typically results to Borel-measurable functions (Louveau).

A standard example of the first method (constructive proof) is the Suslin-Kleene Theorem that we will mention in the sequel, and which has the consequence that

 $\Delta_1^1 = HYP.$

A classical application of the second method is the following result of Louveau: if $P \subseteq \mathcal{X} \times \mathcal{Y}$ is Borel and such that every section P_x is a $\sum_{n=1}^{0}$ subset of \mathcal{Y} , then there is a Polish topology \mathcal{T}' on \mathcal{X} , which refines the original one and P is a $\sum_{n=1}^{0}$ subset of $(\mathcal{X}, \mathcal{T}') \times \mathcal{Y}$. Another (recent) application is

Theorem (G.-Kihara)

Suppose that $f : \mathcal{X} \to \mathcal{Y}$ is such that for all $A \in \sum_{m=1}^{0} \mathbb{Z}_{m}^{0}$ the preimage $f^{-1}[A]$ is $\sum_{n=1}^{0} \mathbb{Z}_{n}^{0}$. Then there is a Borel-measurable function $u : \mathcal{N} \to \mathcal{N}$ such that if α is a " $\sum_{m=1}^{0} -code$ " for A then $u(\alpha)$ is a $\sum_{n=1}^{0} -code$ for $f^{-1}[A]$.

(日) (日) (日) (日) (日) (日) (日)

The latter result has an important application to a still open problem in descriptive set theory, the Decomposability Conjecture. (G.-Kihara)

In this talk we deal with the first method. More specifically we will present the uniform version of a special separation theorem for analytic sets and give some constructive consequences. We will also deal with another structural property of analytic sets, namely the Baire property.

Notation

Underlying spaces: Polish spaces, i.e., complete separable metric spaces, $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \dots$ We will also assume that our Polish spaces admit a recursive presentation. The Baire space \mathcal{N} is the space ω^{ω} with the product topology. This is a Polish space. We denote its members with α, β, γ etc.

Notation. We will write P(x) instead of $x \in P$. By $\neg P(x)$ we mean that $x \notin P$. Given $P \subseteq X \times Y$ we define

> $\exists^{Y} P = \{x \in X \mid \text{there is } y \text{ s.t. } P(x, y)\}$ $P_{\mathbf{x}} = \{ \mathbf{y} \in \mathbf{Y} \mid P(\mathbf{x}, \mathbf{y}) \}, \quad \mathbf{x} \in \mathbf{X}.$

Given $\alpha \in \mathcal{N}$ we denote by α^* the function $(t \mapsto \alpha(t+1))$. Given also $n \in \omega$ we denote by $(\alpha)_n$ the *n*-th component of α , which comes by some fixed recursive injection from ω^2 to ω .

Borel and Luzin pointclasses

We consider the following classes of sets in Polish spaces:

(Borel pointclasses of finite order)

 $\Sigma_{\widetilde{z}}^{0} =$ all open sets

 $\tilde{\Pi}_{1}^{0} =$ complements of $\Sigma_{1}^{0} =$ all closed sets

 $\Sigma_{n+1}^{0} =$ all countable unions of Π_{n}^{0} sets

 $\Pi_{n+1}^{0} =$ all complements of Σ_{n+1}^{0} sets

(Luzin pointclasses)

$$\label{eq:sets} \begin{split} \boldsymbol{\Sigma}_1^1 = \exists^{\mathcal{N}} \boldsymbol{\Pi}_1^0 \quad (\text{analytic sets}) \end{split}$$

 Π_1^1 = all complements of Σ_1^1 (coanalytic sets)

$$\sum_{n=1}^{1} \exists \mathcal{N} \prod_{n=1}^{1} \\ \prod_{n=1}^{0} \exists n \text{ complements of } \sum_{n=1}^{1} \text{ sets}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Universal sets

A set $G \subseteq \mathcal{N} \times \mathcal{X}$ parametrizes $\Gamma \upharpoonright \mathcal{X}$ if for all $P \subseteq \mathcal{X}$ we have that

 $P \in \underline{\Gamma} \iff \text{exists } \alpha \in \mathcal{N} \text{ such that } P = \{x \mid (\alpha, x) \in G\} = G_{\alpha}.$

Any α as above is called a $\underline{\Gamma}$ -code of *P*.

