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Clarification:

Recursive is beautiful!
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The Question

Suppose that P ⊆ X × Y is such that for all x ∈ X the section
Px := {y ∈ Y | (x , y) ∈ P} is non-empty, where X , Y are
arbitrary sets.
We want to find a function u : X → Y such that for all
(x ,u(x)) ∈ P for all x ∈ R (uniformity function).
The question is how “good” can such a function u be? For
example if P is of some certain complexity can u be of the
same complexity?
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Some definitions

In the sequle we deal with complete separable metric spaces,
which are computable, X , Y, Z . . . . The Baire space is NN.
A set P ⊆ Z is Σ1

1 if there is a Π0
1 (i.e., the complement is

effectively open) set F ⊆ Z × NN such that P = projZF ; and P
is Σ1

1(x), where y ∈ X , if it is the x-section of a Π0
1 set,

P = {z ∈ Z | (∃β ∈ NN)[(x , z, β) ∈ F ]}.

The class Σ˜ 1
1 of analytic sets, is the union ∪α∈NNΣ1

1(α).
By taking complements we obtain the classes Π1

1, Π1
1(x), and

Π˜ 1
1 (coanalytic sets).

Moreover we define ∆1
1(x) = Σ1

1(x)∩Π1
1(x) and ∆˜ 1

1 = Σ˜ 1
1 ∩Π˜ 1

1.
By the Suslin Theorem it holds

∆˜ 1
1 = Borel sets.
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To each space Y we can associate a countable basis
(N(Y, s))s∈N in a natural way. Given a class of sets Γ and a
function f : X → Y we say that f is Γ-recursive if the set

{(x , s) ∈ X × N | f (x) ∈ N(Y, s)}

is in Γ.
Examples. (1) If Γ is the class of open sets then Γ-recursive is
the same as continuous.
(2) If Γ is Σ0

1 (i.e., effectively open) then Γ-recursive is the same
as computable a.k.a. recursive.
(3) If Γ is the class of Borel sets then Γ-recursive is the same as
Borel-measurable.
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A point y ∈ Y is a ∆1
1(x)-point, where x ∈ X , if the set

{s ∈ N | y ∈ N(Y, s)}

is both a Σ1
1(x) and a Π1

1(x) subset of N.

Theorem (Kleene). ∆1
1(α) = HYP(α) , i.e.,

when X ⊆ NN, and α ∈ NN the condition y ∈ ∆1
1(α) is

equivalent to y ≤T α
(ξ) := the ξ-th Turing jump of α, for some

α-recursive ordinal ξ.
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Good and Bad (informal definition)

A bad choice is one, which does not provide any additional
information on the uniformity function u. This is usually done by
invoking the Axiom of Choice.
A good choice is one, where the complexity does not exceed
the complexity of the set that we start with. Warning: The u
does not have to be recursive. E.g.
(Classical version) In the conclusion we have that the given set
P ⊆ X × Y which satisfies Px 6= ∅ for all x ∈ X is Borel, and it
admits a Borel-measurable uniformity function.
(Effective version) In the conclusion we have that given set
P ⊆ X × Y which satisfies Px 6= ∅ for all x ∈ X is ∆1

1(α), and it
admits a ∆1

1(α)-recursive uniformity function, where α ∈ NN.
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An example:

Theorem (Luzin-Novikov Uniformization)
If P ⊆ X × Y is Borel and each section Px is countable then it
admits a Borel-measurable uniformity function u.

Actually its effective version is also true:

Theorem (Harrison - Louveau)

If P ⊆ X × Y is ∆1
1(α) and each section Px is countable then it

admits a ∆1
1(α)-measurable uniformity function u.
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Not good does not have to be bad

The uniformity function may still provide some useful
information:

Theorem (von Neumann Uniformization)

Let P ⊆ X × Y be Σ˜ 1
1. Then P admits a uniformity function

u : projX → Y whose graph belongs to the σ-algebra generated
by Σ˜ 1

1 sets.

Given that Σ˜ 1
1 sets are absolutely measurable (Luzin) it follows

that every analytic set has an absolutely measurable uniformity
function.
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In descriptive set theory there are two main ways for obtaining
uniformity functions.

1 Ensure the a point y ∈ Px , which is “definable” from x . This
typically results to Borel-measurable functions (Louveau).

2 Give a constructive proof to the theorem that we are
interested in. This typically results to recursive/continuous
uniformity functions.

In this talk we present examples of the preceding ways and
some applications.
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Why finding ∆1
1-points is useful

Theorem (Louveau)

Suppose that P ⊆ X ×Y is ∆1
1(z) and for all x ∈ projXP there is

y ∈ ∆1
1(z, x) such that (x , y) ∈ P. Then the projection projXP is

a ∆1
1(z) set and P admits a ∆1

1(z)-recursive uniformity function.

It is a consequence of the effective Perfect Set Theorem
(Harrison) that countable non-empty ∆1

1(w) sets consist of
∆1

1(w)-points. By combining the latter with the preceding result
of Louveau we obtain the effective version of the Lusin-Novikov
uniformization that we mentioned previously.
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A few more examples: Polish group actions

A Polish group is a triple (G, ∗, T ) such that (G, ∗) is a group,
(G, T ) is a Polish space, and the function
(x , y) ∈ G ×G 7→ x ∗ y−1 is T -continuous.
An action of a group (G, ∗) on a set X is a function
· : G × X → X such that eG · x = x and
(g1 ∗ g2) · x = g1 · (g2 · x) for all g1,g2 ∈ G and all x ∈ X .
A Polish G-space is a tuple (X , TX , ·,G, ∗, TG) such that (X , TX )
is a Polish space, (G, ∗, TG) is a Polish group, and · is a
continuous action of G on X .
This induces the equivalence relation EG on X :

xEGy ⇐⇒ (∃g ∈ G)[y = g · x ].
The orbit of x ∈ X is the equivalence class [x ]EG .The relation
EG is a Σ˜ 1

1 subset of X × X in general. However. . .
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Theorem (Miller)
In every Polish G-space every orbit is a Borel set.