By $\Gamma \upharpoonright \mathcal{X}$ we mean the family of all subsets of \mathcal{X} , which belong in Γ .

The set *G* is universal for $\underline{\Gamma} \upharpoonright \mathcal{X}$ if *G* is in $\underline{\Gamma}$ and parametrizes $\underline{\Gamma} \upharpoonright \mathcal{X}$.

Universal sets for the classical pointclasses

Open codes. For every Polish \mathcal{X} we fix a basis $\{N(\mathcal{X}, s) \mid s \in \omega\}$ of its topology, we also include the empty set, and we define $U^{\mathcal{X}} \subseteq \mathcal{N} \times \mathcal{X}$ by

$$\mathsf{U}^{\mathcal{X}}(\alpha, \mathbf{x}) \iff (\exists \mathbf{n})[\mathbf{x} \in \mathbf{N}(\mathcal{X}, \alpha(\mathbf{n}))].$$

Then $U^{\mathcal{X}}$ is universal for $\sum_{i=1}^{0} \upharpoonright \mathcal{X}$.

Closed codes. For every \mathcal{X} we define $F^{\mathcal{X}} \subseteq \mathcal{N} \times \mathcal{X}$ by

$$F^{\mathcal{X}}(\alpha, \mathbf{x}) \iff \neg U^{\mathcal{X}}(\alpha, \mathbf{x}).$$

Then $F^{\mathcal{X}}$ is universal for $\prod_{i=1}^{0} \upharpoonright \mathcal{X}$.

 $\sum_{n=1}^{\infty} \frac{1}{n} = 0$ For every \mathcal{X} we define $H_n^{\mathcal{X}} \subseteq \mathcal{N} \times \mathcal{X}$ by induction on $n \ge 1$, $H_1^{\mathcal{X}} = U^{\mathcal{X}}$ $H_{n+1}^{\mathcal{X}}(\alpha, x) \iff (\exists i) \neg H_n^{\mathcal{X}}((\alpha)_i, x).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Analytic and $\sum_{n=1}^{1}$ codes. For every \mathcal{X} and every $n \ge 1$ we define the sets $G_n^{\mathcal{X}} \subseteq \mathcal{N} \times \mathcal{X}$ as follows

$$\begin{aligned} & \mathbf{G}_{1}^{\mathcal{X}}(\alpha, \mathbf{X}) \iff (\exists \gamma \in \mathcal{N}) \mathbf{F}^{\mathcal{X} \times \mathcal{N}}(\alpha, \mathbf{X}, \gamma) \\ & \mathbf{G}_{n+1}^{\mathcal{X}}(\alpha, \mathbf{X}) \iff (\exists \gamma \in \mathcal{N}) \neg \mathbf{G}_{n}^{\mathcal{X} \times \mathcal{N}}(\alpha, \mathbf{X}, \gamma). \end{aligned}$$

Remark. If $\underline{\Gamma}$ is one of the previous pointclasses, then every $\alpha \in \mathcal{N}$ is a $\underline{\Gamma}$ -code of some (perhaps empty) set in $\underline{\Gamma}$.

The Kleene pointclasses

We assume that whenever \mathcal{X} is a recursive Polish space then the family $\{N(\mathcal{X}, s) \mid s \in \omega\}$ that we chose before comes from its recursive presentation. The Kleene pointclasses are defined as follows

 $\Sigma_1^0 = \{ U_\alpha^{\mathcal{X}} \mid \alpha \text{ is recursive} \} = \text{all recursive sections of } U^{\mathcal{X}},$

where \mathcal{X} above ranges over all recursive Polish spaces. Similarly one defines the classes Σ_{n+1}^{0} , Σ_{n}^{1} and (by taking complements) Π_{n}^{0} , Π_{n}^{1} , where $n \geq 1$.

The preceding notions relativize with respect to some oracle $\varepsilon \in \mathcal{N}$, so that we get the pointclasses $\Sigma_n^0(\varepsilon)$ etc.

Borel codes (Louveau - Moschovakis)

We denote by $\{\alpha\}$ the largest partial function from ω to \mathcal{N} whose graph is *computed* [correction] by $U^{\omega \times \omega}$, i.e.,

$$\begin{aligned} \{\alpha\}(n)\downarrow &\iff (\exists!\beta)(\forall s)[\beta\in N(\mathcal{X},s)\longleftrightarrow \mathrm{U}^{\omega\times\omega}(\alpha,n,s)]\\ \{\alpha\}(n)\downarrow &\Longrightarrow \{\alpha\}(n) = \text{ the unique }\beta \text{ as above.} \end{aligned}$$

Define the sets $BC_{\xi} \subseteq \mathcal{N}, \, \xi < \omega_1$ recursively

$$\alpha \in BC_0 \iff \alpha(0) = 0,$$

$$\alpha \in BC_{\xi} \iff \alpha(0) = 1 \& (\forall n) (\exists \zeta < \xi) [\{\alpha^*\}(n) \in BC_{\zeta}].$$

The set of Borel codes is

$$BC = \bigcup_{\xi < \omega_1} BC_{\xi}.$$

This is a Π_1^1 set and not Borel. In particular not all α 's are Borel codes.

For $\alpha \in BC$ we put

 $|\alpha|_{BC}$ = the least ξ such that $\alpha \in BC_{\xi}$.

Given a Polish space \mathcal{X} we define the functions $\pi_{\xi}^{\mathcal{X}} : BC_{\xi} \to \Sigma_{\xi}^{0} \upharpoonright \mathcal{X}$ by recursion,

$$\begin{aligned} \pi_1^{\mathcal{X}}(\alpha) &= \cup_n N(\mathcal{X}, \{\alpha^*\}(n)(1)) \\ \pi_{\xi}^{\mathcal{X}}(\alpha) &= \cup_n \mathcal{X} \setminus \pi_{|\{\alpha^*\}(n)|_{\mathrm{BC}}}^{\mathcal{X}}(\{\alpha^*\}(n)), \quad (1 < \xi < \omega_1). \end{aligned}$$

An easy induction shows that for all $1 \leq \zeta \leq \xi$ we have that $BC_{\zeta} \subseteq BC_{\xi}$ and $\pi_{\xi}^{\mathcal{X}} \upharpoonright BC_{\zeta} = \pi_{\zeta}^{\mathcal{X}}$. We now define

$$\pi^{\mathcal{X}} : \mathrm{BC} \to \mathrm{Borel}(\mathcal{X}) : \pi^{\mathcal{X}} = \cup_{\xi} \pi^{\mathcal{X}}_{\xi}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Hyperarithmetical sets

For every countable ordinal ξ we define the pointclass

$$\Sigma_{\xi}^{0} = \{\pi^{\mathcal{X}}(\alpha) \mid \alpha \text{ is a recursive member of } BC_{\xi}\},\$$

where \mathcal{X} ranges over all recursive Polish spaces. The induced hierarchy stabilizes at the ω_1^{CK} level.

The pointclass HYP of hyperarithmetical sets is defined by

$$\mathrm{HYP} = \cup_{1 \leq \xi < \omega_1^{\mathrm{CK}}} \Sigma_{\xi}^0.$$

Let us put $\Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1$.

Theorem (Kleene)

For every $A \subseteq \omega$ we have that

$$A \in \Delta_1^1 \iff A \in HYP.$$

▲ロト▲園ト▲画ト▲画ト 画 のなの

The Suslin-Luzin separation

We denote the class $\Sigma_1^1 \cap \Pi_1^1$ by Δ_1^1 , (bi-analytic sets). It is easy to verify that every Borel set is Δ_1^1 . The converse is also true.