Proposition (G.)
In every recursive Polish G-space it holds:

xEGy ⇐⇒ (∃g ∈Wx , y)[y = g · x ],

where Wx is essentially the hyperjump of x.

Corollary (G.)
For every recursive Polish G-space X and all x ∈ X , we have
the following:

1 The equivalence class [x ]EG is a ∆1
1(Wx ) set.

2 There is a ∆1
1(Wx )-recursive function fx : [x ]EG → G such

that for all y ∈ [x ]EG it holds y = fx (y) · x.
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The preceding proposition is also an essentiall tool to proving
the following.

Theorem (G.)
For every recursive Polish G-space X the restriction of EG on

{x ∈ X | ωx
1 = ωCK

1 } × X

is a Borel set, where ωx
1 is the least non x-recursive ordinal and

ωCK
1 the least non-recursive ordinal.
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A few more examples: The Decomposability
Conjecture

The Decomposability Conjecture states that for every function
f : X → Y with the property that f−1Σ˜ 0

m ⊆ Σ˜ 0
n, where

2 ≤ m ≤ n we can find a sequence (Xi)i∈N of Π˜ 0
n−1 sets, which

cover X and such that the restriction of f on each Xi is a
Σ˜ 0

n−1-measurable function.

Theorem (Kihara)
The Decomposability Conjecture is correct for functions
f : NN → NN and for 3 ≤ m ≤ n < 2m − 1 as long as the
property f−1Σ˜ 0

m ⊆ Σ˜ 0
n is realized by a continuous uniformity

function in the codes.
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Theorem (G. - Kihara)

For every f : X → Y, if the property f−1Σ˜ 0
m ⊆ Σ˜ 0

n holds, then
the latter can be realized by a Borel uniformity function in the
codes.

The preceding result has allowed us to make significant
progress on the Decomposability Conjecture.
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Intermediate steps

Recall:

Theorem (Louveau)

Suppose that P ⊆ X ×Y is ∆1
1(z) and for all x ∈ projXP there is

y ∈ ∆1
1(z, x) such that (x , y) ∈ P. Then the projection projXP is

a ∆1
1(z) set and P admits a ∆1

1(z)-recursive uniformity function.

Question. How about the intermediate steps of the preceding
result? What applications can we find?
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The Suslin Kleene Theorem

Theorem (Suslin-Kleene)
For every recursive Polish space X there is a recursive function
u : NN × NN → NN such that for all α, β ∈ NN if the analytic sets
A and B encoded by α and β are disjoint, then u(α, β) is a Borel
code of a set C with

A ⊆ C and C ∩ B = ∅.

This has the following application.

Theorem (Kleene - Louveau - Moschovakis)
For every space X we have

∆1
1 ∩ X = HYP ∩ X .
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Dyck Separation

We consider the following subsets of 2N,

Un := {x ∈ 2N | x(n) = 1}.

The family of all positive sets is the least family which contains
{Un | n ∈ N} and is closed under countable unions and
intersections. The family of semi-positive sets is the least family
which contains {Un | n ∈ N} ∪ {∅,2N} and is closed under
countable unions and intersections.
Every x ∈ 2N can be identified with the subsets of the naturals
{n ∈ ω | x(n) = 1}. We say that a set A ⊆ 2N is monotone if for
all x ∈ A and all y ∈ 2N with x ⊆ y it holds y ∈ A.
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It is not difficult to see that every semi-positive set is monotone.
The converse is also true. This is a corollary to:

Theorem (Dyck Separation)

Let A,B ⊆ 2N be disjoint analytic sets. If A is monotone then
there is a semi-positive Borel set C such that A ⊆ C and
C ∩ B = ∅.

Theorem (G.)

There exists a recursive function u : NN × NN → NN such that
whenever α, β are codes of disjoint analytic sets A, B
respectively with A being monotone, then u(α, β) is a Borel
code of a semi-positive set C such that A ⊆ C and C ∩ B = ∅.
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The constructive consequence

Question. Is there a constructive consequence to the preceding
result in the style HYP = ∆1

1?
To do this one needs to introduce the notion of a semi-positive
code, with the help of which one defines the family of all
effective semi-positive sets ∪ξ<ωCK

1
SPξ.

The preceding result (Uniform Dyck Separation) remains valid if
we replace “Borel code” with “semi-positive code”. We then get

Corollary (G.)
It holds

∪ξ<ωCK
1

SPξ = ∆1
1 ∩ {A ⊆ 2N | A is semi-positive }

= ∆1
1 ∩ {A ⊆ 2N | A is monotone }.
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Preiss Separation

A Borel subset of Rn is convexly generated if it belongs to the
smallest class of sets containing the the compact convex sets
and is closed under countable intersections as well as
increasing countable unions.

Theorem (Preiss Separation)

Let A,B ⊆ Rn be disjoint analytic sets with A convex. Then
there is a convexly generated Borel set C, which separates A
from B.

Corollary (Preiss)

For every Borel B ⊆ Rn we have that B is convex exactly when
B is convexly generated.
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Conjecture (almost proved)
The Preiss Separation Theorem is realized by a recursive
uniformity function, which in turn gives the analogous
constructive consequence.
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Thank you for your
attention!
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