Theorem (Suslin)

In every Polish space it holds $\Delta_1^1 = Borel$.

The preceding theorem is extended to

Theorem (Luzin Separation)

For all Polish spaces \mathcal{X} and all disjoint analytic sets $A, B \subseteq \mathcal{X}$ there is a Borel set $C \subseteq \mathcal{X}$ such that

 $A \subseteq C$ and $C \cap B = \emptyset$.

The Suslin-Kleene Theorem

The Luzin Separation Theorem has (also) a "constructive" proof. This yields the following.

Theorem (Suslin-Kleene)

For every recursive Polish space \mathcal{X} there is a recursive function $u : \mathcal{N} \times \mathcal{N} \to \mathcal{N}$ such that for all $\alpha, \beta \in \mathcal{N}$ if the analytic sets A and B encoded by α and β are disjoint, then $u(\alpha, \beta)$ is a Borel code of a set C with

$$A \subseteq C$$
 and $C \cap B = \emptyset$.

This has the following application.

Theorem (Kleene - Louveau - Moschovakis)

In every recursive Polish space it holds

 $\Delta_1^1 = HYP.$

A few words about the proof of the Suslin-Kleene Theorem

Let *A*, *B* be non-empty disjoint analytic subsets of N, and let *T* and *S* be trees of pairs such that

$$\begin{array}{l} x \in A \iff (\exists \alpha) (\forall t) [(x(0), \alpha(0), \ldots x(t), \alpha(t)) \in T] \\ x \in B \iff (\exists \beta) (\forall t) [(x(0), \beta(0), \ldots x(t), \beta(t)) \in S]. \end{array}$$

We then define the tree *J* of triples by

$$(u,a,b)\in J\iff (u,a)\in T\&(u,b)\in S$$

where $u, a, b \in \omega^{<\omega}$ of the same length. An infinite branch in *J* would provide some $x \in A \cap B$ contradicting that $A \cap B = \emptyset$. Hence the tree *J* is well-founded. One defines by bar recursion on *J* a family $(C_{\sigma})_{\sigma \in J}$ of subsets of \mathcal{N} such that for all $\sigma = (u, a, b) \in J$ we have:

(a) C_{σ} is Borel,

(b) C_{σ} separates $\operatorname{pr}[\mathcal{T}_{(u,a)}]$ from $\operatorname{pr}[\mathcal{S}_{(u,b)}]$. From this it follows that $C := C_{\emptyset}$ is Borel which separates $A = \operatorname{pr}[\mathcal{T}_{\emptyset}]$ from $B = \operatorname{pr}[\mathcal{S}_{\emptyset}]$.

The definition of C_{σ} is further refined as follows. We define a family $(D_{(t,n,s,m)}^{\sigma})_{t,n,s,m}$ of Borel sets such that for all (t, n, s, m) the set $D_{(t,n,s,m)}^{\sigma}$ separates $\operatorname{pr}[T_{(u,a)^{\wedge}(t,n)}]$ from $\operatorname{pr}[S_{(u,b)^{\wedge}(s,m)}]$. Then it is easy to see that the set

$$C_{\sigma} := \cup_{(t,n)} \cap_{(s,m)} D^{\sigma}_{(t,n,s,m)}$$

separates $\operatorname{pr}[\mathcal{T}_{(u,a)}]$ from $\operatorname{pr}[\mathcal{S}_{(u,b)}]$.

If σ is terminal in J then $D^{\sigma}_{(t,n,s,m)}$ is one of the following sets: \emptyset , $\mathcal{N}, \{x \in \mathcal{N} \mid x(i) = j\}.$

Dyck Separation

We consider the following subsets of 2^{ω} ,

$$U_n := \{x \in 2^\omega \mid x(n) = 1\}.$$

The family of all positive sets is the least family which contains $\{U_n \mid n \in \omega\}$ and is closed under countable unions and intersections. The family of semi-positive sets is the least family which contains $\{U_n \mid n \in \omega\} \cup \{\emptyset, 2^{\omega}\}$ and is closed under countable unions and intersections.

Every $x \in 2^{\omega}$ can be identified with the subsets of the naturals $\{n \in \omega \mid x(n) = 1\}$. We say that a set $A \subseteq 2^{\omega}$ is monotone if for all $x \in A$ and all $y \in 2^{\omega}$ with $x \subseteq y$ it holds $y \in A$.

It is not difficult to see that every semi-positive set is monotone. The converse is also true. This is a corollary to:

Theorem (Dyck Separation)

Let $A, B \subseteq 2^{\omega}$ be disjoint analytic sets. If A is monotone then there is a semi-positive Borel set C such that $A \subseteq C$ and $C \cap B = \emptyset$.

We can give a "constructive" proof to the latter in the style of the Suslin-Kleene Theorem.

The idea is to define the tree J of quadruples of length n by

$$(u, a, v, b) \in J \iff$$

 $(u, a) \in T \& (v, b) \in S \& (\forall i < n)[u(i) = 1 \longrightarrow v(i) = 1].$

Then *J* is well-founded. The definition of the sets C_{σ} proceeds similarly. At the terminal nodes of *J* we can choose sets of the form U_n , \emptyset , 2^{ω} .

(日) (日) (日) (日) (日) (日) (日)

The uniform Dyck Theorem

Theorem (G.)

There exists a recursive function $u : \mathcal{N} \times \mathcal{N} \to \mathcal{N}$ such that whenever α, β are codes of disjoint analytic sets A, B respectively with A being monotone, then $u(\alpha, \beta)$ is a Borel code of a semi-positive set C such that $A \subseteq C$ and $C \cap B = \emptyset$.

Question. Is there a constructive consequence to the preceding result in the style HYP = Δ_1^1 ?

The answer is affirmative but first we need to introduce the effective semi-positive sets.

First we introduce the following hierarchy of SP = the family of all semi-positive sets,

$$\begin{split} V_0 &= \emptyset, \quad V_1 = 2^{\omega}, \quad V_{n+2} := U_n = \{ x \in 2^{\omega} \mid x(n) = 1 \}, \quad n \in \omega; \\ S_{\widetilde{P}0}^{P} &= \{ V_n \mid n \in \omega \}; \\ S_{\widetilde{P}\xi}^{P} &= \{ \cup_{i \in \omega} \cap_{j \in \omega} A_{ij} \mid \text{ for all } i, j \text{ there is } \xi_{ij} < \xi \text{ such that } A_{ij} \in S_{\widetilde{P}\xi_{ij}}^{P} \}, \\ \text{ where } 1 \leq \xi < \omega_1. \end{split}$$

We also define for $\alpha \in \mathcal{N}$,

$$\begin{aligned} \alpha \in \mathrm{SPC}_0 &\iff \alpha(\mathbf{0}) = \mathbf{0} \\ \alpha \in \mathrm{SPC}_{\xi} &\iff \alpha(\mathbf{0}) = \mathbf{1} \& (\forall i, j) (\exists \eta < \xi) [\{\alpha^*\}(\langle i, j \rangle) \in \mathrm{SPC}_{\eta}], \end{aligned}$$

for all $\xi < \omega_1$, and

$$SPC = \cup_{\xi < \omega_1} SPC_{\xi}.$$

The members of SPC will be called semi-positive codes. Given $\alpha \in \text{SPC}$ we put

 $|\alpha|_{SP}$ = the least $\xi < \omega_1$ such that $\alpha \in SPC_{\xi}$.

The coding τ_{ξ} of the family SP_{ξ} is as usual defined by recursion on ξ ,

$$\tau_{0} : \operatorname{SPC}_{0} \twoheadrightarrow \operatorname{SP}_{0} : \tau_{0}(\alpha) = V_{\alpha^{*}(1)}$$

$$\tau_{\xi} : \operatorname{SPC}_{\xi} \twoheadrightarrow \operatorname{SP}_{\xi} : \tau_{\xi}(\alpha) = \bigcup_{i} \cap_{j} \tau_{|\{\alpha^{*}\}(\langle i, j \rangle)|_{\operatorname{SP}}}(\{\alpha^{*}\}(\langle i, j \rangle)).$$

The analogous (to the coding BC) properties hold in this setting. The function

$$\tau := \cup_{\xi < \omega_1} \tau_{\xi} : SPC \twoheadrightarrow SPC \xrightarrow{\sim}$$

defines a coding of the family SP.

A set $A \subseteq 2^{\omega}$ is effective semi-positive if it is of the form $\tau(\alpha)$ for some recursive $\alpha \in SPC$. (In this case we necessarily have that $|\alpha|_{SP} < \omega_1^{CK}$.)

The constructive consequence

Theorem (G. Uniform Dyck Separation for semi-positive codes)

There exists a recursive function $u : \mathcal{N} \times \mathcal{N} \to \mathcal{N}$ such that whenever α, β are codes of disjoint analytic sets A, Brespectively with A being monotone, then $u(\alpha, \beta)$ is a semi-positive code of a set C such that $A \subseteq C$ and $C \cap B = \emptyset$.

As a consequence to this we get

Corollary (G.)

It holds

$$\cup_{\xi < \omega_1^{CK}} SP_{\xi} = \Delta_1^1 \cap \{A \subseteq 2^{\omega} \mid A \text{ is semi-positive } \}$$

 $= \Delta_1^1 \cap \{ A \subseteq 2^{\omega} \mid A \text{ is monotone } \}.$

A set $P \subseteq \mathcal{X}$ has the Baire property or simpler *P* has the BP if there exists an open set *U* such that the symmetric difference

$$P \triangle U := (P \setminus U) \cup (U \setminus P)$$

is meager = countable union of nowhere dense sets. The family all subsets of \mathcal{X} which have the BP is a σ -algebra, which contains all open subsets of \mathcal{X} . Hence it contains the family of all Borel subsets of \mathcal{X} (= the least σ -algebra which contains all open subsets of \mathcal{X}).

Every $\sum_{n=1}^{1}$ set has the BP, and under some determinacy assumptions every $\sum_{n=1}^{1}$ set has the BP as well.

The Baire property

(日) (日) (日) (日) (日) (日) (日)

The Baire property holds almost uniformly

For convenience we denote in the sequel the α -sections of some set $P \subseteq \mathcal{N} \times \mathcal{X}$ by $P(\alpha)$.

Proposition (G. Axiom of Projective Determinacy for n > 1)

For every Polish space \mathcal{X} and every $n \in \omega$ there exists a continuous function $u_n^{\mathcal{X}} : \mathcal{N} \to \mathcal{N}$ such that for almost all $\alpha \in \mathcal{N}$ the set

 $\mathbf{G}_{n}^{\mathcal{X}}(\alpha) \triangle \mathbf{U}^{\mathcal{X}}(\boldsymbol{u}_{n}^{\mathcal{X}}(\alpha))$

is meager.

It is really almost

We cannot improve upon the "for almost all" part.

Theorem (G.)

For every $n \ge 1$ there is no Δ_n^1 -measurable function $u : \mathcal{N} \to \mathcal{N}$ such that the set $G_n^{\mathcal{N}}(\alpha) \triangle U^{\mathcal{N}}(u(\alpha))$

is meager for all $\alpha \in \mathcal{N}$.

Idea of the proof

Construct an open $V \subseteq \mathcal{N}$, which has "complex" $\sum_{n=1}^{1} codes$.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Some plans for the future

- Give constructive proofs to other separation-type results, (e.g. Preiss).
- Find Borel-measurable uniformity functions using definable points.

Problem. Suppose that X is a recursive Banach space and that K is a non-empty Δ_1^1 weakly compact subset of X. Does K contain a hyperarithmetical member?

An affirmative answer would provide a Borel-measurable uniformity function dealing with the fixed point property in Banach spaces.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Thank you for your attention!